
Beyond Model-Free Reinforcement Learning



Why Going Beyond Model-Free RL?

• Models provide “understanding” of the world (cf physics, causality...)

• Even if some parts of the problem change, others stay the same, which
can help with faster learning

Eg. Reward may change but the layout and dynamics of thee world may
be thee same

• Models can be used to “dream” up new experiences, and use them to
update the value / policy
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Dynamic programming-style planning

Dynamic programming-style planning

• Planning proceeds by using the model to look ahead from states,  
imagining something about the future 

• Each imagining from a state-action pair is called a lookahead 

• Then, after one or more lookaheads, something computed at the 
leaves is passed back to the starting state to update its stored 
policy or value estimate 

• This is called a backup 

• Backups continue forever  
   ⇒ general planning

s

s0
r

max
a

p

s

s, a

s0

s0, a0
<latexit sha1_base64="7nS9mKMvlQN97W1r6E9EHwoDgcA="></latexit><latexit sha1_base64="7nS9mKMvlQN97W1r6E9EHwoDgcA="></latexit><latexit sha1_base64="7nS9mKMvlQN97W1r6E9EHwoDgcA="></latexit><latexit sha1_base64="7nS9mKMvlQN97W1r6E9EHwoDgcA="></latexit>

s00
<latexit sha1_base64="+9kfLtq6vzlFPMog4Aw/PCAfdMA="></latexit><latexit sha1_base64="+9kfLtq6vzlFPMog4Aw/PCAfdMA="></latexit><latexit sha1_base64="+9kfLtq6vzlFPMog4Aw/PCAfdMA="></latexit><latexit sha1_base64="+9kfLtq6vzlFPMog4Aw/PCAfdMA="></latexit>

2



What should the model predict?

• Clearly we need the reward: easy problem, solved by regression

• What about the prediction of the next state?

1. Distribution model: construct a distribution over next states / features
• A distribution over states??  (distribution model) 

• but what if states are real-valued feature vectors? 
• is there any way to represent and learn the next-state distribution 

in a scalable, approximate, general, and efficient manner? 

• how could the lookahead be “rolled out”? 

• A sample state (from the distribution)?  (sample model) 
• this could be rolled out (all predictions are ground states) 
• but the distribution would still have to be learned and represented 
• planning itself becomes stochastic 

• An expected state feature vector  (expectation model) 

What is the output of lookahead? (i.e., of a model?)

2. Sample model: have the ability to generate sampled next states /
features

• A distribution over states??  (distribution model) 
• but what if states are real-valued feature vectors? 

• is there any way to represent and learn the next-state distribution 
in a scalable, approximate, general, and efficient manner? 

• how could the lookahead be “rolled out”? 

• A sample state (from the distribution)?  (sample model) 
• this could be rolled out (all predictions are ground states) 
• but the distribution would still have to be learned and represented 
• planning itself becomes stochastic 

• An expected state feature vector  (expectation model) 

What is the output of lookahead? (i.e., of a model?)

3. Expectation model: predict the expected next state / feature

• this could be rolled out (all predictions are ground states) 
• but the distribution would still have to be learned and represented 
• planning itself becomes stochastic 

• An expected state feature vector  (expectation model) 
• in general, this can not be rolled out (prediction is blurry) 
• learning is straightforward with standard existing methods 
• planning remains deterministic 
• In general information is lost 

• but not in the special case of linear value functions

What is the output of lookahead? (i.e., of a model?)
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Using a Distribution Model: Value Iteration

• Approximates the optimal value function by doing repeated sweeps
through the states:

1. Start with some initial guess, e.g. V0
2. Repeat:

Vk+1(s)← max
a∈A


ras + γ

∑

s′∈S
pass′Vk(s

′)


 ,∀s ∈ S

3. Stop when the maximum change between two iterations is smaller
than a desired threshold (the values stop changing)

• One can prove that the error ||Vk − V ∗||∞ decreases as γk
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Illustration

Iteration #1 Iteration #2 Iteration #3

• Values propagate backwards from rewarding states

• May take a long time if rewards are sparse, unless we are smart about
sampling states

• Prioritized sweeping (Moore & Atkeson, 1992 and much follow-up work):
sample preferentially predecessors of states that had a large value change
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Speeding up: Jumpy (temporally extended) models

Room s Ex am ple

Iteration #0 Iteration #1 Iteration #2

with ce ll-to-ce ll
primit ive  act ions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
opt ions

V (goal )=1

V (goal )=1
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Options framework

• An option o consists of 3 components

– An initiation set of states Io ⊆ S (aka precondition)
– A policy πo : S ×A→ [0, 1]
πo(s, a) is the probability of taking a in s when following the option

– A termination condition βo : S → [0, 1]:
β(s) is the probability of terminating the option at s

• Eg., robot navigation: if there is no obstacle in front (Io), go forward
(πo) until you get too close to another object (βo)

• Other representations of the termination condition are possible (cf.
Comanici and Precup, 2010)

Cf. Sutton, Precup & Singh, 1999; Precup, 2000
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MDP + Options = Semi-Markov Decision Precess

SMDP

Time

MDP
State

Options 

over MDP

Fig. 1. The state trajectory of an MDP is made up of small, discrete-time transitions,
whereas that of an SMDP comprises larger, continuous-time transitions. Options
enable an MDP trajectory to be analyzed in either way.

tion 4 considers the problem of effectively combining a given set of options
into a single overall policy. For example, a robot may have pre-designed con-
trollers for servoing joints to positions, picking up objects, and visual search,
but still face a difficult problem of how to coordinate and switch between
these behaviors [17,22,38,48,50,65–67]. Sections 5 and 6 concern intra-option
learning—looking inside options to learn simultaneously about all options con-
sistent with each fragment of experience. Finally, in Section 7 we illustrate a
notion of subgoal that can be used to improve existing options and learn new
ones.

1 The Reinforcement Learning (MDP) Framework

In this section we briefly review the standard reinforcement learning frame-
work of discrete-time, finite Markov decision processes , or MDPs , which forms
the basis for our extension to temporally extended courses of action. In this
framework, a learning agent interacts with an environment at some discrete,
lowest-level time scale, t = 0, 1, 2, . . . On each time step, t, the agent perceives
the state of the environment, st ∈ S, and on that basis chooses a primitive
action, at ∈ Ast . In response to each action, at, the environment produces one
step later a numerical reward, rt+1, and a next state, st+1. It is convenient to
suppress the differences in available actions across states whenever possible;
we let A =

�
s∈S As denote the union of the action sets. If S and A, are fi-

nite, then the environment’s transition dynamics can be modeled by one-step
state-transition probabilities,

pa
ss� = Pr{st+1 = s� | st = s, at = a},

4

• Introducing options in an MDP induces a related semi-MDP

• Hence all planning and learning algorithms from classical MDPs transfer
directly to options

Cf. Sutton, Precup & Singh, 1999; Precup, 2000
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Options framework

• Option model has two parts:

– Expected reward ro: for every state, it gives the expected return during
o’s execution

– Transition model po: gives a sub-probability distribution over next
states (reflecting the discount factor γ and the option duration)

• Models are predictions about the future, conditioned on the option being
executed, i.e. generalized value functions

• Easy to learn using temporal-difference-style methods, from a single
stream of experience

• Planning with option models is done just like planning with primitives -
no explicit hierarchy
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What is needed to do planning with options

• Compositionality: putting models together into larger models

ro1o2 = ro1 + po1ro2

po1o2 = po1po2

If models are compositional, we can reason about the effect of sequential
decisions

• Linear options (Sorg & Singh, 2010): using options with linear
expectation models that respect these conditions

• Compositional planning (Silver & Ciosek, 2012): compute a whole
hierarchy of options using this principle, staring with primitive models

– Solves Towers of Hanoi order of magnitude faster
– Requires number of iterations grows linearly when adding discs, instead

of exponentially
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Benefits of Options Models

• Planning with option models provides benefits beyond using options to
bias behavior (cf Botvinick & Weinstein, 2014)
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How can we generate useful options / jumpy models?

• Generate a lot of options, then worry about which are useful!

• More precisely, suppose we have a large set of landmarks, i.e. states in
the environment, perhaps chosen at random (Mann et al, JAIR’2015)

• Suppose we have a rough planner which can get to a landmark from its
vicinity, by solving a deterministic relaxation of the MDP

• We use the landmarks to generate options, then use these in approximate
value iteration
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Illustration of random landmarks
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Figure 6: Example trajectories for policies derived from the last (K = 30) iteration of PFVI, OFVI, and
LAVI on the continuous two rooms domain. For LAVI, the landmark hyperspheres are drawn as black ovals.
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Figure 7: Two-Rooms: Comparison of planning with PFVI, OFVI, and LAVI with 100 landmarks in the
continuous two rooms domain. (a) Performance of policies derived from each iteration of PFVI, OFVI, and
LAVI. (b) Time in seconds to compute each iteration of PFVI, OFVI, and LAVI.

inventory requires making large jumps in the state-space (e.g., going from 0 inventory to maximum inventory
levels) in a single timestep.

5.3 Continuous Two Rooms Domain

We implemented a continuous-state version of the two rooms domain introduced by Şimşek and Barto
[2004]. Given the agent’s current state as a point hx, yi, the new state after executing a primitive action was
obtained by hx, yi+N (µ,�) where N (µ,�) is an instance of the normal distribution with mean µ = (�x,�y)
depending on the action (up, down, left, or right) and standard deviation � = (0.05, 0.05). If the agent was
blocked by a wall or boundary then it did not move. OFVI was given a single additional option (in addition
to the primitive actions), which transitions the agent from the doorway to the goal region. Landmarks for
LAVI and LOFVI were uniformly sampled from the state-space and di↵erent landmarks sets were sampled
for each trial.

We used Euclidean distance as a metric over the state-space and selected ⌘ = 0.05 and d+ = 15. We used
a greedy local planner that chose the action transitioning the agent closest to the landmark state, unless the
landmark and agent were in di↵erent rooms. In that case, the planner selected the action that transitioned
the closest to the doorway region. We ran all conditions for K = 30 iterations.

For the continuous Two-Rooms domain Figure 6 shows sample trajectories for the final policy derived
by PFVI, OFVI, and LAVI. Even with K = 30 iterations, PFVI was not able to derive a successful policy.
However, with additional iterations (not shown), PFVI does eventually learn a path to the goal region.
The policy derived by OFVI moves more directly toward the goal state, while the policy derived by LAVI
transitions from landmark to landmark. Although this results in a longer path to goal, LAVI is still able to
solve the task.
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inventory requires making large jumps in the state-space (e.g., going from 0 inventory to maximum inventory
levels) in a single timestep.

5.3 Continuous Two Rooms Domain

We implemented a continuous-state version of the two rooms domain introduced by Şimşek and Barto
[2004]. Given the agent’s current state as a point hx, yi, the new state after executing a primitive action was
obtained by hx, yi+N (µ,�) where N (µ,�) is an instance of the normal distribution with mean µ = (�x,�y)
depending on the action (up, down, left, or right) and standard deviation � = (0.05, 0.05). If the agent was
blocked by a wall or boundary then it did not move. OFVI was given a single additional option (in addition
to the primitive actions), which transitions the agent from the doorway to the goal region. Landmarks for
LAVI and LOFVI were uniformly sampled from the state-space and di↵erent landmarks sets were sampled
for each trial.

We used Euclidean distance as a metric over the state-space and selected ⌘ = 0.05 and d+ = 15. We used
a greedy local planner that chose the action transitioning the agent closest to the landmark state, unless the
landmark and agent were in di↵erent rooms. In that case, the planner selected the action that transitioned
the closest to the doorway region. We ran all conditions for K = 30 iterations.

For the continuous Two-Rooms domain Figure 6 shows sample trajectories for the final policy derived
by PFVI, OFVI, and LAVI. Even with K = 30 iterations, PFVI was not able to derive a successful policy.
However, with additional iterations (not shown), PFVI does eventually learn a path to the goal region.
The policy derived by OFVI moves more directly toward the goal state, while the policy derived by LAVI
transitions from landmark to landmark. Although this results in a longer path to goal, LAVI is still able to
solve the task.
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Landmark-based approximate value iteration gets a good solution much faster!
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Inventory management application

• Manage a warehouse that can stock 8 different commodities

• At most 500 items can be stored at any given time

• Demand is stochastic and depends on time of year

• Negative rewards are given for unfulfilled orders and for the cost of
ordered items

• Hand-crafted options: order nothing until some threshold is crossed

• Primitive actions: specify amount of order for each item

14



Inventory management results

• Comparing a random policy and a 1-step greedy choice with using just
primitives (PFVI) using primitives and hand-crafted options (OFVI),
using “landmarks” (LOFVI) and using landmarks and only computing
values for landmarks states (LAVI)

Approximate Value Iteration with Mixed-Timescale Actions

Inventory Management Task
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Figure 11: Performance of policies at each iteration of OFVI and PFVI starting from a
state with no inventory. Results were averaged over 20 trials.
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Figure 12: Inventory Management: (a) Comparison of performance of the first and last
policies derived by PFVI, OFVI, and LAVI. (b) Comparison of time per iteration
in seconds. Results were averaged over 20 trials.

local planner that used a deterministic instance of the problem to transition as close as
possible to landmark states. We used Euclidean distance and set ⌘ = 0.05⇥ 500 where 500
was the maximum inventory level and d+ = 1. The reason we set d+ = 1 was because
successfully managing inventory requires making large jumps in the state-space (e.g., going
from 0 inventory to maximum inventory levels) in a single timestep.

Figure 12a compares the performance of a policy that selects primitive actions uniformly
at random and policies derived from the first and last iterates of PFVI, OFVI, LOFVI, and
LAVI. In this task, LAVI and LOFVI are able to outperform PFVI and OFVI after their first

55

• Randomly generated landmarks perform much better
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Performance and time evaluation

• Performance of initial and final policy (left) and running time (right)
averaged offer 20 independent runs

Approximate Value Iteration with Mixed-Timescale Actions

Inventory Management Task
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local planner that used a deterministic instance of the problem to transition as close as
possible to landmark states. We used Euclidean distance and set ⌘ = 0.05⇥ 500 where 500
was the maximum inventory level and d+ = 1. The reason we set d+ = 1 was because
successfully managing inventory requires making large jumps in the state-space (e.g., going
from 0 inventory to maximum inventory levels) in a single timestep.

Figure 12a compares the performance of a policy that selects primitive actions uniformly
at random and policies derived from the first and last iterates of PFVI, OFVI, LOFVI, and
LAVI. In this task, LAVI and LOFVI are able to outperform PFVI and OFVI after their first

55

• Computing values only at landmark states yields a good policy almost
immediately
• Handcrafted options are better than primitives in the beginning but

slightly worse in the long run but randomly generated landmarks are
much better
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Dyna (Sutton, 1990)

The Dyna Architecture (1990)
• Planning and learning are radically similar 
• Planning, learning, and execution are all done simultaneously

RL 
algorithm

world

actionstate reward

world
model

Dyna
swap

planning

value/policy

experiencemodel

model
learning

acting

direct
RL

• Learn a sampling model of the world

• Same RL algorithm used for both learning and planning (TD(0), Q-
learning...)

• Planning, learning and execution are all done simultaneously and
asynchronously
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Special case: Linear Expectation Models

Φ′Fa =

ba r

Fa� = ��

b⇥a � = r
Linear model

Φstart state vector

transition model

reward model

predicted
next-state vector

predicted reward

in a linear model

• states are represented by feature vectors

• the model is a set of matrix-vector pairs

M = {Fa, ba}a�Actions

E{rt+1|�t = �, at = a} = b�a�

E{�t+1|�t = �, at = a} = Fa�

expected reward
vector

expected transition
matrix

st �⇥ �ts �⇥ �s � ⇥n
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Linear Dyna

• Use a linear model and a linear parametrization of the value function

• Note that the features φ could be non-linear (eg coming from a convnet)
but they must be fixed

• In this case, value iteration using an expectation model is the same as
using a full model

19



Generalizing Expectation Models: General Value
Functions (GVFs)

• Given a cumulant function c, state-dependent continuation function γ
and policy π, the General Value Function vπ,γ,c is defined as:

vπ,c,γ(s) = E

[ ∞∑

k=t

c(Sk, Ak, Sk+1)

k∏

i=t+1

γ(Si)|St = s,At:∞ ∼ π
]

• Cumulant c can output a vector (even a matrix)

• Continuation function γ maps states to [0,1] (further generalizations are
possible)

• Cf. Horde architecture (Sutton et al, 2011); Adam White’s thesis;
inspiration from Pandemonium architecture

• Special case: policy is optimal wrt c, γ, v∗c,γ - Universal Value Function
approximation (UVFA) (Schaul et al, 2015)
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Expectation Models of Options are GVFs

• The reward model for an option ω is defined as:

rω(s) = Eω[r(St, At) + γ(1− βω(St+1))rω(St+1)|St = s]

• This means the option reward model is a GVF:

– policy is πω
– cumulant is the environment reward r
– continuation function is γ(1− βω)

• Expected option transition model can be similarly written as a GVF

21



Successor Representations
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Figure 2. Illustration of SR encoding population and individual SR place fields. Under a prospective
representation such as the SR, the population vector will be assymetrically expand in the direction of
travel toward upcoming states. The place fields for individual cells will skew backwards. (A) A neural
population encodes a prospective representation such that the firing rate of each cell is proportional to the
discounted expected number of times its preferred state will be visited in the future. This population code
is skewed toward upcoming states. Each colored bump represents the firing rate of a different place field
located along the track. The value M(s,s0) is formally defined in Equation 3 as the expected number of
visits to state s0 given a current location of s, and the population vectors M(s, :) illustrated here correspond
to rows of the SR matrix. (B) The place field for a single SR-encoding cell skews backward toward past
states that predict the cell’s preferred state. When the blue state s5 is visited, it becomes associated with
all past states that predicted it. This automatically assigns credit for upcoming reward to preceding states.
The receptive field M(:,s0) illustrated here corresponds to a column of the SR matrix.
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• Successor representation (Dayan, 1992): special case when φ is a 1-hot encoding of

states

• Stachenfeld et al (Nat. neurosci, 2017): Successor representation is linked to place

cells in hippocampus
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Successor states and successor features are GVFs

• Successor features (Barreto et al, 2017, 2018) are a natural extension of
successor states (Dayan, 1992)

• Successor states give the expected occupancy of future states

• If states are defined by a feature vector φ(s), successor features give the
expected, discounted sum of future feature vectors from a state.

• In GVF terms, the cumulant is c = φ, and there is a fixed policy and
discount

• Interesting property highlighted in Barreto et al:

vπ,wT c,γ(s) = wTvπ,c,γ(s)

which leads to one-shot computation of new GVFs
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Using Approximate Models: PlaNet (Hafner et al, 2019)

• Building on world models work by Ha and Schmidhuber (2017)

• Learn a model that tries to fit the observations (using a loss function)

24



PlaNet Planning Process

• At planning time, only abstract states are generated
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Dreamer (Hafner et al, 2020)
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Value Propagation in Dreamer
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Dreamer and Planet Results

Model-based methods achieve comparable results to model-free with much less data
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Using Approximate Models: MuZero (Schrittwieser et al,
Nature, 2020)

• Rather than predict the entire environment, make sure predictions are
accurate for values, rewards and actions
• Values are trained with observed returns, actions to mimic the policy

obtained through search
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Execution in MuZero

• Model is rolled forward in Monte Carlo Tree Search-style

30



MuZero Results

606 | Nature | Vol 588 | 24/31 December 2020

Article

function Ev u γu o o a a≈ [ + + …| , …, , , …, ]t
k

t k t k t t t k+ +1 + +2 1 +1 +  and, for k 
> 0, also the immediate reward r u≈t

k
t k+ , where u. is the true, observed 

reward, π is the policy used to select real actions and γ is the discount 
function of the environment.

Internally, at each time step t (subscripts t are suppressed for simplic-
ity), the model is represented by the combination of a representation 
function, a dynamics function and a prediction function. The dynamics 
function gθ, is a recurrent process, rk, sk = gθ(sk−1, ak), that computes, at 
each hypothetical step k, an immediate reward rk and an internal state 
sk. It mirrors the structure of an MDP model that computes the expected 
reward and state transition for a given state and action21. However, 
unlike traditional approaches to model-based RL11, this internal state 
sk has no semantics of environment state attached to it—it is simply the 
hidden state of the overall model and its sole purpose is to accurately 
predict relevant, future quantities: policies, values and rewards. In this 
paper, the dynamics function is represented deterministically; the 
extension to stochastic transitions is left for future work. A prediction 
function fθ computes the policy and value functions from the internal 
state sk, pk, vk = fθ(sk), akin to the joint policy and value network of Alp-
haZero. A representation function hθ initializes the ‘root’ state s0 by 
encoding past observations, s0 = hθ(o1, ..., ot); again, this has no special 
semantics beyond its support for future predictions.

Given such a model, it is possible to search over hypothetical future 
trajectories a1, ..., ak given past observations o1, ..., ot. For example, a 
naive search could simply select the k-step action sequence that max-
imizes the value function. More generally, we may apply any MDP plan-
ning algorithm to the internal rewards and state space induced by the 
dynamics function. Specifically, we use an MCTS algorithm similar to 
AlphaZero’s search, generalized to allow for single-agent domains and 
intermediate rewards (Methods). The MCTS algorithm may be viewed 
as a search policy πt = P[at+1|o1, ..., ot] and search value function νt ≈ E
[ut+1 + γut+2 +...|o1, ..., ot] that both selects an action and predicts cumu-
lative reward given past observations o1, ..., ot. At each internal node, 
it makes use of the policy, value function and reward estimate produced 

by the current model parameters θ, and combines these values together 
using lookahead search to produce an improved policy πt and improved 
value function νt at the root of the search tree. The next action at+1 ≈ πt 
is then chosen by the search policy.

All parameters of the model are trained jointly to accurately match 
the policy, value function and reward prediction, for every hypo-
thetical step k, to three corresponding targets observed after k actual 
time steps have elapsed. Similarly to AlphaZero, the first objective is 
to minimize the error between the actions predicted by the policy  
pt

k  and by the search policy πt+k. Also like AlphaZero, value targets  
are generated by playing out the game or MDP using the search  
policy. However, unlike AlphaZero, we allow for long episodes with 
discounting and intermediate rewards by computing an n-step return 
zt that bootstraps n steps into the future from the search value,  
zt = ut+1 + γut+2 + ... + γn−1ut+n + γnνt+n. Final outcomes {lose, draw, win} in 
board games are treated as rewards ut ∈ {−1, 0, +1} occurring at the 
final step of the episode. Specifically, the second objective is to min-
imize the error between the value function vt

k and the value target, 
zt+k. The third objective is to minimize the error between the predicted 
immediate reward r t

k and the observed immediate reward ut+k. Finally, 
an L2 regularization term is also added, scaled by a constant c, leading 
to the overall loss

∑ ∑ ∑l θ l π p l z v l u r c θ( ) = ( , ) + ( , ) + ( , ) + || || , (1)t
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where lp, lv and lr are loss functions for policy, value and reward, respec-
tively. Supplementary Fig. 2 summarizes the equations governing 
how the MuZero algorithm plans, acts and learns. We note that for 
chess, Go and shogi, the same squared error loss as AlphaZero is used 
for rewards and values. A cross-entropy loss was found to be more 
stable than a squared error when encountering rewards and values 
of variable scale in Atari. Cross-entropy was used for the policy loss 
in both cases.
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Fig. 2 | Evaluation of MuZero throughout training in chess, shogi, Go and 
Atari. The x axis shows millions of training steps. For chess, shogi and Go, the y 
axis shows Elo rating, established by playing games against AlphaZero using 
800 simulations per move for both players. MuZero’s Elo is indicated by the 
blue line and AlphaZero’s Elo is indicated by the horizontal orange line. For 
Atari, mean (full line) and median (dashed line) human normalized scores 

across all 57 games are shown on the y axis. The scores for R2D219 (the previous 
state of the art in this domain, based on model-free RL) are indicated by the 
horizontal orange lines. Performance in Atari was evaluated using 50 
simulations every fourth time step, and then repeating the chosen action four 
times, as in previous work39. Supplementary Fig. 1 studies the repeatability of 
training in Atari.

MuZero outperforms R2D2 (best model-free agent at the time)
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• Talvitie & Singh, 2010-2018: build models only in certain parts of the environment,

and predict only certain aspects

• GVFs predict only certain aspects, so do abstract models

• This work: predict only in certain parts of the environment
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Conclusions

• Model-based RL is conceptually appealing as an approach to building
general AI agents

• Some model-based RL agents are starting to deliver on the promise of
comparable or better performance than model-free, with better sample
complexity

• Theoretical results on model-based vs model-free are still largely
inconclusive

• Intuitively, abstract, jumpy and partial models and planning should be
even better

• Lots of open questions in this area of research!

• Using models for continual learning is an important open avenue
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