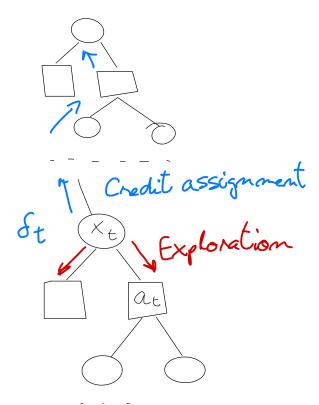
Multi-arm Bandits

Sutton and Barto, Chapter 2

The simplest reinforcement learning problem

Sequential Decision Making

- At time t, agent receives an observation from set \mathcal{X} and can choose an action from set \mathcal{A} (think finite for now)
- Goal of the agent is to maximize long-term return



Some observations

- For simplicity, we are assuming a discrete time scale t=0, 1, ...
- If the tree has no structure at all, nothing can be learned!
- Different flavours of RL algorithms make different assumptions about the structure of the tree
- Assumptions allow past experience to inform future decisions

What is a bandit?

- The simplest kind of structure: every node is a copy of every other node, and they are not connected!
- So, a degenerate tree (not truly sequential)
- Which means there are no delayed action effects, simplifying credit assignment!
- Therefore, the main problem in bandits is exploration
- Vanilla multi-arm bandits: nodes do not have any observation
- Contextual bandits have observations (more on that later)

- Imagine you have two actions
- You play action I and get a reward of 0
- You play action 2 and get a reward of I
- Which action should you prefer?
- Which action should you try next?

- Imagine you have two actions
- You played action I three times and got rewards of 0, I, -I
- You played action 2 three times and got a rewards of 1, 10, -10
- Which action should you prefer?
- Which action should you try next?

- Imagine you have two actions
- You played action I for 300 times and got rewards of 0 (200 times), I (50 times), -I (50 times)
- You played action 2 for 300 times and got a rewards of I (200 times), I0 (50 times), -10 (50 times)
- Which action should you prefer?
- Which action should you try next?

- Imagine you have two actions
- You played action I for 3000 times and got rewards of 0 (300 times), I (2000 times), -I (600 times), +I0 (100 times)
- You played action 2 for 3000 times and got a rewards of I (2000 times), I0 (1000 times), -10 (1000 times)
- Which action should you prefer?
- Which action should you try next?

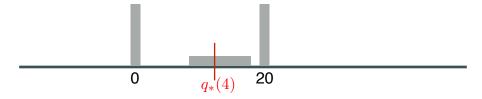
Main Principles

- Optimize Expected Value
- Other criteria are possible, eg conditional value at risk (CVaR)
- Need to balance exploration (trying all actions) vs exploitation
- Reduce uncertainty in the mean of each action

You are the algorithm! (bandit I)

- Action I Reward is always 8
 - value of action 1 is $q_*(1) =$
- Action 2 88% chance of 0, 12% chance of 100!
 - value of action 2 is $q_*(2) = .88 \times 0 + .12 \times 100 =$
- Action 3 Randomly between -10 and 35, equiprobable

Action 4 — a third 0, a third 20, and a third from {8,9,..., 18}



$$q_*(4) =$$

The k-armed Bandit Problem

- On each of an infinite sequence of time steps, t=1, 2, 3, ..., you choose an action A_t from k possibilities, and receive a real-valued reward R_t
- The reward depends only on the action taken;
 it is identically, independently distributed (i.i.d.):

$$q_*(a) \doteq \mathbb{E}[R_t | A_t = a], \quad \forall a \in \{1, \dots, k\}$$
 true values

- These true values are unknown. The distribution is unknown
- Nevertheless, you must maximize your total reward
- You must both try actions to learn their values (explore),
 and prefer those that appear best (exploit)

The Exploration/Exploitation Dilemma

Suppose you form estimates

$$Q_t(a) \approx q_*(a), \quad \forall a$$
 action-value estimates

Define the greedy action at time t as

$$A_t^* \doteq \arg\max_a Q_t(a)$$

- If $A_t = A_t^*$ then you are exploiting If $A_t \neq A_t^*$ then you are exploring
- You can't do both, but you need to do both
- You can never stop exploring, but maybe you should explore less with time. Or maybe not.

Action-Value Methods

- Methods that learn action-value estimates and nothing else
- For example, estimate action values as sample averages:

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbf{1}_{A_i=a}}{\sum_{i=1}^{t-1} \mathbf{1}_{A_i=a}}$$

• The sample-average estimates converge to the true values If the action is taken an infinite number of times

$$\lim_{N_t(a)\to\infty}Q_t(a) \ = \ q_*(a)$$
 The number of times action a has been taken by time t

ε-Greedy Action Selection

- In greedy action selection, you always exploit
- In ε -greedy, you are usually greedy, but with probability ε you instead pick an action at random (possibly the greedy action again)
- This is perhaps the simplest way to balance exploration and exploitation

A simple bandit algorithm

Initialize, for a = 1 to k:

$$Q(a) \leftarrow 0$$

$$N(a) \leftarrow 0$$

Repeat forever:

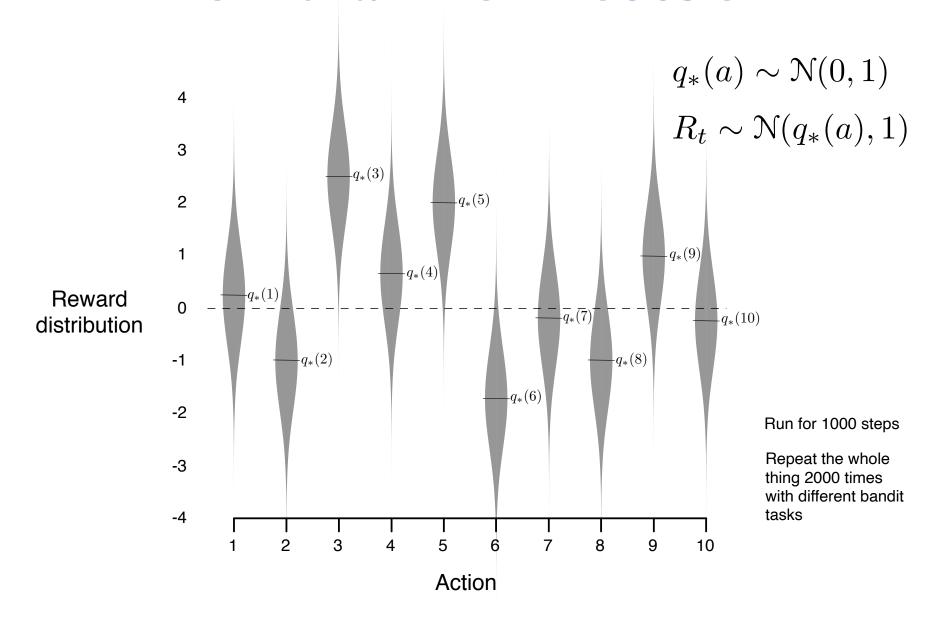
$$A \leftarrow \begin{cases} \arg\max_a Q(a) & \text{with probability } 1 - \varepsilon \\ \text{a random action} & \text{with probability } \varepsilon \end{cases}$$
 (breaking ties randomly)

$$R \leftarrow bandit(A)$$

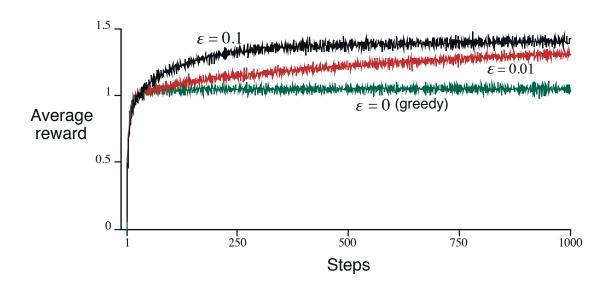
$$N(A) \leftarrow N(A) + 1$$

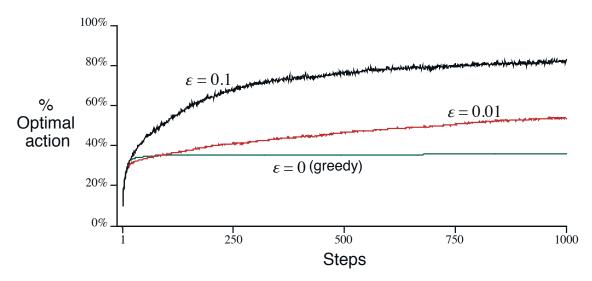
$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]$$

The 10-armed Testbed



ε-Greedy Methods on the 10-Armed Testbed





Averaging — learning rule

- To simplify notation, let us focus on one action
 - We consider only its rewards, and its estimate after n-1 rewards:

$$Q_n \doteq \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

- How can we do this incrementally (without storing all the rewards)?
- Could store a running sum and count (and divide), or equivalently:

$$Q_{n+1} = Q_n + \frac{1}{n} \left[R_n - Q_n \right]$$

• This is a standard form for learning/update rules:

$$NewEstimate \leftarrow OldEstimate + StepSize \left[Target - OldEstimate \right]$$

Derivation of incremental update

$$Q_n \doteq \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_{i}$$

$$= \frac{1}{n} \left(R_{n} + \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1)Q_{n} \right)$$

$$= \frac{1}{n} \left(R_{n} + nQ_{n} - Q_{n} \right)$$

$$= Q_{n} + \frac{1}{n} \left[R_{n} - Q_{n} \right],$$

Averaging — learning rule

- To simplify notation, let us focus on one action
 - We consider only its rewards, and its estimate after n+1 rewards:

$$Q_n \doteq \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

- How can we do this incrementally (without storing all the rewards)?
- Could store a running sum and count (and divide), or equivalently:

$$Q_{n+1} = Q_n + \frac{1}{n} \left[R_n - Q_n \right]$$

• This is a standard form for learning/update rules:

$$NewEstimate \leftarrow OldEstimate + StepSize \left[Target - OldEstimate \right]$$

Tracking a Non-stationary Problem

- Suppose the true action values change slowly over time
 - then we say that the problem is non-stationary
- In this case, sample averages are not a good idea (Why?)
- Better is an "exponential, recency-weighted average":

$$Q_{n+1} \doteq Q_n + \alpha \left[R_n - Q_n \right]$$
$$= (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i,$$

where α is a constant step-size parameter, $\alpha \in (0,1]$

• There is bias due to Q_1 that becomes smaller over time

Standard stochastic approximation convergence conditions

• To assure convergence with probability 1:

$$\sum_{n=1}^{\infty} \alpha_n(a) = \infty \qquad \text{and} \qquad \sum_{n=1}^{\infty} \alpha_n^2(a) < \infty$$

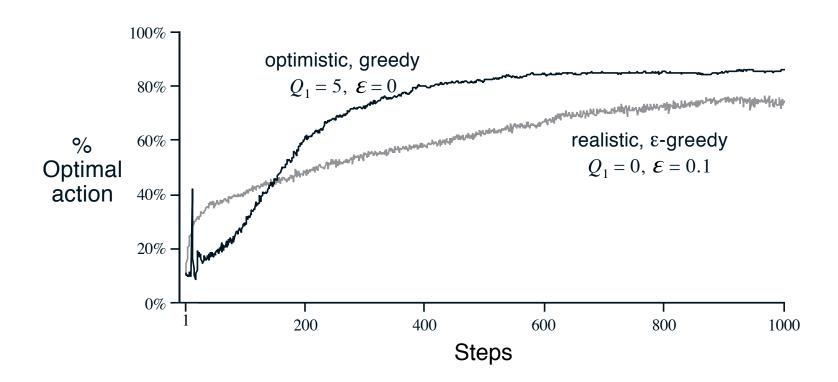
• e.g.,
$$\alpha_n \doteq \frac{1}{n}$$

• not
$$\alpha_n \doteq \frac{1}{n^2}$$

if
$$\alpha_n \doteq n^{-p}$$
, $p \in (0,1)$
then convergence is
at the optimal rate:
 $O(1/\sqrt{n})$

Optimistic Initial Values

- All methods so far depend on $Q_1(a)$, i.e., they are biased. So far we have used $Q_1(a) = 0$
- Suppose we initialize the action values optimistically ($Q_1(a)=5$), e.g., on the IO-armed testbed (with $\alpha=0.1$)



Upper Confidence Bound (UCB) action selection

- A clever way of reducing exploration over time
- Estimate an upper bound on the true action values
- Select the action with the largest (estimated) upper bound

$$A_t \doteq \operatorname*{arg\,max}_{a} \left[Q_t(a) + c \sqrt{\frac{\log t}{N_t(a)}} \right]$$

