
Sequential decision making
Monte Carlo Policy Evaluation
Temporal-Difference Learning



Agent and environment interact at discrete time steps:  t = 0, 1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Recall:  Agent-Environment InterfaceSUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt

1

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.



Policy Evaluation: for a given policy π, compute the 
                                state-value function vπ

Recall: Policy Evaluation

Recall:  State-value function for policy π

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

Recall:  Bellman equation for vπ

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

—a system of  |  |  simultaneous equations

.



Iterative Methods

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0)
i

8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0)
i

8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i



Dynamic Programming Policy Evaluation

T

T T TT

TT

T

TT

T

T

T

V (St )← Eπ Rt+1 + γV (St+1)[ ]
St

=
X

a

⇡(a|St)
X

s0,r

p(s0, r|St, a)[r + �V (s0)]

r
a

s0



From Planning to Learning

❐ DP requires a probability model (as opposed to a 
generative or simulation model)

❐ We can interact with the world, learning a model (rewards 
and transitions) and then do DP

❐ This approach is called model-based RL
❐ Full probability model may hard to learn though
❐ Today: direct learning of the value function from 

interaction
❐ Still focusing on evaluating a fixed policy



Simple Monte Carlo

T T T TT

T T T T T

T T

T T

TT T

T TT

V (St )←V (St )+α Gt −V (St )[ ]

St



Monte Carlo Methods

❐ Monte Carlo methods are learning methods 
      Experience → values, policy

❐ Monte Carlo methods can be used in two ways:
! model-free: No model necessary and still attains optimality
! simulated: Needs only a simulation, not a full model

❐ Monte Carlo methods learn from complete sample returns
! Defined for episodic tasks (in the book)

❐ Like an associative version of a bandit method



terminal state

Backup diagram for Monte Carlo

❐ Entire rest of episode included

❐ Only one choice considered at 
each state (unlike DP)

! thus, there will be an 
explore/exploit dilemma

❐ Does not bootstrap from 
successor states’s values 
(unlike DP)

❐ Time required to estimate one 
state does not depend on the 
total number of states



Monte Carlo Policy Evaluation

❐ Goal: learn
❐ Given: some number of episodes under π which contain s
❐ Idea: Average returns observed after visits to s

❐ Every-Visit MC: average returns for every time s is visited 
in an episode 

❐ First-visit MC: average returns only for first time s is 
visited in an episode 

❐ Both converge asymptotically

1 2 3 4 5

v⇡(s)



First-visit Monte Carlo policy evaluation

100 CHAPTER 5. MONTE CARLO METHODS

To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from
knowledge of the MDP, here we learn value functions from sample returns with
the MDP. The value functions and corresponding policies still interact to attain
optimality in essentially the same way (GPI). As in the DP chapter, first we consider
the prediction problem (the computation of v⇡ and q⇡ for a fixed arbitrary policy ⇡)
then policy improvement, and, finally, the control problem and its solution by GPI.
Each of these ideas taken from DP is extended to the Monte Carlo case in which
only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function
for a given policy. Recall that the value of a state is the expected return—expected
cumulative future discounted reward—starting from that state. An obvious way to
estimate it from experience, then, is simply to average the returns observed after
visits to that state. As more returns are observed, the average should converge to
the expected value. This idea underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v⇡(s), the value of a state s under
policy ⇡, given a set of episodes obtained by following ⇡ and passing through s.
Each occurrence of state s in an episode is called a visit to s. Of course, s may
be visited multiple times in the same episode; let us call the first time it is visited
in an episode the first visit to s. The first-visit MC method estimates v⇡(s) as the
average of the returns following first visits to s, whereas the every-visit MC method
averages the returns following all visits to s. These two Monte Carlo (MC) methods
are very similar but have slightly di↵erent theoretical properties. First-visit MC has
been most widely studied, dating back to the 1940s, and is the one we focus on
in this chapter. Every-visit MC extends more naturally to function approximation
and eligibility traces, as discussed in Chapters 9 and 7. First-visit MC is shown in
procedural form in Figure 5.1.

Initialize:
⇡  policy to be evaluated
V  an arbitrary state-value function
Returns(s) an empty list, for all s 2 S

Repeat forever:
Generate an episode using ⇡
For each state s appearing in the episode:

G return following the first occurrence of s
Append G to Returns(s)
V (s) average(Returns(s))

Figure 5.1: The first-visit MC method for estimating v⇡.



MC vs supervised regression

❐ Target returns can be viewed as a supervised label (true 
value we want to fit)

❐ State is the input
❐ We can use any function approximator to fit a function 

from states to returns! Neural nets, linear, nonparametric…

❐ Unlike supervised learning: there is strong correlation 
between inputs and between outputs!

❐ Due to the lack of iid assumptions, theoretical results from 
supervised learning cannot be directly applied



Blackjack example

❐ Object: Have your card sum be greater than the dealer’s 
without exceeding 21.

❐ States (200 of them): 
! current sum (12-21)
! dealer’s showing card (ace-10)
! do I have a useable ace?

❐ Reward: +1 for winning, 0 for a draw, -1 for losing
❐ Actions: stick (stop receiving cards), hit (receive another 

card)
❐ Policy: Stick if my sum is 20 or 21, else hit
❐ No discounting (𝜸 = 1)



Learned blackjack state-value functions



Simplest TD Method

T T T TT

T T T T TTTTTT

T T T T T

V (St )←V (St )+α Rt+1 + γV (St+1)−V (St )[ ]
St

Rt+1St+1



TD methods bootstrap and sample

Bootstrapping: update involves an estimate
MC does not bootstrap
DP bootstraps
TD bootstraps

Sampling: update does not involve an 
expected value

MC samples
DP does not sample
TD samples



TD Prediction

Policy Evaluation (the prediction problem): 
         for a given policy π, compute the state-value function vπ 

Recall:  Simple every-visit Monte Carlo method:

target: the actual return after time t

target: an estimate of the return

Chapter 6

Temporal-Di↵erence Learning

If one had to identify one idea as central and novel to reinforcement learning, it would
undoubtedly be temporal-di↵erence (TD) learning. TD learning is a combination
of Monte Carlo ideas and dynamic programming (DP) ideas. Like Monte Carlo
methods, TD methods can learn directly from raw experience without a model of
the environment’s dynamics. Like DP, TD methods update estimates based in part
on other learned estimates, without waiting for a final outcome (they bootstrap).
The relationship between TD, DP, and Monte Carlo methods is a recurring theme in
the theory of reinforcement learning. This chapter is the beginning of our exploration
of it. Before we are done, we will see that these ideas and methods blend into each
other and can be combined in many ways. In particular, in Chapter 7 we introduce
the TD(�) algorithm, which seamlessly integrates TD and Monte Carlo methods.

As usual, we start by focusing on the policy evaluation or prediction problem, that
of estimating the value function v⇡ for a given policy ⇡. For the control problem
(finding an optimal policy), DP, TD, and Monte Carlo methods all use some variation
of generalized policy iteration (GPI). The di↵erences in the methods are primarily
di↵erences in their approaches to the prediction problem.

6.1 TD Prediction

Both TD and Monte Carlo methods use experience to solve the prediction problem.
Given some experience following a policy ⇡, both methods update their estimate v
of v⇡ for the nonterminal states St occurring in that experience. Roughly speaking,
Monte Carlo methods wait until the return following the visit is known, then use
that return as a target for V (St). A simple every-visit Monte Carlo method suitable
for nonstationary environments is

V (St) V (St) + ↵
h
Gt � V (St)

i
, (6.1)

where Gt is the actual return following time t, and ↵ is a constant step-size parameter
(c.f., Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo
methods must wait until the end of the episode to determine the increment to V (St)

127

The simplest temporal-difference method TD(0):

128 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

(only then is Gt known), TD methods need wait only until the next time step. At
time t + 1 they immediately form a target and make a useful update using the
observed reward Rt+1 and the estimate V (St+1). The simplest TD method, known
as TD(0), is

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
. (6.2)

In e↵ect, the target for the Monte Carlo update is Gt, whereas the target for the TD
update is Rt+1 + �V (St+1).

Because the TD method bases its update in part on an existing estimate, we say
that it is a bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡

" 1X

k=0

�kRt+k+1

����� St =s

#

= E⇡

"
Rt+1 + �

1X

k=0

�kRt+k+2

����� St =s

#

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an
estimate because the expected value in (6.3) is not known; a sample return is used
in place of the real expected return. The DP target is an estimate not because of
the expected values, which are assumed to be completely provided by a model of the
environment, but because v⇡(St+1) is not known and the current estimate, V (St+1),
is used instead. The TD target is an estimate for both reasons: it samples the
expected values in (6.4) and it uses the current estimate V instead of the true v⇡.
Thus, TD methods combine the sampling of Monte Carlo with the bootstrapping of
DP. As we shall see, with care and imagination this can take us a long way toward
obtaining the advantages of both Monte Carlo and DP methods.

Figure 6.1 specifies TD(0) completely in procedural form.

Input: the policy ⇡ to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, 8s 2 S+)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A; observe reward, R, and next state, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S  S0

until S is terminal

Figure 6.1: Tabular TD(0) for estimating v⇡.



Example: Driving Home

6.1. TD PREDICTION 129

TD(0)

The diagram to the right is the backup diagram for tabular TD(0). The
value estimate for the state node at the top of the backup diagram is up-
dated on the basis of the one sample transition from it to the immediately
following state. We refer to TD and Monte Carlo updates as sample back-
ups because they involve looking ahead to a sample successor state (or
state–action pair), using the value of the successor and the reward along
the way to compute a backed-up value, and then changing the value of the
original state (or state–action pair) accordingly. Sample backups di↵er from the full
backups of DP methods in that they are based on a single sample successor rather
than on a complete distribution of all possible successors.

Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your o�ce, you note the
time, the day of week, and anything else that might be relevant. Say on this Friday
you are leaving at exactly 6 o’clock, and you estimate that it will take 30 minutes
to get home. As you reach your car it is 6:05, and you notice it is starting to rain.
Tra�c is often slower in the rain, so you reestimate that it will take 35 minutes from
then, or a total of 40 minutes. Fifteen minutes later you have completed the highway
portion of your journey in good time. As you exit onto a secondary road you cut
your estimate of total travel time to 35 minutes. Unfortunately, at this point you get
stuck behind a slow truck, and the road is too narrow to pass. You end up having
to follow the truck until you turn onto the side street where you live at 6:40. Three
minutes later you are home. The sequence of states, times, and predictions is thus
as follows:

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving o�ce, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey.1 We
are not discounting (� = 1), and thus the return for each state is the actual time to
go from that state. The value of each state is the expected time to go. The second
column of numbers gives the current estimated value for each state encountered.

A simple way to view the operation of Monte Carlo methods is to plot the predicted
total time (the last column) over the sequence, as in Figure 6.2 (left). The arrows
show the changes in predictions recommended by the constant-↵ MC method (6.1),
for ↵ = 1. These are exactly the errors between the estimated value (predicted time
to go) in each state and the actual return (actual time to go). For example, when
you exited the highway you thought it would take only 15 minutes more to get home,

1
If this were a control problem with the objective of minimizing travel time, then we would of

course make the rewards the negative of the elapsed time. But since we are concerned here only

with prediction (policy evaluation), we can keep things simple by using positive numbers.



Driving Home

Changes recommended by 
Monte Carlo methods (α=1)

Changes recommended
by TD methods (α=1)



Advantages of TD Learning

TD methods do not require a model of the environment, 
only experience
 TD, but not MC, methods can be fully incremental

You can learn before knowing the final outcome
Less memory
Less peak computation

You can learn without the final outcome
From incomplete sequences

Both MC and TD converge (under certain assumptions to 
be detailed later), but which is faster? - Answer next time!


