
Building Knowledge with Reinforcement Learning

• Focusing on two types of knowledge:

– Procedural knowledge: skills, goal-driven behavior
– Predictive, empirical knowledge: Analogous to the laws of physics,

predicting e↵ects of actions

• The knowledge must be:

– Expressive: able to represent many things, including abstractions like
objects, space, people, and extended actions

– Learnable: from data without labels or supervision (for scalability)
– Composable: suitable for supporting planning / reasoning by

assembling existing pieces

ICCP’2020, Cluj-Napoca 5

Procedural Knowledge: Options

• An option ! consists of 3 components

– An initiation set I! ✓ S (aka precondition)
– A policy ⇡! : S ⇥ A ! [0, 1]

⇡!(a|s) is the probability of taking a in s when following option !
– A termination condition �! : S ! [0, 1]:

�!(s) is the probability of terminating the option ! upon entering s

• Eg., robot navigation: if there is no obstacle in front (I!), go forward
(⇡!) until you get too close to another object (�!)

• Inspired from macro-actions / behaviors in robotics / hybrid planning
and control

Cf. Sutton, Precup & Singh, 1999; Precup, 2000

ICCP’2020, Cluj-Napoca 6

Decision-Making with Options

SMDP

Time

MDP
State

Options

over MDP

Fig. 1. The state trajectory of an MDP is made up of small, discrete-time transitions,
whereas that of an SMDP comprises larger, continuous-time transitions. Options
enable an MDP trajectory to be analyzed in either way.

tion 4 considers the problem of e�ectively combining a given set of options
into a single overall policy. For example, a robot may have pre-designed con-
trollers for servoing joints to positions, picking up objects, and visual search,
but still face a di�cult problem of how to coordinate and switch between
these behaviors [17,22,38,48,50,65–67]. Sections 5 and 6 concern intra-option
learning—looking inside options to learn simultaneously about all options con-
sistent with each fragment of experience. Finally, in Section 7 we illustrate a
notion of subgoal that can be used to improve existing options and learn new
ones.

1 The Reinforcement Learning (MDP) Framework

In this section we briefly review the standard reinforcement learning frame-
work of discrete-time, finite Markov decision processes , or MDPs , which forms
the basis for our extension to temporally extended courses of action. In this
framework, a learning agent interacts with an environment at some discrete,
lowest-level time scale, t = 0, 1, 2, . . . On each time step, t, the agent perceives
the state of the environment, st � S, and on that basis chooses a primitive
action, at � Ast . In response to each action, at, the environment produces one
step later a numerical reward, rt+1, and a next state, st+1. It is convenient to
suppress the di�erences in available actions across states whenever possible;
we let A =

�
s�S As denote the union of the action sets. If S and A, are fi-

nite, then the environment’s transition dynamics can be modeled by one-step
state-transition probabilities,

pa
ss� = Pr{st+1 = s� | st = s, at = a},

4

Learning and planning algorithms are the same at all levels of abstraction!

ICCP’2020, Cluj-Napoca 7

Options as Behavioral Programs

• Call-and-return execution

– When called, option ! is pushed onto the execution stack
– During the option execution, the program looks at certain variables

(aka state) and executes an instruction (aka action) until a termination
condition is reached

– The option can keep track of additional local variables, eg counting
number of steps, saturation in certain features (e.g. Comanici, 2010)

– Options can invoke other options

• Interruption

– At each step, one can check if a better alternative has become available
– If so, the option currently executing is interrupted (special form of

concurrency)

ICCP’2020, Cluj-Napoca 8

Option Models Provide Semantics

• Models of actions consist of immediate reward and transition probability
to next state

• Models of options consist of reward until termination and (discounted)
transition to termination state

• Models are predictions about the future and provide more benefits beyond
hierarchical behavior (cf Botvinick & Weinsteein, 2014)

ICCP’2020, Cluj-Napoca 9

How Should Options Be Created?

• Options can be given by a system designer (eg robotics)

• If subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

– Eg. acquiring certain objects in a game
– Eg. Intrinsic motivation

• What is a good set of subgoals / options?

• This is a representation discovery problem

• Studied a lot over the last 15 years

• Bottleneck states and change point detection currently the most
successful methods

ICCP’2020, Cluj-Napoca 10

Bottleneck States

• Perhaps the most explored idea in options construction

• A bottleneck allows “circulating” between many di↵erenet states

• Lots of di↵erent approaches!

– Frequency of states (McGovern et al, 2001, Stolle & Precup, 2002)
– Graph partitioning / state graph analysis (Simsek et al, 2004, Menache

et al, 2004, Bacon & Precup, 2013)
– Information-theoretic ideas (Peters et al., 2010)

• People seem quite good at generating these (cf. Botvinick, 2001, Solway
et al, 2014)

• Main drawback: expensive both in terms of sample size and computation

ICCP’2020, Cluj-Napoca 11

Random Subgoals Also Help

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
PFVI

Figure 6: Example trajectories for policies derived from the last (K = 30) iteration of PFVI, OFVI, and
LAVI on the continuous two rooms domain. For LAVI, the landmark hyperspheres are drawn as black ovals.

(a) (b)

Figure 7: Two-Rooms: Comparison of planning with PFVI, OFVI, and LAVI with 100 landmarks in the
continuous two rooms domain. (a) Performance of policies derived from each iteration of PFVI, OFVI, and
LAVI. (b) Time in seconds to compute each iteration of PFVI, OFVI, and LAVI.

inventory requires making large jumps in the state-space (e.g., going from 0 inventory to maximum inventory
levels) in a single timestep.

5.3 Continuous Two Rooms Domain

We implemented a continuous-state version of the two rooms domain introduced by Şimşek and Barto
[2004]. Given the agent’s current state as a point �x, y�, the new state after executing a primitive action was
obtained by �x, y�+N (µ, �) where N (µ, �) is an instance of the normal distribution with mean µ = (�x, �y)
depending on the action (up, down, left, or right) and standard deviation � = (0.05, 0.05). If the agent was
blocked by a wall or boundary then it did not move. OFVI was given a single additional option (in addition
to the primitive actions), which transitions the agent from the doorway to the goal region. Landmarks for
LAVI and LOFVI were uniformly sampled from the state-space and di�erent landmarks sets were sampled
for each trial.

We used Euclidean distance as a metric over the state-space and selected � = 0.05 and d+ = 15. We used
a greedy local planner that chose the action transitioning the agent closest to the landmark state, unless the
landmark and agent were in di�erent rooms. In that case, the planner selected the action that transitioned
the closest to the doorway region. We ran all conditions for K = 30 iterations.

For the continuous Two-Rooms domain Figure 6 shows sample trajectories for the final policy derived
by PFVI, OFVI, and LAVI. Even with K = 30 iterations, PFVI was not able to derive a successful policy.
However, with additional iterations (not shown), PFVI does eventually learn a path to the goal region.
The policy derived by OFVI moves more directly toward the goal state, while the policy derived by LAVI
transitions from landmark to landmark. Although this results in a longer path to goal, LAVI is still able to
solve the task.

13

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
LAVI

0

Figure 6: Example trajectories for policies derived from the last (K = 30) iteration of PFVI, OFVI, and
LAVI on the continuous two rooms domain. For LAVI, the landmark hyperspheres are drawn as black ovals.

(a) (b)

Figure 7: Two-Rooms: Comparison of planning with PFVI, OFVI, and LAVI with 100 landmarks in the
continuous two rooms domain. (a) Performance of policies derived from each iteration of PFVI, OFVI, and
LAVI. (b) Time in seconds to compute each iteration of PFVI, OFVI, and LAVI.

inventory requires making large jumps in the state-space (e.g., going from 0 inventory to maximum inventory
levels) in a single timestep.

5.3 Continuous Two Rooms Domain

We implemented a continuous-state version of the two rooms domain introduced by Şimşek and Barto
[2004]. Given the agent’s current state as a point �x, y�, the new state after executing a primitive action was
obtained by �x, y�+N (µ, �) where N (µ, �) is an instance of the normal distribution with mean µ = (�x, �y)
depending on the action (up, down, left, or right) and standard deviation � = (0.05, 0.05). If the agent was
blocked by a wall or boundary then it did not move. OFVI was given a single additional option (in addition
to the primitive actions), which transitions the agent from the doorway to the goal region. Landmarks for
LAVI and LOFVI were uniformly sampled from the state-space and di�erent landmarks sets were sampled
for each trial.

We used Euclidean distance as a metric over the state-space and selected � = 0.05 and d+ = 15. We used
a greedy local planner that chose the action transitioning the agent closest to the landmark state, unless the
landmark and agent were in di�erent rooms. In that case, the planner selected the action that transitioned
the closest to the doorway region. We ran all conditions for K = 30 iterations.

For the continuous Two-Rooms domain Figure 6 shows sample trajectories for the final policy derived
by PFVI, OFVI, and LAVI. Even with K = 30 iterations, PFVI was not able to derive a successful policy.
However, with additional iterations (not shown), PFVI does eventually learn a path to the goal region.
The policy derived by OFVI moves more directly toward the goal state, while the policy derived by LAVI
transitions from landmark to landmark. Although this results in a longer path to goal, LAVI is still able to
solve the task.

13

Cf. Mann, Mannor & Precup, 2015

ICCP’2020, Cluj-Napoca 12

Option-Critic: Learn Options that Optimize Return

• Explicitly state an optimization objective and then solve it to find a set
of options

• Handle both discrete and continuous set of state and actions

• Learning options should be continual (avoid combinatorially-flavored
computations)

• Options should provide improvement within one task (or at least not
cause slow-down...)

ICCP’2020, Cluj-Napoca 13

Actor-Critic Architecture

Value
function

Environment

Policy

at+1st

Actor

rt

Gradient

Critic TD error

• Clear optimization objective: average or discounted return

• Continual learning

• Handles both discrete and continuous states and actions

ICCP’2020, Cluj-Napoca 14

Option-Critic Architecture

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

The Option-Critic Architecture

where �QU,w(s, !, a) is the difference between the ap-
proximation and its true target. We can guarantee equal-
ity under two conditions: 1) The learning algorithm under-
lying QU,w minimizes the squared error distance and has
reached convergence 2) The gradient of the function ap-
proximator satisfies the equality:

�

�w
QU,w(s, !, a) =

�

�✓
⇡!,✓ (a | s)

1

⇡!,✓ (a | s)
(8)

This conditions simply mirror their MDP counterpart in the
original policy gradient theorem. The same conditions also
hold for the advantage function, used in the termination
gradient. This time however, we have:

�

��
A�,�(s, !) =

�

��
�!,�(s)

For more details, we invite you to consult the supplemen-
tary material.

4. Option-critic architecture

⇡�

QU , A�

Environment

atst

⇡!0 , �!0

rt

Gradients

Critic
TD error

!t

Options

Behavior policy

Figure 1: The option-critic architecture consists of a set of
options, a policy over them and a critic. Gradients can be
derived from the critic for both the intra-option policies and
termination functions. The execution model is suggested
pictorially by a switch � over the contacts �. Switching
can only take place when a termination event is encoun-
tered.

The algorithmic implementation of theorems 1 and 2 gives
rise to the option-critic learning architecture (fig. 1), in
reference to the gradient-based actor-critic architectures
(Sutton, 1984; Peters et al., 2005; Degris et al., 2012).
Although option-critic is conceptually identical to actor-
critic, we sought to make a distinction between our holis-
tic approach to learning options and one in which intra-
option policies would be learned with regular policy gradi-
ent methods in a pseudo-reward context.

Since two types of gradients are needed to learn the options,
the critic part of the option-critic architecture consists in

Figure 2: Layout of the four-rooms domain and value func-
tion obtained by option-critic

.

QU (s, !, a) or the negative advantage function (or both).
In this work, we do not seek to use a critic for learning
the policy over options. Note that the problem of learning
a parametrized policy over options can be solved readily
using the policy gradient theorem (see section 2). Using
options has the advantage of reducing a large (potentially
continuous) set of primitive actions to a potentially much
smaller set of discrete options. In this case, the policy over
options can be found using planning methods over the op-
tions models.

5. Experiments
In order to illustrate our approach, we present some pre-
liminary experiments in the four-rooms domain (Sutton et
al., 1999). We fixed the initial state in the upper left cor-
ner and defined a terminal state in the lower right corner.
A penalty of -1 was incurred at every step and for every
action taken in the direction of a wall (resulting in a non-
elastic collision) and a terminal reward of 100 was obtained
upon taking an action leading to the goal state. Primitive
actions were defined as the one-step transitions to the next
cell in each of the four cardinal directions: north, east, west,
south. Any action could fail with probability 0.1, in which
case the agent would simply remain in the same state. The
discount factor for this MDP was set to to 0.9.

We chose to parametrize the intra-option policies using the
softmax distribution:

⇡! (a | s) =
exp✓�

��(s,a)

�
a� exp✓�

��(s,a)

�

�✓
log ⇡! (a | s) = �(s, a) �

X

b

⇡! (b | s) �(s, b)

where � is a state-action basis function. In this experiment,
we used a simple a one-hot encoding of state-action pairs
as basis functions. We defined the termination through the

• Given a number of desired options, optimize internal policies and
termination conditions using the cumulative reward signal

cf. Bacon et al, AAAI’2017

ICCP’2020, Cluj-Napoca 15

Some details

• The action-value over options can be expressed as

Q⌦(s, !) =
X

a

⇡!(a|s)QU(s, !, a)

where
QU(s, !, a) = r(s, a) + �

X

s0

P (s0|s, a)U(!, s0)

• The last quantity is the utility from s0 onwards, given that we arrive in
s0 using !

U(!, s0) = (1 � �!(s0))Q⌦(s0, !) + �!(s0)V⌦(s0)

• We parameterize the internal policies by ✓, as ⇡!,✓, and the termination
conditions by ⌫, as �!,⌫

• Note that ✓ and ⌫ can be shared over the options!

DALI RL, April 2016 8

Main result: Gradient updates

• Suppose we want to optimize the expected return: E(s,!)⇠µQ⌦(s, !)

• The gradient wrt the internal policy parameters ✓ is given by:

E(s,!)⇠µEa⇠⇡!,✓(·|s)

⇢
@ log ⇡!,✓(a|s)

@✓
QU(s, !, a)

�

This has the usual interpretation: take better primitives more often inside
the option

• The gradient wrt the termination parameters ⌫ is given by:

E(s,!)⇠µEa⇠⇡!,✓(·|s)Es0⇠P (·|s,a)

⇢
�@�!,⌫(s0)

@⌫
A⌦(s0, !)

�

where A⌦ is the advantage function

This means that we want to lengthen options that have a large advantage

DALI RL, April 2016 9

Experimental setup

• Linear function approximation for QU , Q⌦, weights initialized to 0

• Q⌦ learned simultaneously with Sarsa

• Internal policies of options parameterized by softmax

• Termination conditions for options parameterized with a logistic function

DALI RL, April 2016 10

Experiments: Pinball

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

The Option-Critic Architecture

(a) Undiscounted return. Option-critic (OC) provides a speedup
compared to a primitive actor-critic (AC) method.

(b) Average options durations. Shrinking options are expected when
optimizing purely for reward. With more options (16), the policy has
more degrees of freedom for maximizing the return, thus explaining
why the average durations stabilize after 50 episodes.

Figure 4: Option-critic in Pinball, averaged over 100 inde-
pendent trials

Figure 5: Sample trajectories showing the options (identi-
fied by color) learned after 125 episodes. The red circle in
the lower right corner is the target; the initial position in the
top left corner. The blue option seem have specialized in a
behavior around the target.

its continuous parameters. Parametrized actions as de-
scribed by (Masson et al., 2016) can thus be thought as
options defined over a continuous set of primitive actions
(parameters) and lasting only one time step. In this experi-
ment, we explore this connection and endow parametrized
actions with the ability to last more that one time step with
the options framework.

In the platform domain, the three parametrized actions run,
hop and leap take a continuous displacement dx parame-
ter. The agent starts on a platform and must move as far
as possible while jumping over gaps and enemies. The
four-dimensional continuous state space is defined by the
agent’s and enemies’ position and velocity: x, ẋ, ex, ėx.
The reward function corresponds to the horizontal displace-
ment �x, normalized by the total length spanned by all the
gaps and platforms. We used the original implementation 1

made available by the authors.

We mapped each of the three parametrized action to a cor-
responding option. We represented the intra-option policies
with normal distribution with fixed variance �2 = 0.01 and
state-dependent mean:

⇡!,✓ (a | s) � N (✓��(s, !), �2)

@

@✓
log ⇡!,✓ (a | s) =

1

�2
(a � ✓��(s, !))�(s, !)

Note that the primitive action a now has the meaning of
a continuous parameter. We defined the termination func-
tions with the sigmoid function over the same set of param-
eter features as for (Masson et al., 2016).

Underlying ⇡⌦, we also chose a softmax strategy with fixed
temperature parameter t = 0.01:

⇡⌦,w (! | s) =
expw��(s,!)/t

�
o expw��(s,!�)/t

Note that the above dot product taking place in the expo-
nent is now used to represent Q⌦(s, !) which we learn by
intra-option SARSA learning. Fourier features �(s, !) of
order 6 were used for the basis functions. Instead of learn-
ing QU explicitly, the critic feedback was provided using
the estimator presented in section 3.4 in combination with
the baseline (Sutton et al., 2000) Q⌦(s, !).

Figure 6a shows the average undiscounted return over
60000 episodes. Despite not being tailored to this partic-
ular task, option-critic manages to be competitive with the
specialized methods of (Masson et al., 2016). When in-
specting the trajectories, we found that option-critic had
learned to use a temporally extended hop sequence when
approaching the enemy on the second platform. While it

1https://github.com/WarwickMasson/aaai-platformer

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

The Option-Critic Architecture

0 20 40 60 80 100 120
Episodes

�25000

�20000

�15000

�10000

�5000

0

5000

10000

15000

Av
er

ag
e

un
di

sc
ou

nt
ed

re
tu

rn

AC-SARSA(0)
OC-SARSA(0), |�| = 4

(a) Undiscounted return. Option-critic (OC) provides a speedup
compared to a primitive actor-critic (AC) method.

(b) Average options durations. Shrinking options are expected when
optimizing purely for reward. With more options (16), the policy has
more degrees of freedom for maximizing the return, thus explaining
why the average durations stabilize after 50 episodes.

Figure 4: Option-critic in Pinball, averaged over 100 inde-
pendent trials

Figure 5: Sample trajectories showing the options (identi-
fied by color) learned after 125 episodes. The red circle in
the lower right corner is the target; the initial position in the
top left corner. The blue option seem have specialized in a
behavior around the target.

its continuous parameters. Parametrized actions as de-
scribed by (Masson et al., 2016) can thus be thought as
options defined over a continuous set of primitive actions
(parameters) and lasting only one time step. In this experi-
ment, we explore this connection and endow parametrized
actions with the ability to last more that one time step with
the options framework.

In the platform domain, the three parametrized actions run,
hop and leap take a continuous displacement dx parame-
ter. The agent starts on a platform and must move as far
as possible while jumping over gaps and enemies. The
four-dimensional continuous state space is defined by the
agent’s and enemies’ position and velocity: x, ẋ, ex, ėx.
The reward function corresponds to the horizontal displace-
ment �x, normalized by the total length spanned by all the
gaps and platforms. We used the original implementation 1

made available by the authors.

We mapped each of the three parametrized action to a cor-
responding option. We represented the intra-option policies
with normal distribution with fixed variance �2 = 0.01 and
state-dependent mean:

⇡!,✓ (a | s) � N (✓��(s, !), �2)

@

@✓
log ⇡!,✓ (a | s) =

1

�2
(a � ✓��(s, !))�(s, !)

Note that the primitive action a now has the meaning of
a continuous parameter. We defined the termination func-
tions with the sigmoid function over the same set of param-
eter features as for (Masson et al., 2016).

Underlying ⇡⌦, we also chose a softmax strategy with fixed
temperature parameter t = 0.01:

⇡⌦,w (! | s) =
expw��(s,!)/t

�
o expw��(s,!�)/t

Note that the above dot product taking place in the expo-
nent is now used to represent Q⌦(s, !) which we learn by
intra-option SARSA learning. Fourier features �(s, !) of
order 6 were used for the basis functions. Instead of learn-
ing QU explicitly, the critic feedback was provided using
the estimator presented in section 3.4 in combination with
the baseline (Sutton et al., 2000) Q⌦(s, !).

Figure 6a shows the average undiscounted return over
60000 episodes. Despite not being tailored to this partic-
ular task, option-critic manages to be competitive with the
specialized methods of (Masson et al., 2016). When in-
specting the trajectories, we found that option-critic had
learned to use a temporally extended hop sequence when
approaching the enemy on the second platform. While it

1https://github.com/WarwickMasson/aaai-platformer

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

The Option-Critic Architecture

(a) Undiscounted return. Option-critic (OC) provides a speedup
compared to a primitive actor-critic (AC) method.

0 20 40 60 80 100 120
Episode

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

op
tio

ns
du

ra
tio

ns

OC-SARSA(0), |�| = 16
OC-SARSA(0), |�| = 4

(b) Average options durations. Shrinking options are expected when
optimizing purely for reward. With more options (16), the policy has
more degrees of freedom for maximizing the return, thus explaining
why the average durations stabilize after 50 episodes.

Figure 4: Option-critic in Pinball, averaged over 100 inde-
pendent trials

Figure 5: Sample trajectories showing the options (identi-
fied by color) learned after 125 episodes. The red circle in
the lower right corner is the target; the initial position in the
top left corner. The blue option seem have specialized in a
behavior around the target.

its continuous parameters. Parametrized actions as de-
scribed by (Masson et al., 2016) can thus be thought as
options defined over a continuous set of primitive actions
(parameters) and lasting only one time step. In this experi-
ment, we explore this connection and endow parametrized
actions with the ability to last more that one time step with
the options framework.

In the platform domain, the three parametrized actions run,
hop and leap take a continuous displacement dx parame-
ter. The agent starts on a platform and must move as far
as possible while jumping over gaps and enemies. The
four-dimensional continuous state space is defined by the
agent’s and enemies’ position and velocity: x, ẋ, ex, ėx.
The reward function corresponds to the horizontal displace-
ment �x, normalized by the total length spanned by all the
gaps and platforms. We used the original implementation 1

made available by the authors.

We mapped each of the three parametrized action to a cor-
responding option. We represented the intra-option policies
with normal distribution with fixed variance �2 = 0.01 and
state-dependent mean:

⇡!,✓ (a | s) � N (✓��(s, !), �2)

@

@✓
log ⇡!,✓ (a | s) =

1

�2
(a � ✓��(s, !))�(s, !)

Note that the primitive action a now has the meaning of
a continuous parameter. We defined the termination func-
tions with the sigmoid function over the same set of param-
eter features as for (Masson et al., 2016).

Underlying ⇡⌦, we also chose a softmax strategy with fixed
temperature parameter t = 0.01:

⇡⌦,w (! | s) =
expw��(s,!)/t

�
o expw��(s,!�)/t

Note that the above dot product taking place in the expo-
nent is now used to represent Q⌦(s, !) which we learn by
intra-option SARSA learning. Fourier features �(s, !) of
order 6 were used for the basis functions. Instead of learn-
ing QU explicitly, the critic feedback was provided using
the estimator presented in section 3.4 in combination with
the baseline (Sutton et al., 2000) Q⌦(s, !).

Figure 6a shows the average undiscounted return over
60000 episodes. Despite not being tailored to this partic-
ular task, option-critic manages to be competitive with the
specialized methods of (Masson et al., 2016). When in-
specting the trajectories, we found that option-critic had
learned to use a temporally extended hop sequence when
approaching the enemy on the second platform. While it

1https://github.com/WarwickMasson/aaai-platformer

• Option parameters not shared in this case

• Options specialize in di↵erent areas (e.g. around the goal)

• In the long run, options get shorter

• This is expected: optimal policy is made of primitive actions

DALI RL, April 2016 12

Results: Transfer in Rooms Domain
Hallways

Walls

Initial goal Uniformly random goal

1000 ep.

0 500 1000 1500 2000

Episodes

0

100

200

300

400

500

S
te

p
s

AC

Sarsa

OC 2 options

OC 4 options

OC 6 options

OC 8 options

ICCP’2020, Cluj-Napoca 16

Quantitative and qualitative results in Atari games

Figure 3: Network architecture for option-critic in the ALE
environment. The penultimate layer is shared across option
policies, termination functions and value outputs.

Therefore, the gradient for option policies takes into account
how a local change in the action choices would impact per-
formance of the entire system.

The gradient theorem for termination functions also ad-
mits a clear interpretation but involves a different critic feed-
back than for option policies. The termination gradient
makes the odds of terminating more likely if there is no
longer an advantage in maintaining an option. Conversely
if committing to an option is deemed advantageous by the
critic, its probability of terminating should be decreased so
as to lengthen that option. The expression advantageous,
loosely used up to now, is defined precisely in terms of the
advantage function (Baird 1993): the difference between the
value of a given option at a state and the expected value over
all options. Interestingly, the termination gradient theorem
for options can be seen as another instantiation of the inter-
ruption execution model (Sutton et al. 1999b) whereby the
policy over option commits to an option unless a better one
can be taken.

Deep Options
In addition to options, a state abstraction can also be learned
end-to-end under the option-critic architecture. Having
the Arcade Learning Environment (ALE) (Bellemare et al.
2013) in mind, we designed a parameterization around the
deep network architecture of the DQN algorithm (Mnih et
al. 2015). The observations fed to the agent being pixel-
based, the first few layers of the network (fig. 3) apply con-
volutions to a concatenation of the last four frames. In the
penultimate layer, the high level visual features extracted be-
low are combined in a shared representation across all op-
tions, termination functions and values outputs.

While we could have chosen to also parameterized the
policy over options, we decided to use instead an epsilon-
greedy (Sutton and Barto 1998) policy over options derived
from the value outputs. Therefore the stream of computation
going from input to value output and epsilon-greedy policy
mirrors the same design as DQN . However, the second path
of computation ending in the option policies and termination
functions necessitates randomization per the gradient theo-
rems for options. Because the action space is discrete, we
chose the softmax (Sutton et al. 1999a) for the options poli-
cies and sigmoid functions for the termination functions.

Different kinds of parameters updates are also necessary
in each of the two stream. For the value updates and control
over options, we used the idea of a target network of DQN

(a) Asterix (b) Ms. Pacman

Option-Critic
DQN

Option-Critic
DQN

A
vg

.S
co

re

Epoch Epoch
50 100 150 2000 50 100 150 2000

0

2000

4000

6000

8000

10000

500

1000

1500

2000

2500

(c) Seaquest (d) Zaxxon

Option-Critic
DQN

Option-Critic
DQN

Epoch Epoch
50 100 150 2000 50 100 150 2000

0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

Figure 4: Option-critic can learn options (8 in this case)
within a single task in the Arcade Learning Environment.

but in combination with the intra-option Q-learning algo-
rithm (Sutton et al. 1999b) By freezing the network for a
fixed interval, the target for the values update becomes more
stationary learning becomes more stable. Both kinds of up-
dates would be computed at every step with samples com-
ing from an experience replay buffer (Lin 1992) for learning
values but using only fresh online samples for the options
updates. The reason for not using replayed samples with op-
tions gradients (or policy gradients in general) was to ensure
that our gradient estimates would truly come the distribution
of interest : the stationary distribution of the online process.

From Zero to Options : Results in ALE
Could we learn from scratch a set of options and their state
abstraction within a single task ? We set out to answer this
question in four representative tasks of the ALE domain :
Asterix, Ms. Pacman, Seaquest in Zaxxon. Even for simple
grid environments, discovering options in complete auton-
omy had either required excessively large amounts of data
and computation or some form of prior experience in related
tasks. Hence, learning options in ALE without any prespec-
ification other than the goal of maximizing the discounted
return would be a formidable challenge.

Despite the complexity of this endeavour, the combina-
tion of option-critic and our deep architecture outperformed
the best reported DQN performance (fig. 4) for the same to-
tal number of frames in the games Asterix, Ms. Pacman and
Seaquest. It is important to remember that all learning took
place entirely within the same task at a rate and computa-
tional cost comparable to DQN. Beside the options param-
eterization the only parameter that we had to provide to our
system was the number of desired options.

With the end-to-end approach behind the option-critic ar-
chitecture, the question “what options were discovered ?”
can be answered in general by : any kind of options that

(a) Asterix (b) Ms. Pacman (c) Seaquest (d) Zaxxon

Testing
Moving avg.10
DQN

Testing
Moving avg.10
DQN

Testing
Moving avg.10
DQN

Testing
Moving avg.10
DQN

A
vg

.S
co

re

Epoch Epoch Epoch Epoch
50 100 150 2000 50 100 150 2000 50 100 150 2000 50 100 150 2000

0

2000

4000

6000

8000

10000

500

1000

1500

2000

2500

0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

Figure 8: Learning curves in the Arcade Learning Environment. The same set of parameters was used across all four games: 8
options, 0.01 termination regularization, 0.01 entropy regularization, and a baseline for the intra-option policy gradients.

Option 0 Option 1

Time

Figure 9: Up/down specialization in the solution found by option-critic when learning with 2 options in Seaquest. The top bar
shows a trajectory in the game, with “white” representing a segment during which option 1 was active and “black” for option 2.

use the DQN framework to implement a gradient-based op-
tion learner, which uses intrinsic rewards to learn the internal
policies of options, and extrinsic rewards to learn the pol-
icy over options. As opposed to our framework, descriptions
of the subgoals are given as inputs to the option learners.
Option-critic is conceptually general and does not require
intrinsic motivation for learning the options.

Discussion
We developed a general gradient-based approach for learn-
ing simultaneously the intra-option policies and termination
functions, as well as the policy over options, in order to opti-
mize a performance objective for the task at hand. Our ALE
experiments demonstrate successful end-to-end learning of
options in the presence of nonlinear function approxima-
tion. As noted, our approach only requires specifying the
number of options. However, if one wanted to use additional
pseudo-rewards, the option-critic framework would easily
accommodate it. In this case, the internal policies and ter-
mination function gradients would simply need to be taken
with respect to the pseudo-rewards instead of the task re-
ward. A simple instance of this idea, which we used in some
of the experiments, is to use additional rewards to encour-
age options that are indeed temporally extended by adding
a penalty whenever a switching event occurs. Our approach
can work seamlessly with any other heuristic for biasing the
set of options towards some desirable property (e.g. compo-
sitionality or sparsity), as long as it can be expressed as an
additive reward structure. However, as seen in the results,
such biasing is not necessary to produce good results.

The option-critic architecture relies on the policy gradient

theorem, and as discussed in (Thomas 2014), the gradient
estimators can be biased in the discounted case. By intro-
ducing factors of the form �t

�t
i=1(1 � �i) in our updates

(Thomas 2014, eq (3)), it would be possible to obtain un-
biased estimates. However, we do not recommend this ap-
proach since the sample complexity of the unbiased esti-
mators is generally too high and the biased estimators per-
formed well in our experiments.

Perhaps the biggest remaining limitation of our work is
the assumption that all options apply everywhere. In the case
of function approximation, a natural extension to initiation
sets is to use a classifier over features, or some other form of
function approximation. As a result, determining which op-
tions are allowed may have similar cost to evaluating a pol-
icy over options (unlike in the tabular setting, where options
with sparse initiation sets lead to faster decisions). This is
akin to eligibility traces, which are more expensive than us-
ing no trace in the tabular case, but have the same complex-
ity with function approximation. If initiation sets are to be
learned, the main constraint that needs to be added is that the
options and the policy over them lead to an ergodic chain in
the augmented state-option space. This can be expressed as
a flow condition that links initiation sets with terminations.
The precise description of this condition, as well as sparsity
regularization for initiation sets, is left for future work.

Acknowledgements
The authors gratefully acknowledge financial support for
this work by the National Science and Engineering Research
Council of Canada (NSERC) and the Fonds de recherche du
Quebec - Nature et Technologies (FRQNT).

ICCP’2020, Cluj-Napoca 17

Preserving Procedural Knowledge over Time

• Successful simultaneous learning of terminations and option policies

• But, as expected, options shrink over time unless additional regularization
is imposed

Cf. time-regularized options, Mann et al, (2014)

• Intuitively, using longer options increase the speed of learning and
planning (but may lead to a worse result in call-and-return execution)

• Diverse options are useful for exploration in continual learning setting

ICCP’2020, Cluj-Napoca 18

Bounded Rationality as Regularization

• Problem: optimizing return leads to option collapse (primitive actions
are su�cient for optimal behaviour)

• Bounded rationality: reasoning about action choices is expensive (energy
consumption and missed-opportunity cost)

Eg Russell, 1995, Lieder & Gri�ths, 2018

• Idea: switching options incurs an additional cost

Bacon, Harb & Precup

Time

Base MDP + Options

Deliberation Costs

Figure 1: The switching cost is incurred upon entering SMDP decision points, represented
by open circles. The average decision cost per primitive step (filled circle) is represented by
the intensity of the subtrajectory.

Furthermore, if c�(s�, o) = ���(s�, o) – which we call a switching cost function – we have :

Qc
�(s, o) =

X

a

⇡ (a | s, o)
�

r(s, a) + �
X

s�

P
�
s� �� s, a

� �
Q�(s

�, o) � ��(s
�, o)

�
Ac

�(s
�, o) + �

��
�

,

(19)

where Ac
�(s

�, o)=̇Qc
�(s

�, o)�V c
� (s�). The introduction of the switching cost to the base MDP

reward therefore leads to a di�erent form for the intra-option Bellman equations (5) where
a scalar � is now added to the advantage function. This suggests that the e�ect of using a
switching cost � is to set a baseline on how good an option is believed to be compared to v�.
By increasing �, we e�ectively express that persisting with an option might be preferable
to reconsidering the current course of actions immediately. This preference for committing
to the same option might be motivated by computational or metabolic limitations (Simon,
1957), or by the inherent approximation error (due to finite predictive capacity) or to the
uncertainty in the value estimates.

5.3 Di�erent Horizons for Cost and Reward

The generality of the regularized objective (18) allows a decoupling of the internal horizon
on the expected discounted cost with the discount factor of the external environment. In
this case, the unconstrained objective becomes:

J�,�
� (✓)=̇

X

s,o

�(s, o)
�
Q�

� (s, o) � D�
� (s, o)

�
. (20)

where D�
� is the expected � -discounted cost and Q�

� the expected discount sum of rewards
in the base MDP. The intra-option Bellan equations over the switching cost being:

D�
� (s, o) =

X

a

⇡ (a | s, o)
X

s�

P
�
s� �� s, a

� �
c�(s

�, o) + �Q�(s
�, o) � ���(s

�, o)A�(s
�, o)

�
,

setting � = 0 with c�(s�, o) = ���(s�, o) leads to :

D�=0
� (s, o) =

X

a

⇡ (a | s, o)
X

s�

P
�
s� �� s, a

�
c�(s, o, s

�) .

16

• Can be shown equivalent to requiring that advantage exceeds a threshold

before switching

ICCP’2020, Cluj-Napoca 19

E↵ect of Deliberation Cost Regularization

Training curves Log termination rate

0 1 2 3 4 5 6 7 8

0

200

400

600

800

Amidar

0 1 2 3 4 5 6 7 8

0

2000

4000

6000

8000

Asterix

0 1 2 3 4 5 6 7 8

0

100

200

300

400

Breakout

0 1 2 3 4 5 6 7 8

0

10000

20000

30000

Hero

0 1 2 3 4 5 6 7 8

500

1000

1500

2000

2500

MsPacman

0 1 2 3 4 5 6 7 8

�20

�10

0

10

20

Pong

0 1 2 3 4 5 6 7 8

500

1000

1500

Seaquest

0 1 2 3 4 5 6 7 8

0

2000

4000

6000
Zaxxon

0. 0.005 0.01 0.015 0.02 0.025 0.03

0 1 2 3 4 5 6 7 8

10�1

100

101

102

Amidar

0 1 2 3 4 5 6 7 8

10�1

100

101

102

Asterix

0 1 2 3 4 5 6 7 8

10�2

10�1

100

101

102

Breakout

0 1 2 3 4 5 6 7 8

100

101

102

Hero

0 1 2 3 4 5 6 7 8

101

102

MsPacman

0 1 2 3 4 5 6 7 8

10�1

100

101

102

Pong

0 1 2 3 4 5 6 7 8

100

101

102

Seaquest

0 1 2 3 4 5 6 7 8

10�2

10�1

100

101

102

Zaxxon

0. 0.005 0.01 0.015 0.02 0.025 0.03Yellow: no regularization; red: most regularization

ICCP’2020, Cluj-Napoca 20

Illustration: Amidar

(a) Without a deliberation cost, options ter-
minate instantly and are used in any scenario
without specialization.

(b) Options are used for extended periods
and in specific scenarios through a trajectory,
when using a deliberation cost.

(c) Termination is sparse when using the
deliberation cost. The agent terminates op-
tions at intersections requiring high level de-
cisions.

Figure 2: We show the effects of using deliberation costs on both the option termination and policies. In figures (a) and (b),
every color in the agent trajectory represents a different option being executed. This environment is the game Amidar, of the
Atari 2600 suite.

of deliberation cost with previous notions of regularization
from (Mann et al. 2014) and (Bacon et al. 2017).

The deliberation cost goes beyond only the idea of pe-
nalizing for lengthy computation. It can also be used to in-
corporate other forms of bounds intrinsic to an agent in its
environment. One interesting direction for future work is to
also think of deliberation cost in terms of missed opportunity
and opening the way for an implicit form of regularization
when interacting asynchronously with an environment. An-
other interesting form of limitation inherent to reinforcement
learning agents has to do with their representational capaci-
ties when estimating action values. Preliminary work seems
to indicate that the error decomposition for the action values
could be also be expressed in the form of a deliberation cost.

References
[Altman 1999] E. Altman. Constrained Markov Decision
Processes. Chapman and Hall, 1999.

[Andreas et al. 2017] Jacob Andreas, Dan Klein, and Sergey
Levine. Modular multitask reinforcement learning with pol-
icy sketches. In ICML, pages 166–175, 2017.

[Bacon et al. 2017] Pierre-Luc Bacon, Jean Harb, and Doina
Precup. The option-critic architecture. In AAAI, pages 1726–
1734, 2017.

[Baird 1993] Leemon C. Baird. Advantage updating. Tech-
nical Report WL–TR-93-1146, Wright Laboratory, 1993.

[Bellemare et al. 2013] M. G. Bellemare, Y. Naddaf, J. Ve-
ness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279, 06 2013.

[Botvinick et al. 2009] Matthew M. Botvinick, Yael Niv, and
Andrew C. Barto. Hierarchically organized behavior and its

neural foundations: A reinforcement learning perspective.
Cognition, 113(3):262 – 280, 2009.

[Branavan et al. 2012] S. R. K. Branavan, Nate Kushman,
Tao Lei, and Regina Barzilay. Learning high-level planning
from text. In ACL, pages 126–135, 2012.

[Daniel et al. 2016] C. Daniel, H. van Hoof, J. Peters, and
G. Neumann. Probabilistic inference for determining op-
tions in reinforcement learning. Machine Learning, Special
Issue, 104(2):337–357, 2016.

[Dayan and Hinton 1992] Peter Dayan and Geoffrey E. Hin-
ton. Feudal reinforcement learning. In NIPS, pages 271–
278, 1992.

[Dietterich 1998] Thomas G. Dietterich. The MAXQ
method for hierarchical reinforcement learning. In ICML,
pages 118–126, 1998.

[Drescher 1991] Gary L. Drescher. Made-up Minds: A Con-
structivist Approach to Artificial Intelligence. MIT Press,
Cambridge, MA, USA, 1991.

[Fikes et al. 1972] Richard Fikes, Peter E. Hart, and Nils J.
Nilsson. Learning and executing generalized robot plans.
Artif. Intell., 3(1-3):251–288, 1972.

[Gigerenzer and Selten 2001] Gerd Gigerenzer and R. Sel-
ten. Bounded Rationality: The adaptive toolbox. Cam-
bridge: The MIT Press, 2001.

[Guo et al. 2014] Xiaoxiao Guo, Satinder Singh, Honglak
Lee, Richard L Lewis, and Xiaoshi Wang. Deep learning
for real-time atari game play using offline monte-carlo tree
search planning. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages 3338–
3346. Curran Associates, Inc., 2014.

[Howard 1963] Ronald A. Howard. Semi-markovian deci-

• Deliberation costs prevent options from becoming too short

• Terminations are intuitive

ICCP’2020, Cluj-Napoca 21

Should All Option Components Optimize the Same
Thing?

• Deliberation cost can be viewed as associated specifically with termination

• Rewards could be optimized mainly by the internal policy of the option

• Can we generalize this idea to other optimization criteria?

ICCP’2020, Cluj-Napoca 22

Termination-Critic

• Optimize the termination condition independently of the policy inside

the option

• Option termination should focus on predictability ie finding “funnelling
states”

• Interesting side e↵ect: if each option ended at a funelling state,
expectation and distribution model would be almost identical and the
option would be almost deterministic

• Implementation: minimize the entropy of the option transition model P!

cf. Harutyunyan et al, AISTATS’2019

ICCP’2020, Cluj-Napoca 23

Illustration: Rooms environmentAnna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Rémi Munos, Doina Precup

Figure 3: Example resulting options from ACTC (left) and A2OC (right). Each option is depicted via its policy
and termination condition. ACTC concentrates termination probabilities around a small set of states while A2OC,
with deliberation cost, tends to saturate on constant zero or constant one termination probability.

Figure 4: The learning performance of the two algo-
rithms on the the Four Rooms task with switching goals.
We plot the entire suite of hyperparameters, which
for A2OC includes various deliberation costs, and for
ACTC different learning rates for the �-network. We
see ACTC exhibit better learning performance.

6.2.2 Learning and Planning in Four Rooms

We first depict the options qualitatively with an exam-
ple termination profile shown in Figure 3. We see that
ACTC leads to tightly concentrated regions with high
termination probability and low probability elsewhere,
whereas A2OC even with deliberation cost tends to con-
verge to trivial termination solutions. Although ACTC
does not always converge to terminating in a single
region, it leads to distinct options with characteristic
behavior and termination profiles.

Next, in Figure 4 we compare the online learning per-
formance between ACTC and A2OC with deliberation
cost. The traces indicate separate hyper-parameter
settings and seeds for each algorithm and the bold line

Figure 5: Investigating correlation between predictabil-
ity and planning performance. Average policy value
plotted against predictability objective (negative of the
loss). A2OC options generalize poorly to unseen goals
and have unpredictable terminations. ACTC optimizes
the predictability objective leading to reusable options.

gives their average. ACTC enjoys better performance
throughout learning.

6.3 Correlation with Planning Performance

Finally, we investigate the claim that more directed
termination leads to improved planning performance.
To this end, we generate various sets (n = 4) of goal-
directed options in the Four Rooms domain by sys-
tematically varying the option-policy goal location and
concentration of termination probability around the
goal location. We evaluate these options, combined
with primitive actions, by averaging the policy value
during ten iterations of value iteration and all possible
goal locations (see appendix for more details).

Anna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Rémi Munos, Doina Precup

Figure 3: Example resulting options from ACTC (left) and A2OC (right). Each option is depicted via its policy
and termination condition. ACTC concentrates termination probabilities around a small set of states while A2OC,
with deliberation cost, tends to saturate on constant zero or constant one termination probability.

Figure 4: The learning performance of the two algo-
rithms on the the Four Rooms task with switching goals.
We plot the entire suite of hyperparameters, which
for A2OC includes various deliberation costs, and for
ACTC different learning rates for the �-network. We
see ACTC exhibit better learning performance.

6.2.2 Learning and Planning in Four Rooms

We first depict the options qualitatively with an exam-
ple termination profile shown in Figure 3. We see that
ACTC leads to tightly concentrated regions with high
termination probability and low probability elsewhere,
whereas A2OC even with deliberation cost tends to con-
verge to trivial termination solutions. Although ACTC
does not always converge to terminating in a single
region, it leads to distinct options with characteristic
behavior and termination profiles.

Next, in Figure 4 we compare the online learning per-
formance between ACTC and A2OC with deliberation
cost. The traces indicate separate hyper-parameter
settings and seeds for each algorithm and the bold line

Figure 5: Investigating correlation between predictabil-
ity and planning performance. Average policy value
plotted against predictability objective (negative of the
loss). A2OC options generalize poorly to unseen goals
and have unpredictable terminations. ACTC optimizes
the predictability objective leading to reusable options.

gives their average. ACTC enjoys better performance
throughout learning.

6.3 Correlation with Planning Performance

Finally, we investigate the claim that more directed
termination leads to improved planning performance.
To this end, we generate various sets (n = 4) of goal-
directed options in the Four Rooms domain by sys-
tematically varying the option-policy goal location and
concentration of termination probability around the
goal location. We evaluate these options, combined
with primitive actions, by averaging the policy value
during ten iterations of value iteration and all possible
goal locations (see appendix for more details).

ICCP’2020, Cluj-Napoca 24

Predictive knowledge: Value Function

• Given a policy ⇡, a discount factor � and a reward function r, the value
function of the policy is given by:

v⇡(s) = E[
1X

k=t

r(Sk, Ak)�
k�t|St = s, At:1 ⇠ ⇡]

= E[
1X

k=t

r(Sk, Ak)
kY

i=t+1

�|St = s, At:1 ⇠ ⇡]

• r is the signal of interest for the prediction
• � defines the time scale over which we want to make the prediction (in
a very crude way)

• Optimal value function: given a discount factor � and a reward function
r, compute v⇡⇤ and ⇡⇤, the optimal policy wrt �, r

•

ICCP’2020, Cluj-Napoca 25

Focusing on value function

• Definition allows us to leverage great tools: bootstrapping (as in dynamic
programming) and sampling

• We have good ideas for how to learn value functions from data using
temporal-di↵erence methods, o↵-policy learning...

• Usual objection: this is restricted to one reward function and usually a
fixed time scale (discount)

• An agent may need to make predictions about many di↵erent things and
at many di↵erent time scales

ICCP’2020, Cluj-Napoca 26

There are many things to learn! (Adam White’s thesis)

Sensory stream of Critterbot robot about di↵erent sensors for di↵erent policies
Can we learn about all these signals in parallel from one stream of data?

ICCP’2020, Cluj-Napoca 27

Generalized Value Functions (GVFs)

• Given a cumulant function c, state-dependent continuation function �
and policy ⇡, the Generalized Value Function v⇡,�,c is defined as:

v⇡,c,�(s) = E

" 1X

k=t

c(Sk, Ak, Sk+1)
kY

i=t+1

�(Si)|St = s, At:1 ⇠ ⇡

#

• Cumulant c can output a vector (even a matrix)
• Continuation function � maps states to [0,1] (further generalizations are
possible)

• Cf. Horde architecture (Sutton et al, 2011); Adam White’s thesis;
inspiration from Pandemonium architecture

• Special case: policy is optimal wrt c, �, v⇤
c,� - Universal Value Function

approximation (UVFA) (Schaul et al, 2015)
• No single task is required, just a multitude of cumulants and time scales!

ICCP’2020, Cluj-Napoca 28

GVFs as building blocks of knowledge

v

GVF

⇡(✓)�R

s

r✓v

GVF

⇡(✓)�⇥

s

GVF

⇡(✓)�R

s̄, ā

r✓ log ⇡(✓)

Figure 1: GVFs for Policy Gradient. On the left, we illustrate the value of a parameterised policy
⇡(✓) within the general value function framework. On the right, the gradient of the policy is illustrated
as a general value function whose cumulant is a function of the original value function conditioned
on an initial state-action pair.

Q(s0, !)

GVF

⇡(!)�(1 � �(!))C(!)

s0

Q(·, w0)

R

Q(·, w1)

...

Q(·, wk)

(a) GVFs for Option-Critic.

vW

GVF

⇡(g(M), �)�MR + RI(g(M))

s

vM

GVF

⇡(W, ✓)�WR

s

(b) GVFs for Feudal Networks.

Figure 2: On the left: Every option corresponds to a separate GVF, concerned both with external
reward function R, as well as predictions corresponding to all other GVFs. On the right, Manager
(M) and worker (W) are trained using separate GVFs: vM, concerned with external return as
corresponding to the policy of W; vW, based on cumulant and policy conditioned on specific goals
specified by M.

The policy gradient theorem shows that these widely used methods for policy improvement are based136

on the estimation of two interdependent GVFs. Improvements to a parameterised model of ⇡(s|a)137

is computed using an auxiliary prediction problem on a signal (i.e. cumulant) computed from the138

output of the prediction for the reward corresponding to the task at hand. This alternative view of139

the theorem suggests that we could use approximation techniques for estimating these predictions to140

improve on current algorithms. Proposition 1 provides a procedure for estimating the gradient r✓v141

from a finite number of auxiliary predictions on a spanning set of cumulants {Ci}n
i=1: if C can be142

approximated by some Ĉ =
�

wiCi, then r✓v(C, �, ⇡) �
�

wiv(·; Ci, �, ⇡).143

Universal Value Functions (UVFs) Schaul et al. [26] address the issue of learning a large number144

of GVFs individually, which is not scalable and does not take advantage of shared structure. They145

propose UVFs to generalise both over states and goals (i.e. (C, �) pairs) to approximate V (s, g), the146

value of the optimal policy that achieves goal g from state s. Define the set of all “goals achieved by a147

policy” as �(⇡) := {(C, �) | v(C, �, ⇡) = max⇡� v(C, �, ⇡�)}. These sets are all uncountable: let �148

be a constant, k � R<0 and define C⇡(s, a) = k if a �= ⇡(s) and 0 otherwise; then (C⇡, �) � �(⇡).149

Additionally, these sets provide a cover for all goals: G = �⇡:deterministic�(⇡), as every goal can be150

achieved by a deterministic policy. The UVFs model a subset of all GVFs with one less degree of151

freedom: V (s, (C, �)) = v(s; C, �, ⇡) if and only if (C, �) � �(⇡). The policies in the GVFs that152

can be modelled using UVFs have to be compatible to some preset goal (C, �).153

We proceed to prove that GVFs extend two existing popular architectures for learning hierarchical154

structures for temporal abstraction in reinforcement learning [35, 2]. We prove that both FeUdal155

Networks (FuN) and the Option-Critic Architecture (OC) learn using a set of separate prediction156

problems about the external environment signals as well as other internal signals that are specific to157

the learning process.158

4

• Note that one can take the output of a GVF and make it an input to
another GVF

• Or, the output of a GVF could become part of the “state” for another
GVF

ICCP’2020, Cluj-Napoca 29

Successor states and successor features are GVFs

• Successor features (Barreto et al, 2017, 2018) are a natural extension of
successor states (Dayan, 1992)

• Successor states give the expected occupancy of future states

• If states are defined by a feature vector �(s), successor features give the
expected, discounted sum of future feature vectors from a state.

• In GVF terms, the cumulant is c = �, and there is a fixed policy and
discount

• Interesting property highlighted in Barreto et al:

v⇡,wT c,�(s) = wTv⇡,c,�(s)

which leads to one-shot computation of new GVFs

ICCP’2020, Cluj-Napoca 30

Option models are GVFs

• The reward model for an option ! is defined as:

r!(s) = E![r(St, At) + �(1 � �!(St+1))r!(St+1)|St = s]

• This means the option reward model is a GVF:

– policy is ⇡!

– cumulant is the environment reward r
– continuation function is �(1 � �!)

• Option transition model can be similarly written as a GVF

ICCP’2020, Cluj-Napoca 31

Many other approaches that can be expressed as GVFs

• Option-value functions (Precup, 2000; Sutton, Precup & Singh, 1999)

• Feudal networks (Dayan, 1994; Vezhnevets et al, 2017)

• Value transport (Hung et al, 2018)

• Auxilliary tasks (Jaderberg et al, 2016)

• Are GVFs just an interesting insight or can they be useful?

ICCP’2020, Cluj-Napoca 32

GVF formulation of policy gradient

• Let ⇡✓ be a policy parameterised by a vector ✓, � be a constant
continuation function, and c : S⇥A ! R be a one-dimensional cumulant.

• Let vc,�,⇡✓
(s) be the corresponding general value function

• The gradient of vc,�,⇡✓
(s) with respect to ✓ is itself a general value

function that depends on the cumulant:

ĉ(s, a) := vc,�,⇡✓
(s, a)r✓ log ⇡✓(a|s).

• In other words:
r✓vc,�,⇡✓

(s) = vĉ,�,⇡✓
(s)

• A case in which a GVF builds on another GVF and they can be modelled

separately

cf. Comanici et al, 2018

ICCP’2020, Cluj-Napoca 33

Empirical example (gridworld)

• GVF representation leads to more stable learning across parameter
settings (green bars)

• GVFs allow us to combine algorithms very easily!

ICCP’2020, Cluj-Napoca 34

GVFs for synthesizing new behaviors

Option-keyboard - Barreto et al, 2019, based on ideas of Rich Sutton

ICCP’2020, Cluj-Napoca 35

Option-Keyboard for Moving Target Arena

General way to synthesize quickly new behavior for combinations of reward functions!

ICCP’2020, Cluj-Napoca 36

Discussion

• Reinforcement learning suggests very powerful tools for knowledge

representation

• Options are a way to encode procedural knowledge
• We have made great progress in learning options through gradients
• Priors can be easily built into the option construction process through
the optimization criterion

• Nice features of generalized value functions:
– versatile
– incorporate many existing algorithms as special cases
– can be combined as building blocks
– can be useful both for representation shaping and planning

• Open questions: how to generate behavior with/for such representations,
how to do discovery

• Bigger open question: how to evaluate empirically lifelong learning AI

systems

ICCP’2020, Cluj-Napoca 37

Assessing the capability of a life-long learning agent

• There is no longer just a single task!

• Returns are important, but too simplistic

• Qualitative analysis of behavior interesting but di�cult for drawing
conclusions

• How well is the agent preserving and enhancing its knowledge?

• Problem of methodology not solved simply by open-sourcing or
reproducibility

ICCP’2020, Cluj-Napoca 38

Testing the agent in multiple ways

• Take inspiration from school - ask multiple questions

• Try to devise a “certification” system for AI agents

• Maybe more important than current definitions of interpretability (which
are akin to brain scans...)

ICCP’2020, Cluj-Napoca 39

Hypothesis-driven evaluation of continual learning
systems

• Formulate a hypothesis about what the agent should know or how it
should behave given certain knowledge

• Design an experiment to test this hypothesis
• Be patient and let the agent continue training without tinkering with the
task or the algorithm!

ICCP’2020, Cluj-Napoca 40

