• Let $H_t(a)$ be a learned preference for taking action a

$$\Pr\{A_t = a\} \doteq \frac{e^{H_t(a)}}{\sum_{b=1}^k e^{H_t(b)}} \doteq \pi_t(a)$$

Note that this allows us to work with unnormalized preferences and turn them into probabilities!

Same idea as using potentials in graphical models

• Let $H_t(a)$ be a learned preference for taking action a

$$\Pr\{A_t = a\} \doteq \frac{e^{H_t(a)}}{\sum_{b=1}^k e^{H_t(b)}} \doteq \pi_t(a)$$

 $H_{t+1}(A_t) \doteq H_t(A_t) + \alpha \left(R_t - \bar{R}_t \right) \left(1 - \pi_t(A_t) \right)$

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

• Let $H_t(a)$ be a learned preference for taking action a

$$\Pr\{A_t = a\} \doteq \frac{e^{H_t(a)}}{\sum_{b=1}^k e^{H_t(b)}} \doteq \pi_t(a)$$

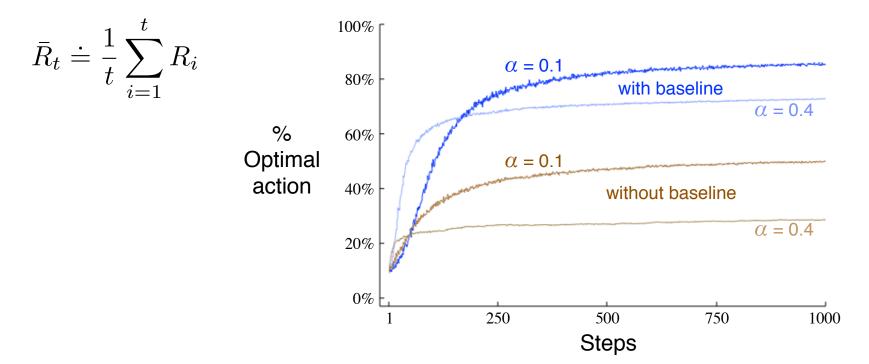
$$H_{t+1}(a) \doteq H_t(a) + \alpha \left(R_t - \bar{R}_t \right) \left(\mathbf{1}_{a=A_t} - \pi_t(a) \right), \qquad \forall a,$$

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

• Let $H_t(a)$ be a learned preference for taking action a

$$\Pr\{A_t = a\} \doteq \frac{e^{H_t(a)}}{\sum_{b=1}^k e^{H_t(b)}} \doteq \pi_t(a)$$

$$H_{t+1}(a) \doteq H_t(a) + \alpha \left(R_t - \bar{R}_t \right) \left(\mathbf{1}_{a=A_t} - \pi_t(a) \right), \qquad \forall a,$$



Derivation of gradient-bandit algorithm

In exact gradient ascent:

$$H_{t+1}(a) \doteq H_t(a) + \alpha \frac{\partial \mathbb{E} [R_t]}{\partial H_t(a)}, \qquad (1)$$

where:

$$\mathbb{E}[R_t] \doteq \sum_b \pi_t(b) q_*(b),$$

$$\frac{\partial \mathbb{E}[R_t]}{\partial H_t(a)} = \frac{\partial}{\partial H_t(a)} \left[\sum_b \pi_t(b) q_*(b) \right]$$
$$= \sum_b q_*(b) \frac{\partial \pi_t(b)}{\partial H_t(a)}$$
$$= \sum_b \left(q_*(b) - X_t \right) \frac{\partial \pi_t(b)}{\partial H_t(a)},$$

where X_t does not depend on b, because $\sum_b \frac{\partial \pi_t(b)}{\partial H_t(a)} = 0$.

$$\begin{split} \frac{\partial \mathbb{E}[R_t]}{\partial H_t(a)} &= \sum_b \left(q_*(b) - X_t \right) \frac{\partial \pi_t(b)}{\partial H_t(a)} \\ &= \sum_b \pi_t(b) \left(q_*(b) - X_t \right) \frac{\partial \pi_t(b)}{\partial H_t(a)} / \pi_t(b) \\ &= \mathbb{E} \left[\left(q_*(A_t) - X_t \right) \frac{\partial \pi_t(A_t)}{\partial H_t(a)} / \pi_t(A_t) \right] \\ &= \mathbb{E} \left[\left(R_t - \bar{R}_t \right) \frac{\partial \pi_t(A_t)}{\partial H_t(a)} / \pi_t(A_t) \right], \end{split}$$

where here we have chosen $X_t = \overline{R}_t$ and substituted R_t for $q_*(A_t)$, which is permitted because $\mathbb{E}[R_t|A_t] = q_*(A_t)$. For now assume: $\frac{\partial \pi_t(b)}{\partial H_t(a)} = \pi_t(b)(\mathbf{1}_{a=b} - \pi_t(a))$. Then:

$$= \mathbb{E}\left[\left(R_t - \bar{R}_t\right)\pi_t(A_t)\left(\mathbf{1}_{a=A_t} - \pi_t(a)\right)/\pi_t(A_t)\right] \\= \mathbb{E}\left[\left(R_t - \bar{R}_t\right)\left(\mathbf{1}_{a=A_t} - \pi_t(a)\right)\right].$$

 $H_{t+1}(a) = H_t(a) + \alpha (R_t - \bar{R}_t) (\mathbf{1}_{a=A_t} - \pi_t(a)), \text{ (from (1), QED)}$

Thus it remains only to show that

$$\frac{\partial \pi_t(b)}{\partial H_t(a)} = \pi_t(b) \big(\mathbf{1}_{a=b} - \pi_t(a) \big).$$

Recall the standard quotient rule for derivatives:

$$\frac{\partial}{\partial x} \left[\frac{f(x)}{g(x)} \right] = \frac{\frac{\partial f(x)}{\partial x} g(x) - f(x) \frac{\partial g(x)}{\partial x}}{g(x)^2}.$$

Using this, we can write...

Quotient Rule: $\frac{\partial}{\partial x} \left[\frac{f(x)}{g(x)} \right] = \frac{\frac{\partial f(x)}{\partial x} g(x) - f(x) \frac{\partial g(x)}{\partial x}}{g(x)^2}$

$$\begin{aligned} \frac{\partial \pi_t(b)}{\partial H_t(a)} &= \frac{\partial}{\partial H_t(a)} \pi_t(b) \\ &= \frac{\partial}{\partial H_t(a)} \left[\frac{e^{H_t(b)}}{\sum_{c=1}^k e^{H_t(c)}} \right] \\ &= \frac{\frac{\partial e^{H_t(b)}}{\partial H_t(a)} \sum_{c=1}^k e^{H_t(c)} - e^{H_t(b)} \frac{\partial \sum_{c=1}^k e^{H_t(c)}}{\partial H_t(a)}}{\left(\sum_{c=1}^k e^{H_t(c)}\right)^2} \qquad (Q.R.) \\ &= \frac{\mathbf{1}_{a=b} e^{H_t(a)} \sum_{c=1}^k e^{H_t(c)} - e^{H_t(b)} e^{H_t(a)}}{\left(\sum_{c=1}^k e^{H_t(c)}\right)^2} \qquad (\frac{\partial e^x}{\partial x} = e^x) \\ &= \frac{\mathbf{1}_{a=b} e^{H_t(b)}}{\sum_{c=1}^k e^{H_t(c)}} - \frac{e^{H_t(b)} e^{H_t(a)}}{\left(\sum_{c=1}^k e^{H_t(c)}\right)^2} \\ &= \mathbf{1}_{a=b} \pi_t(b) - \pi_t(b) \pi_t(a) \\ &= \pi_t(b) (\mathbf{1}_{a=b} - \pi_t(a)). \qquad (Q.E.D.) \end{aligned}$$

Softmax (Boltzmann) Exploration

• Let $H_t(a)$ be a learned preference for taking action a

$$\Pr\{A_t = a\} \doteq \frac{e^{H_t(a)}}{\sum_{b=1}^k e^{H_t(b)}} \doteq \pi_t(a)$$

Consider
$$H_t(a) = Q_t(a)/T$$

This is Boltzmann or softmax exploration!

If the temperature T is very large (towards infinity) - same as uniform

If temperature T goes to 0, same as greedy

Summary Comparison of Bandit Algorithms

