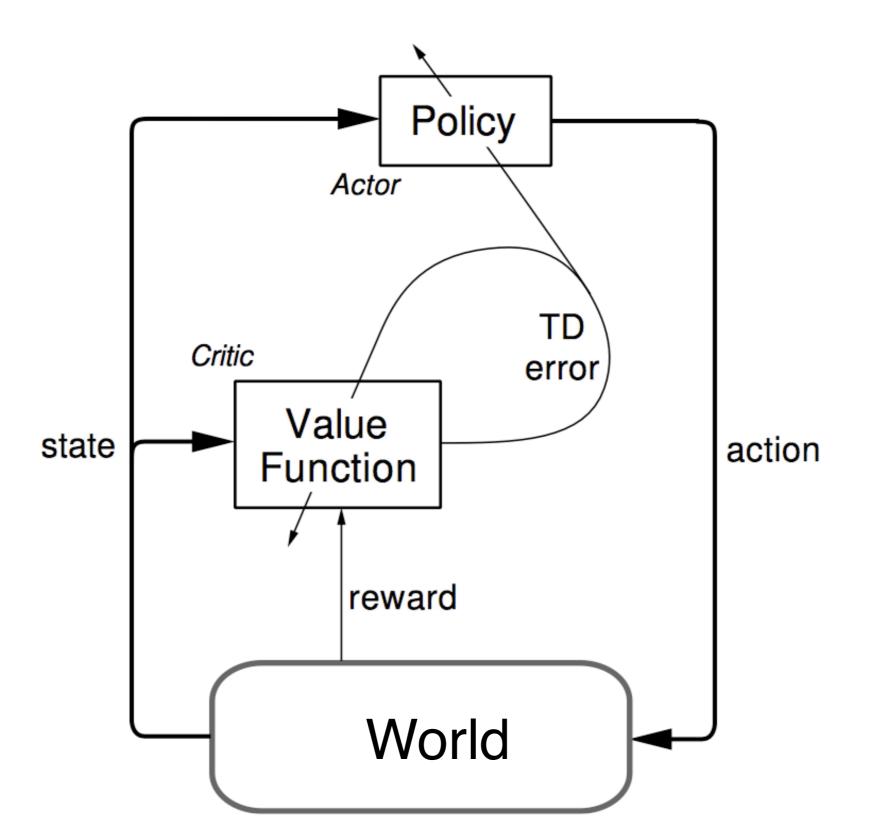
Actor-critic architecture



Actor-Critic methods

REINFORCE with baseline:

$$\boldsymbol{\theta}_{t+1} \triangleq \boldsymbol{\theta}_t + \alpha_{\boldsymbol{\Lambda}}^{\boldsymbol{\gamma}_t^t} (G_t - b(S_t)) \frac{\nabla_{\boldsymbol{\theta}} \pi(A_t | S_t, \boldsymbol{\theta})}{\pi(A_t | S_t, \boldsymbol{\theta})}$$

Actor-Critic method:

$$\boldsymbol{\theta}_{t+1} \triangleq \boldsymbol{\theta}_t + \alpha_{\boldsymbol{\lambda}}^{\boldsymbol{\gamma}^t} \Big(G_t^{(1)} - \hat{v}(S_t, \mathbf{w}) \Big) \frac{\nabla_{\boldsymbol{\theta}} \pi(A_t | S_t, \boldsymbol{\theta})}{\pi(A_t | S_t, \boldsymbol{\theta})} \\ = \boldsymbol{\theta}_t + \alpha_{\boldsymbol{\lambda}}^{\boldsymbol{\gamma}^t} \Big(R_{t+1}^{-\bar{R}_t} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w}) \Big) \frac{\nabla_{\boldsymbol{\theta}} \pi(A_t | S_t, \boldsymbol{\theta})}{\pi(A_t | S_t, \boldsymbol{\theta})}$$

A2C and A3C

Pseudocode

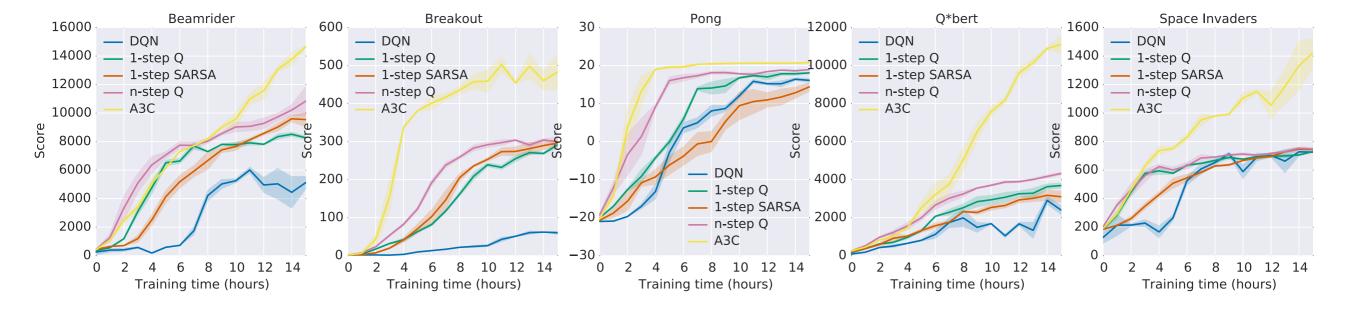
for iteration=1, 2, ... do Agent acts for T timesteps (e.g., T = 20), For each timestep t, compute

$$\hat{R}_t = r_t + \gamma r_{t+1} + \dots + \gamma^{T-t+1} r_{T-1} + \gamma^{T-t} V(s_t)$$
$$\hat{A}_t = \hat{R}_t - V(s_t)$$

 \hat{R}_t is target value function, in regression problem \hat{A}_t is estimated advantage function Compute loss gradient $g = \nabla_{\theta} \sum_{t=1}^{T} \left[-\log \pi_{\theta} (a_t \mid s_t) \hat{A}_t + c(V(s) - \hat{R}_t)^2 \right]$

g is plugged into a stochastic gradient descent variant, e.g., Adam. end for

A3C results



Revisiting the objective

- Let $\eta(\pi)$ denote the expected return of π
- \blacktriangleright We collect data with $\pi_{old}.$ Want to optimize some objective to get a new policy π
- Define $L_{\pi_{\text{old}}}(\pi)$ to be the "surrogate objective" ¹

$$L(\pi) = \mathbb{E}_{\pi_{\text{old}}} \left[\frac{\pi(a \mid s)}{\pi_{\text{old}}(a \mid s)} A^{\pi_{\text{old}}}(s, a) \right]$$
$$\nabla_{\theta} L(\pi_{\theta}) \Big|_{\theta_{\text{old}}} = \nabla_{\theta} \eta(\pi_{\theta}) \Big|_{\theta_{\text{old}}} \text{ (policy gradient)}$$

 \blacktriangleright Local approximation to the performance of the policy; does not depend on parameterization of π

Trust Region Policy Optimization (TRPO)

Constrained optimization problem

$$\max_{\pi} L(\pi), \text{ subject to } \overline{\mathsf{KL}}[\pi_{\mathrm{old}}, \pi] \leq \delta$$

where $L(\pi) = \mathbb{E}_{\pi_{\mathrm{old}}} \left[\frac{\pi(a \mid s)}{\pi_{\mathrm{old}}(a \mid s)} A^{\pi_{\mathrm{old}}}(s, a) \right]$

Construct loss from empirical data

$$\hat{L}(\pi) = \sum_{n=1}^{N} \frac{\pi(a_n \mid s_n)}{\pi_{\text{old}}(a_n \mid s_n)} \hat{A}_n$$

Make quadratic approximation and solve with conjugate gradient algorithm

Proximal Policy Gradient (PPO)

Use penalty instead of constraint

$$\underset{\theta}{\text{minimize}} \sum_{n=1}^{N} \frac{\pi_{\theta}(a_n \mid s_n)}{\pi_{\theta_{\text{old}}}(a_n \mid s_n)} \hat{A}_n - \beta \overline{\mathsf{KL}}[\pi_{\theta_{\text{old}}}, \pi_{\theta}]$$

Pseudocode:

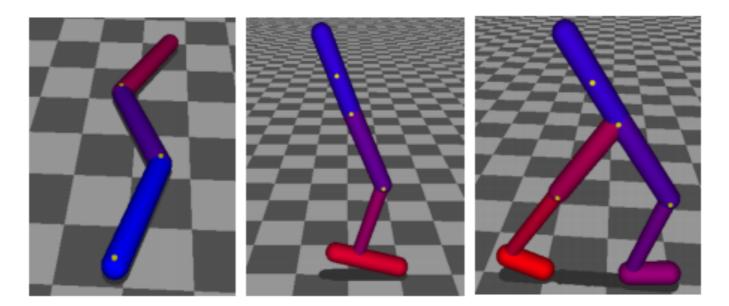
for iteration=1,2,... do Run policy for T timesteps or N trajectories Estimate advantage function at all timesteps Do SGD on above objective for some number of epochs If KL too high, increase β . If KL too low, decrease β . end for

 \blacktriangleright \approx same performance as TRPO, but only first-order optimization

Results

Applied to

Locomotion controllers in 2D



Atari games with pixel input

Deep Deterministic Policy Gradient (DDPG)

- Incorporate replay buffer and target network ideas from DQN for increased stability
- Use lagged (Polyak-averaging) version of Q_{ϕ} and π_{θ} for fitting Q_{ϕ} (towards $Q^{\pi,\gamma}$) with TD(0)

$$\hat{Q}_t = r_t + \gamma Q_{\phi'}(s_{t+1}, \pi(s_{t+1}; \theta'))$$

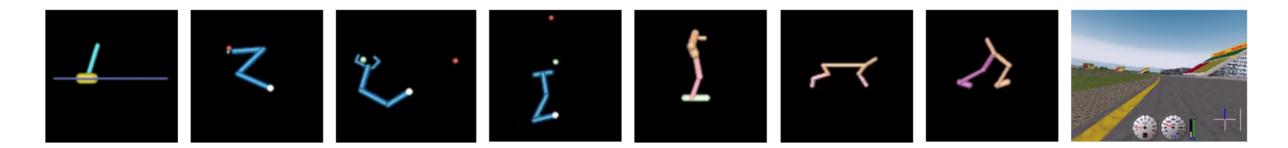
Pseudocode:

for iteration= $1, 2, \ldots$ do

Act for several timesteps, add data to replay buffer Sample minibatch Update π_{θ} using $g \propto \nabla_{\theta} \sum_{t=1}^{T} Q(s_t, \pi(s_t, z_t; \theta))$ Update Q_{ϕ} using $g \propto \nabla_{\phi} \sum_{t=1}^{T} (Q_{\phi}(s_t, a_t) - \hat{Q}_t)^2$, end for

DDPG results

Applied to 2D and 3D robotics tasks and driving with pixel input



The generality of policy-gradient

- Can be applied whenever we can compute the effect of parameter changes on the action probabilities,
- E.g., has been applied to spiking neuron models
- There are many possibilities other than linearexponential and linear-gaussian, e.g., mixture of random, argmax, and fixed-width gaussian; learn the mixing weights, drift/diffusion models
- Can be applied whenever we can compute the effect of parameter changes on the action probabilities, $\nabla \pi(A_t|S_t, \theta)$