
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Chapter 8: Planning and Learning

To think more generally about uses of environment models
Integration of (unifying) planning, learning, and execution
“Model-based reinforcement learning”

Objectives of this chapter: 



Paths to a policy

Model

Value
function

Policy

Experience

Direct RL
methods

Direct
planning

Greedification

Model
learning

SimulationEnvironmental
interaction

Model-based RL



Why Going Beyond Model-Free RL?

• Models provide “understanding” of the world (cf physics, causality...)

• Even if some parts of the problem change, others stay the same, which
can help with faster learning

Eg. Reward may change but the layout and dynamics of thee world may
be thee same

• Models can be used to “dream” up new experiences, and use them to
update the value / policy

1



What should the model predict?

• Clearly we need the reward: easy problem, solved by regression

• What about the prediction of the next state?

1. Distribution model: construct a distribution over next states / features
• A distribution over states??  (distribution model) 

• but what if states are real-valued feature vectors? 

• is there any way to represent and learn the next-state distribution 
in a scalable, approximate, general, and efficient manner? 

• how could the lookahead be “rolled out”? 

• A sample state (from the distribution)?  (sample model) 

• this could be rolled out (all predictions are ground states) 

• but the distribution would still have to be learned and represented 

• planning itself becomes stochastic 

• An expected state feature vector  (expectation model) 

What is the output of lookahead? (i.e., of a model?)

2. Sample model: have the ability to generate sampled next states /
features

• A distribution over states??  (distribution model) 

• but what if states are real-valued feature vectors? 

• is there any way to represent and learn the next-state distribution 
in a scalable, approximate, general, and efficient manner? 

• how could the lookahead be “rolled out”? 

• A sample state (from the distribution)?  (sample model) 

• this could be rolled out (all predictions are ground states) 

• but the distribution would still have to be learned and represented 

• planning itself becomes stochastic 

• An expected state feature vector  (expectation model) 

What is the output of lookahead? (i.e., of a model?)

3. Expectation model: predict the expected next state / feature

• this could be rolled out (all predictions are ground states) 

• but the distribution would still have to be learned and represented 

• planning itself becomes stochastic 

• An expected state feature vector  (expectation model) 

• in general, this can not be rolled out (prediction is blurry) 

• learning is straightforward with standard existing methods 

• planning remains deterministic 

• In general information is lost 

• but not in the special case of linear value functions

What is the output of lookahead? (i.e., of a model?)

3



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

DP with Distribution models
In Chapter 4, we assumed access to a model of the world

These models describe all possibilities and their 
probabilities
We call them Distribution models

– e.g., p(s’, r | s, a) for all s, a, s’, r
In Dynamic Programing we sweep the states: 

in each state we consider all the possible rewards and next state 
values
the model describes the next states and rewards and their 
associated probabilities
using these values to update the value function

In Policy Iteration, we then improve the policy using the 
computed value function    

2



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Sample Models

Model: anything the agent can use to predict how the 
environment will respond to its actions
Sample model, a.k.a. a simulation model 

produces sample experiences for given s, a
– sampled according to the probabilities

allows reset, exploring starts
often much easier to come by

Both types of models can be used mimic or simulate 
experience: to produce hypothetical experience



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Planning: any computational process that uses a model to 
create or improve a policy

We take the following (unusual) view:
update value functions using both real and simulated 
experience
all state-space planning methods involve computing 
value functions, either explicitly or implicitly
they all apply updates from simulated experience

6

Planning

132 CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

model produces a possible transition, and a distribution model generates all possible transitions weighted
by their probabilities of occurring. Given a starting state and a policy, a sample model could produce
an entire episode, and a distribution model could generate all possible episodes and their probabilities.
In either case, we say the model is used to simulate the environment and produce simulated experience.

The word planning is used in several di↵erent ways in di↵erent fields. We use the term to refer to any
computational process that takes a model as input and produces or improves a policy for interacting
with the modeled environment:

planning
model policy

In artificial intelligence, there are two distinct approaches to planning according to our definition.
State-space planning , which includes the approach we take in this book, is viewed primarily as a search
through the state space for an optimal policy or an optimal path to a goal. Actions cause transitions
from state to state, and value functions are computed over states. In what we call plan-space planning ,
planning is instead a search through the space of plans. Operators transform one plan into another, and
value functions, if any, are defined over the space of plans. Plan-space planning includes evolutionary
methods and “partial-order planning,” a common kind of planning in artificial intelligence in which the
ordering of steps is not completely determined at all stages of planning. Plan-space methods are di�cult
to apply e�ciently to the stochastic sequential decision problems that are the focus in reinforcement
learning, and we do not consider them further (but see, e.g., Russell and Norvig, 2010).

The unified view we present in this chapter is that all state-space planning methods share a common
structure, a structure that is also present in the learning methods presented in this book. It takes the
rest of the chapter to develop this view, but there are two basic ideas: (1) all state-space planning
methods involve computing value functions as a key intermediate step toward improving the policy, and
(2) they compute value functions by update operations applied to simulated experience. This common
structure can be diagrammed as follows:

values
backups

model
simulated
experience

policy
updates

Dynamic programming methods clearly fit this structure: they make sweeps through the space of
states, generating for each state the distribution of possible transitions. Each distribution is then used
to compute a backed-up value (update target) and update the state’s estimated value. In this chapter we
argue that various other state-space planning methods also fit this structure, with individual methods
di↵ering only in the kinds of updates they do, the order in which they do them, and in how long the
backed-up information is retained.

Viewing planning methods in this way emphasizes their relationship to the learning methods that
we have described in this book. The heart of both learning and planning methods is the estimation of
value functions by backing-up update operations. The di↵erence is that whereas planning uses simulated
experience generated by a model, learning methods use real experience generated by the environment.
Of course this di↵erence leads to a number of other di↵erences, for example, in how performance is
assessed and in how flexibly experience can be generated. But the common structure means that many
ideas and algorithms can be transferred between planning and learning. In particular, in many cases a
learning algorithm can be substituted for the key update step of a planning method. Learning methods
require only experience as input, and in many cases they can be applied to simulated experience just
as well as to real experience. The box below shows a simple example of a planning method based
on one-step tabular Q-learning and on random samples from a sample model. This method, which
we call random-sample one-step tabular Q-planning, converges to the optimal policy for the model
under the same conditions that one-step tabular Q-learning converges to the optimal policy for the real
environment (each state–action pair must be selected an infinite number of times in Step 1, and ↵ must
decrease appropriately over time).



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Planning Cont.

Classical DP methods are state-space planning methods
Heuristic search methods are state-space planning methods
A planning method based on Q-learning:
8.2. DYNA: INTEGRATING PLANNING, ACTING, AND LEARNING 133

Random-sample one-step tabular Q-planning

Do forever:
1. Select a state, S 2 S, and an action, A 2 A(s), at random
2. Send S, A to a sample model, and obtain

a sample next reward, R, and a sample next state, S0

3. Apply one-step tabular Q-learning to S, A, R, S0:
Q(S, A) Q(S, A) + ↵

⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

In addition to the unified view of planning and learning methods, a second theme in this chapter
is the benefits of planning in small, incremental steps. This enables planning to be interrupted or
redirected at any time with little wasted computation, which appears to be a key requirement for
e�ciently intermixing planning with acting and with learning of the model. Planning in very small
steps may be the most e�cient approach even on pure planning problems if the problem is too large to
be solved exactly.

8.2 Dyna: Integrating Planning, Acting, and Learning

When planning is done on-line, while interacting with the environment, a number of interesting issues
arise. New information gained from the interaction may change the model and thereby interact with
planning. It may be desirable to customize the planning process in some way to the states or decisions
currently under consideration, or expected in the near future. If decision making and model learning
are both computation-intensive processes, then the available computational resources may need to be
divided between them. To begin exploring these issues, in this section we present Dyna-Q, a simple
architecture integrating the major functions needed in an on-line planning agent. Each function appears
in Dyna-Q in a simple, almost trivial, form. In subsequent sections we elaborate some of the alternate
ways of achieving each function and the trade-o↵s between them. For now, we seek merely to illustrate
the ideas and stimulate your intuition.

Within a planning agent, there are at least two roles for real experience: it can be used to improve the
model (to make it more accurately match the real environment) and it can be used to directly improve
the value function and policy using the kinds of reinforcement learning methods we have discussed in
previous chapters. The former we call model-learning , and the latter we call direct reinforcement learning
(direct RL). The possible relationships between experience, model, values, and policy are summarized
in Figure 8.1. Each arrow shows a relationship of influence and presumed improvement. Note how
experience can improve value functions and policies either directly or indirectly via the model. It is the
latter, which is sometimes called indirect reinforcement learning, that is involved in planning.

planning

value/policy

experiencemodel

model
learning

acting

direct
RL

Figure 8.1: Relationships among learning, planning, and acting.

Environment program 
Experiment program 
Agent program



Paths to a policy

Model

Value
function

Policy

Experience

Direct RL
methods

Direct
planning

Greedification

Model
learning

SimulationEnvironmental
interaction

Dyna



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

9

Learning, Planning, and Acting

Two uses of real experience:
model learning: to improve 
the model
direct RL: to directly 
improve the value function 
and policy

Improving value function and/or 
policy via a model is sometimes 
called indirect RL.  Here, we 
call it planning.



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

The Dyna Architecture

Agent



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

The Dyna-Q Algorithm

model learning

planning

direct RL

8.2. INTEGRATING PLANNING, ACTING, AND LEARNING 189

Initialize Q(s, a) and Model(s, a) for all s 2 S and a 2 A(s)
Do forever:

(a) S  current (nonterminal) state

(b) A "-greedy(S,Q)

(c) Execute action A; observe resultant reward, R, and state, S0

(d) Q(S,A) Q(S,A) + ↵[R+ �maxaQ(S0, a)�Q(S,A)]
(e) Model(S,A) R,S0

(assuming deterministic environment)

(f) Repeat n times:

S  random previously observed state

A random action previously taken in S
R, S0  Model(S,A)
Q(S,A) Q(S,A) + ↵[R+ �maxaQ(S0, a)�Q(S,A)]

Figure 8.4: Dyna-Q Algorithm. Model(s, a) denotes the contents of the model
(predicted next state and reward) for state–action pair s, a. Direct reinforce-
ment learning, model-learning, and planning are implemented by steps (d),
(e), and (f), respectively. If (e) and (f) were omitted, the remaining algorithm
would be one-step tabular Q-learning.

Example 8.1: Dyna Maze Consider the simple maze shown inset in
Figure 8.5. In each of the 47 states there are four actions, up, down, right, and
left, which take the agent deterministically to the corresponding neighboring
states, except when movement is blocked by an obstacle or the edge of the
maze, in which case the agent remains where it is. Reward is zero on all
transitions, except those into the goal state, on which it is +1. After reaching
the goal state (G), the agent returns to the start state (S) to begin a new
episode. This is a discounted, episodic task with � = 0.95.

The main part of Figure 8.5 shows average learning curves from an ex-
periment in which Dyna-Q agents were applied to the maze task. The initial
action values were zero, the step-size parameter was ↵ = 0.1, and the explo-
ration parameter was " = 0.1. When selecting greedily among actions, ties
were broken randomly. The agents varied in the number of planning steps,
n, they performed per real step. For each n, the curves show the number of
steps taken by the agent in each episode, averaged over 30 repetitions of the
experiment. In each repetition, the initial seed for the random number gen-
erator was held constant across algorithms. Because of this, the first episode
was exactly the same (about 1700 steps) for all values of n, and its data are
not shown in the figure. After the first episode, performance improved for all
values of n, but much more rapidly for larger values. Recall that the n = 0
agent is a nonplanning agent, utilizing only direct reinforcement learning (one-
step tabular Q-learning). This was by far the slowest agent on this problem,
despite the fact that the parameter values (↵ and ") were optimized for it. The



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

A simple maze: problem description

47 states, 4 actions, deterministic dynamics
Obstacles and walls
Rewards are 0 except +1 for transition into goal state
γ = 0.95, discounted episodic task

Agent parameters:
α = 0.1, ϵ = 0.1
Initial action-values were all zero

Let’s compare one-step tabular Q-learning and Dyna-Q 
with different values of n  

13



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

Dyna-Q on a Simple Maze

rewards = 0 until goal, when =1



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Large maze and random search control

25

Prioritized Sweeping

S

G

S

G

0 47 94 188 376 752 1504 3008 6016
10

2

3

4

5

6

7

10

10

10

10

10

10

No. States

No
. B

ac
ku

ps
 U

nt
il 

O
pt

im
al

 S
ol

ut
io

n

Random Dyna

Largest−1st Dyna

Focused Dyna

10 100 1000 10000 100000 1000000

10000

8000

6000

4000

2000

53

Random Dyna

Largest−1st Dyna

Focused Dyna

No. Backups
St

ep
s 

To
 G

oa
l

(Peng and Williams, 1993)



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 26

Prioritized Sweeping

Which states or state-action pairs should be generated 
during planning?
Work backwards from states whose values have just 
changed:

Maintain a queue of state-action pairs whose values 
would change a lot if backed up, prioritized by the size 
of the change
When a new backup occurs, insert predecessors 
according to their priorities
Always perform backups from first in queue

Moore & Atkeson 1993; Peng & Williams 1993
improved by McMahan & Gordon 2005; Van Seijen 2013 



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 28

Prioritized Sweeping vs. Dyna-Q

Both use n=5 backups per
environmental interaction

Prioritized Sweeping vs 
Dyna-Q (n=5)

S

G

S

G

S

G

S

G

S

G

8.4. PRIORITIZED SWEEPING 183

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty
Do forever:

(a) S  current (nonterminal) state
(b) A policy(S, Q)
(c) Execute action A; observe resultant reward, R, and state, S0

(d) Model(S, A) R, S0

(e) P  |R + � maxa Q(S0, a)�Q(S, A)|.
(f) if P > ✓, then insert S, A into PQueue with priority P
(g) Repeat n times, while PQueue is not empty:

S, A first(PQueue)
R, S0  Model(S, A)
Q(S, A) Q(S, A) + ↵

⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

Repeat, for all S̄, Ā predicted to lead to S:
R̄ predicted reward for S̄, Ā, S
P  |R̄ + � maxa Q(S, a)�Q(S̄, Ā)|.
if P > ✓ then insert S̄, Ā into PQueue with priority P

Figure 8.9: The prioritized sweeping algorithm for a deterministic environment.

Example 8.4: Prioritized Sweeping on Mazes Prioritized sweeping has been
found to dramatically increase the speed at which optimal solutions are found in
maze tasks, often by a factor of 5 to 10. A typical example is shown in Figure 8.10.
These data are for a sequence of maze tasks of exactly the same structure as the
one shown in Figure 8.5, except that they vary in the grid resolution. Prioritized
sweeping maintained a decisive advantage over unprioritized Dyna-Q. Both systems
made at most n = 5 backups per environmental interaction.

Backups
until

optimal
solution

10

103

104

105

106

107

102

0 47 94 186 376 752 1504 3008 6016

Gridworld size (#states)

Dyna-Q

prioritized
sweeping

Figure 8.10: Prioritized sweeping significantly shortens learning time on the Dyna maze
task for a wide range of grid resolutions. Reprinted from Peng and Williams (1993).



Special case: Linear Expectation Models

Φ′Fa =

ba r

Fa� = �0

b�
a � = r

Linear model

Φstart state vector

transition model

reward model

predicted
next-state vector

predicted reward

in a linear model

• states are represented by feature vectors

• the model is a set of matrix-vector pairs

M = {Fa, ba}a2Actions

E{rt+1|�t = �, at = a} = b�
a�

E{�t+1|�t = �, at = a} = Fa�

expected reward
vector

expected transition
matrix

st �! �ts �! �s 2 �n

26



Linear Dyna

• Use a linear model and a linear parametrization of the value function

• Note that the features � could be non-linear (eg coming from a convnet)
but they must be fixed

• In this case, value iteration using an expectation model is the same as
using a full model

27



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

33

Trajectory Sampling

Trajectory sampling: perform updates along simulated trajectories
This samples from the on-policy distribution
Advantages when function approximation is used (Part II)
Focusing of computation:  
can cause vast uninteresting parts of the state space to be ignored:

Initial 

states

Reachable under

 optimal control

Irrelevant states



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

34

Trajectory Sampling Experiment

one-step full tabular updates
uniform: cycled through all state-
action pairs
on-policy: backed up along 
simulated trajectories
200 randomly generated 
undiscounted episodic tasks
2 actions for each state, each with 
b equally likely next states
0.1 prob of transition to terminal 
state 
expected reward on each transition 
selected from mean 0 variance 1 
Gaussian

146 CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

b=10

b=3

b=1
on-policy

uniform
1000 STATES

0

1

2

3

Value of
start state

under
greedy
policy

0 5,000 10,000 15,000 20,000

Computation time, in full backups

0

1

2

3

Value of
start state

under
greedy
policy

0 50,000 100,000 150,000 200,000

Computation time, in full backups

b=1

10,000 STATES

uniform

on-policy

uniform

on-policy

on-policy

uniform

expected updates

expected updates

Figure 8.9: Relative e�ciency of updates distributed uniformly across the state space versus focused on sim-
ulated on-policy trajectories, each starting in the same state. Results are for randomly generated tasks of two
sizes and various branching factors, b.

helps by focusing on states that are near descendants of the start state. If there are many states and
a small branching factor, this e↵ect will be large and long-lasting. In the long run, focusing on the
on-policy distribution may hurt because the commonly occurring states all already have their correct
values. Sampling them is useless, whereas sampling other states may actually perform some useful
work. This presumably is why the exhaustive, unfocused approach does better in the long run, at least
for small problems. These results are not conclusive because they are only for problems generated in
a particular, random way, but they do suggest that sampling according to the on-policy distribution
can be a great advantage for large problems, in particular for problems in which a small subset of the
state–action space is visited under the on-policy distribution.

8.7 Real-time Dynamic Programming

Real-time dynamic programming, or RTDP, is an on-policy trajectory-sampling version of DP’s value-
iteration algorithm. Because it is closely related to conventional sweep-based policy iteration, RTDP
illustrates in a particularly clear way some of the advantages that on-policy trajectory sampling can
provide. RTDP updates the values of states visited in actual or simulated trajectories by means of
expected tabular value-iteration updates as defined by (4.10). It is basically the algorithm that produced
the on-policy results shown in Figure 8.9.



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

35

Heuristic Search

Used for action selection, not for changing a value function 
(=heuristic evaluation function)
Backed-up values are computed, but typically discarded
Extension of the idea of a greedy policy — only deeper 
Also suggests ways to select states to backup: smart 
focusing:



Using Approximate Models: PlaNet (Hafner et al, 2019)

• Building on world models work by Ha and Schmidhuber (2017)

• Learn a model that tries to fit the observations (using a loss function)

17



PlaNet Planning Process

• At planning time, only abstract states are generated

18



Dreamer (Hafner et al, 2020)

19



Value Propagation in Dreamer

20



Dreamer and Planet Results

Model-based methods achieve comparable results to model-free with much less data

21



Using Approximate Models: MuZero (Schrittwieser et al,
Nature, 2020)

• Rather than predict the entire environment, make sure predictions are
accurate for values, rewards and actions

• Values are trained with observed returns, actions to mimic the policy
obtained through search

22



Execution in MuZero

• Model is rolled forward in Monte Carlo Tree Search-style

23



MuZero Results

606 | Nature | Vol 588 | 24/31 December 2020

Article

function Ev u γu o o a a≈ [ + + …| , …, , , …, ]t
k

t k t k t t t k+ +1 + +2 1 +1 +  and, for k 
> 0, also the immediate reward r u≈t

k
t k+ , where u. is the true, observed 

reward, π is the policy used to select real actions and γ is the discount 
function of the environment.

Internally, at each time step t (subscripts t are suppressed for simplic-
ity), the model is represented by the combination of a representation 
function, a dynamics function and a prediction function. The dynamics 
function gθ, is a recurrent process, rk, sk = gθ(sk−1, ak), that computes, at 
each hypothetical step k, an immediate reward rk and an internal state 
sk. It mirrors the structure of an MDP model that computes the expected 
reward and state transition for a given state and action21. However, 
unlike traditional approaches to model-based RL11, this internal state 
sk has no semantics of environment state attached to it—it is simply the 
hidden state of the overall model and its sole purpose is to accurately 
predict relevant, future quantities: policies, values and rewards. In this 
paper, the dynamics function is represented deterministically; the 
extension to stochastic transitions is left for future work. A prediction 
function fθ computes the policy and value functions from the internal 
state sk, pk, vk = fθ(sk), akin to the joint policy and value network of Alp-
haZero. A representation function hθ initializes the ‘root’ state s0 by 
encoding past observations, s0 = hθ(o1, ..., ot); again, this has no special 
semantics beyond its support for future predictions.

Given such a model, it is possible to search over hypothetical future 
trajectories a1, ..., ak given past observations o1, ..., ot. For example, a 
naive search could simply select the k-step action sequence that max-
imizes the value function. More generally, we may apply any MDP plan-
ning algorithm to the internal rewards and state space induced by the 
dynamics function. Specifically, we use an MCTS algorithm similar to 
AlphaZero’s search, generalized to allow for single-agent domains and 
intermediate rewards (Methods). The MCTS algorithm may be viewed 
as a search policy πt = P[at+1|o1, ..., ot] and search value function νt ≈ E
[ut+1 + γut+2 +...|o1, ..., ot] that both selects an action and predicts cumu-
lative reward given past observations o1, ..., ot. At each internal node, 
it makes use of the policy, value function and reward estimate produced 

by the current model parameters θ, and combines these values together 
using lookahead search to produce an improved policy πt and improved 
value function νt at the root of the search tree. The next action at+1 ≈ πt 
is then chosen by the search policy.

All parameters of the model are trained jointly to accurately match 
the policy, value function and reward prediction, for every hypo-
thetical step k, to three corresponding targets observed after k actual 
time steps have elapsed. Similarly to AlphaZero, the first objective is 
to minimize the error between the actions predicted by the policy  
pt

k  and by the search policy πt+k. Also like AlphaZero, value targets  
are generated by playing out the game or MDP using the search  
policy. However, unlike AlphaZero, we allow for long episodes with 
discounting and intermediate rewards by computing an n-step return 
zt that bootstraps n steps into the future from the search value,  
zt = ut+1 + γut+2 + ... + γn−1ut+n + γnνt+n. Final outcomes {lose, draw, win} in 
board games are treated as rewards ut � {−1, 0, +1} occurring at the 
final step of the episode. Specifically, the second objective is to min-
imize the error between the value function vt

k and the value target, 
zt+k. The third objective is to minimize the error between the predicted 
immediate reward r t

k and the observed immediate reward ut+k. Finally, 
an L2 regularization term is also added, scaled by a constant c, leading 
to the overall loss

∑ ∑ ∑l θ l π p l z v l u r c θ( ) = ( , ) + ( , ) + ( , ) + || || , (1)t
k

K

t k t
k

k

K

t k t
k

k

K

t k t
k

=0

p
+

=0

v
+

=1

r
+

2

where lp, lv and lr are loss functions for policy, value and reward, respec-
tively. Supplementary Fig. 2 summarizes the equations governing 
how the MuZero algorithm plans, acts and learns. We note that for 
chess, Go and shogi, the same squared error loss as AlphaZero is used 
for rewards and values. A cross-entropy loss was found to be more 
stable than a squared error when encountering rewards and values 
of variable scale in Atari. Cross-entropy was used for the policy loss 
in both cases.

Chess Shogi Go Atari

5,000

4,000

3,000

2,000

1,000

0
0 0.2 0.4 0.6 0.8 1.0

Millions of training steps
0 0.2 0.4 0.6 0.8 1.0

Millions of training steps
0 0.2 0.4 0.6 0.8 1.0

Millions of training steps
0 0.2 0.4 0.6 0.8 1.0

Millions of training steps

El
o

5,000

4,000

3,000

2,000

1,000

0

R
ew

ar
d

Fig. 2 | Evaluation of MuZero throughout training in chess, shogi, Go and 
Atari. The x axis shows millions of training steps. For chess, shogi and Go, the y 
axis shows Elo rating, established by playing games against AlphaZero using 
800 simulations per move for both players. MuZero’s Elo is indicated by the 
blue line and AlphaZero’s Elo is indicated by the horizontal orange line. For 
Atari, mean (full line) and median (dashed line) human normalized scores 

across all 57 games are shown on the y axis. The scores for R2D219 (the previous 
state of the art in this domain, based on model-free RL) are indicated by the 
horizontal orange lines. Performance in Atari was evaluated using 50 
simulations every fourth time step, and then repeating the chosen action four 
times, as in previous work39. Supplementary Fig. 1 studies the repeatability of 
training in Atari.

MuZero outperforms R2D2 (best model-free agent at the time)

24


