
Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Regret

Regret

The action-value is the mean reward for action a,

Q(a) = E [r |a]

The optimal value V ⇤ is

V ⇤ = Q(a⇤) = max
a2A

Q(a)

The regret is the opportunity loss for one step

lt = E [V ⇤ � Q(at)]

The total regret is the total opportunity loss

Lt = E
"

tX

⌧=1

V ⇤ � Q(a⌧ )

#

Maximise cumulative reward ⌘ minimise total regret
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Counting Regret

The count Nt(a) is expected number of selections for action a

The gap �a is the di↵erence in value between action a and
optimal action a⇤, �a = V ⇤ � Q(a)

Regret is a function of gaps and the counts

Lt = E
"

tX

⌧=1

V ⇤ � Q(a⌧ )

#

=
X

a2A
E [Nt(a)] (V

⇤ � Q(a))

=
X

a2A
E [Nt(a)]�a

A good algorithm ensures small counts for large gaps

Problem: gaps are not known!
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Linear or Sublinear Regret
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Total regret

ϵ-greedy
greedy

Time-steps

decaying ϵ-greedy

If an algorithm forever explores it will have linear total regret

If an algorithm never explores it will have linear total regret

Is it possible to achieve sublinear total regret?
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Greedy and ✏-greedy algorithms

Greedy Algorithm

We consider algorithms that estimate Q̂t(a) ⇡ Q(a)

Estimate the value of each action by Monte-Carlo evaluation

Q̂t(a) =
1

Nt(a)

TX

t=1

rt1(at = a)

The greedy algorithm selects action with highest value

a⇤t = argmax
a2A

Q̂t(a)

Greedy can lock onto a suboptimal action forever

) Greedy has linear total regret
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✏-Greedy Algorithm

The ✏-greedy algorithm continues to explore forever
With probability 1� ✏ select a = argmax

a2A
Q̂(a)

With probability ✏ select a random action

Constant ✏ ensures minimum regret

lt �
✏

A
X

a2A
�a

) ✏-greedy has linear total regret
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Optimistic Initialisation

Simple and practical idea: initialise Q(a) to high value

Update action value by incremental Monte-Carlo evaluation

Starting with N(a) > 0

Q̂t(at) = Q̂t�1 +
1

Nt(at)
(rt � Q̂t�1)

Encourages systematic exploration early on

But can still lock onto suboptimal action

) greedy + optimistic initialisation has linear total regret

) ✏-greedy + optimistic initialisation has linear total regret
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Decaying ✏t-Greedy Algorithm

Pick a decay schedule for ✏1, ✏2, ...

Consider the following schedule

c > 0

d = min
a|�a>0

�i

✏t = min

⇢
1,

c |A|
d2t

�

Decaying ✏t-greedy has logarithmic asymptotic total regret!

Unfortunately, schedule requires advance knowledge of gaps

Goal: find an algorithm with sublinear regret for any
multi-armed bandit (without knowledge of R)
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Lower Bound

The performance of any algorithm is determined by similarity
between optimal arm and other arms

Hard problems have similar-looking arms with di↵erent means

This is described formally by the gap �a and the similarity in
distributions KL(Ra||Ra⇤)

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

lim
t!1

Lt � log t
X

a|�a>0

�a

KL(Ra||Ra⇤)
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Optimism in the Face of Uncertainty
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p(Q)

Which action should we pick?

The more uncertain we are about an action-value

The more important it is to explore that action

It could turn out to be the best action
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Optimism in the Face of Uncertainty (2)

After picking blue action

We are less uncertain about the value

And more likely to pick another action

Until we home in on best action
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Upper Confidence Bounds

Estimate an upper confidence Ût(a) for each action value

Such that Q(a)  Q̂t(a) + Ût(a) with high probability

This depends on the number of times N(a) has been selected

Small Nt(a) ) large Ût(a) (estimated value is uncertain)
Large Nt(a) ) small Ût(a) (estimated value is accurate)

Select action maximising Upper Confidence Bound (UCB)

at = argmax
a2A

Q̂t(a) + Ût(a)
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Upper Confidence Bound

Hoe↵ding’s Inequality

Theorem (Hoe↵ding’s Inequality)

Let X1, ...,Xt be i.i.d. random variables in [0,1], and let
X t =

1

⌧

Pt
⌧=1

X⌧ be the sample mean. Then

P
⇥
E [X ] > X t + u

⇤
 e�2tu2

We will apply Hoe↵ding’s Inequality to rewards of the bandit

conditioned on selecting action a

P
h
Q(a) > Q̂t(a) + Ut(a)

i
 e�2Nt(a)Ut(a)2
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Calculating Upper Confidence Bounds

Pick a probability p that true value exceeds UCB

Now solve for Ut(a)

e�2Nt(a)Ut(a)2 = p

Ut(a) =

s
� log p

2Nt(a)

Reduce p as we observe more rewards, e.g. p = t�4

Ensures we select optimal action as t ! 1

Ut(a) =

s
2 log t

Nt(a)
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UCB1

This leads to the UCB1 algorithm

at = argmax
a2A

Q(a) +

s
2 log t

Nt(a)

Theorem

The UCB algorithm achieves logarithmic asymptotic total regret

lim
t!1

Lt  8 log t
X

a|�a>0

�a


