Beyond Model-Free Reinforcement Learning

Why Going Beyond Model-Free RL?

e Models provide “understanding” of the world (cf physics, causality...)

e Even if some parts of the problem change, others stay the same, which
can help with faster learning

Eg. Reward may change but the layout and dynamics of thee world may
be thee same

e Models can be used to “dream” up new experiences, and use them to
update the value / policy

Dynamic programming-style planning

* Planning proceeds by using the model to look ahead from states,
imagining something about the future

e Each imagining from a state-action pair is called a lookahead

* Then, after one or more lookaheads, something computed at the
leaves is passed back to the starting state to update its stored
policy or value estimate

e This is called a backup m)

» Backups continue forever
= general planning 5

e
)

T
O—er—0O+—0—0

What should the model predict?

e Clearly we need the reward: easy problem, solved by regression
e What about the prediction of the next state?

1. Distribution model: construct a distribution over next states / features

O O

2. Sample model: have the ability to generate sampled next states /
features

O

3. Expectation model: predict the expected next state / feature

|

O

Using a Distribution Model: Value lteration

e Approximates the optimal value function by doing repeated sweeps
through the states:

1. Start with some initial guess, e.g. Vj
2. Repeat:

Vit1(s) < max | 7S + Z P Vi(s) | ,vse€ S

3. Stop when the maximum change between two iterations is smaller
than a desired threshold (the values stop changing)

e One can prove that the error ||V}, — V*|| decreases as ~*

lllustration

Iteration #1 Iteration #2 Iteration #3

e Values propagate backwards from rewarding states

e May take a long time if rewards are sparse, unless we are smart about
sampling states

e Prioritized sweeping (Moore & Atkeson, 1992 and much follow-up work):
sample preferentially predecessors of states that had a large value change

Speeding up: Jumpy (temporally extended) models

with cell-to-cell
primitive actions

with room-to-room
options

lteration #0 Iteration #1 lteration #2

Options framework

e An option o consists of 3 components
— An initiation set of states I, C S (aka precondition)
— A policy my: S x A — [0,1]
To(S, a) is the probability of taking a in s when following the option
— A termination condition 8, : S — [0, 1]:
B(s) is the probability of terminating the option at s

e Eg., robot navigation: if there is no obstacle in front (/,), go forward
(m,) until you get too close to another object (53,)

e Other representations of the termination condition are possible (cf.
Comanici and Precup, 2010)

Cf. Sutton, Precup & Singh, 1999; Precup, 2000

MDP + Options = Semi-Markov Decision Precess

Time ——

MDP ,/\/\/ IState
SMDP @/\/\(

Options —v/\ /\/,
over MDP A

e Introducing options in an MDP induces a related semi-MDP

e Hence all planning and learning algorithms from classical MDPs transfer
directly to options

Cf. Sutton, Precup & Singh, 1999; Precup, 2000

Options framework

Option model has two parts:

— Expected reward r°: for every state, it gives the expected return during
0's execution

— Transition model p°: gives a sub-probability distribution over next
states (reflecting the discount factor « and the option duration)

Models are predictions about the future, conditioned on the option being
executed, i.e. generalized value functions

Easy to learn using temporal-difference-style methods, from a single
stream of experience

Planning with option models is done just like planning with primitives -
no explicit hierarchy

What is needed to do planning with options
e Compositionality: putting models together into larger models

002 — ol | poipos
p°l22 = p°lp“?

If models are compositional, we can reason about the effect of sequential
decisions

e Linear options (Sorg & Singh, 2010): using options with linear
expectation models that respect these conditions

e Compositional planning (Silver & Ciosek, 2012): compute a whole
hierarchy of options using this principle, staring with primitive models
— Solves Towers of Hanoi order of magnitude faster
— Requires number of iterations grows linearly when adding discs, instead

of exponentially

10

Benefits of Options Models

e Planning with option models provides benefits beyond using options to
bias behavior (cf Botvinick & Weinstein, 2014)

(a) 10°

=
~

steps to goal

1 300

11

How can we generate useful options / jumpy models?

Generate a lot of options, then worry about which are useful!

More precisely, suppose we have a large set of landmarks, i.e. states in

the environment, perhaps chosen at random (Mann et al, JAIR'2015)

Suppose we have a rough planner which can get to a landmark from its

vicinity, by solving a deterministic relaxation of the MDP

We use the landmarks to generate options, then use these in approximate

value iteration

12

lllustration of random landmarks

PEVI LAV

1.0 . . 1.0

0.8 ‘ 1 0.8

0.6 | 1 06 @ @]

0.4} ‘ 1 04 _O]

0.2} . 0.2 O @_

04 e | ' ' =S (Sl
1.0 4 0.6

0.0 0.2 0.4 0.6 0.8

0.0 0.2 0. 0.8 1.0

Landmark-based approximate value iteration gets a good solution much faster!

13

Inventory management application

Manage a warehouse that can stock 8 different commodities
At most 500 items can be stored at any given time
Demand is stochastic and depends on time of year

Negative rewards are given for unfulfilled orders and for the cost of
ordered items

Hand-crafted options: order nothing until some threshold is crossed

Primitive actions: specify amount of order for each item

14

Inventory management results

e Comparing a random policy and a 1-step greedy choice with using just
primitives (PFVI) using primitives and hand-crafted options (OFVI),

using “landmarks” (LOFVI) and using landmarks and only computing
values for landmarks states (LAVI)

7000

6000 |-

o
S
(;U 5000
)
o
Q)GJ 4000 |-
e
c.=
34—'
08 Ll 0 0 ot 0 0 0 0 0 6 0 0 0 0 0 0 0 o o
Q2 -« LOFVI(100)
e § ==y e LAVI(100)
¢ 2000} -= OFVI

— PFVI

=0 1-Step Greedy
= Rand i

1000 -

0 5 110 115 20
lteration #

e Randomly generated landmarks perform much better

15

Performance and time evaluation

e Performance of initial and final policy (left) and running time (right)
averaged offer 20 independent runs

7000 —

wW
[=}

6000 -

S~}
ot

(==}
(=}
(=}
T
Do
(=]

4000

15

Performance
]
g

—
[=}

2000

Time (s) per lteration

1000

N3 N \ D
SEENCURSIC N\ N\
N S

NSRS
S &0 S ¥
v NS v v

Q> N\ » R
& ~\ \33
ESARN QQ\\ O o &

e Computing values only at landmark states yields a good policy almost
immediately

e Handcrafted options are better than primitives in the beginning but
slightly worse in the long run but randomly generated landmarks are
much better

16

Dyna (Sutton, 1990)

RL
Igorith

state reward action

world <=—

Dy”a\ world
swa
P model

e Learn a sampling model of the world

value/policy
acting
planning direct
RL
model experlence

model
learning

e Same RL algorithm used for both learning and planning (TD(0), Q-

learning...)

e Planning, learning and execution are all done simultaneously and

asynchronously

17

Special case: Linear Expectation Models

start state vector ()
.. = redicted
transition model P = | P
e next-state vector
reward model b predicted reward

® states are represented by feature vectors
5 — ¢s St — O e R"
® the model is a set of matrix-vector pairs

M = {Fm ba}aEActz'ons expected transition
matrix

E{pi11|os = ¢,ar = a} = Fo¢
E{ris1|¢r = ¢,a; = a} = b, ¢

expected reward
vector

18

Linear Dyna

e Use a linear model and a linear parametrization of the value function

e Note that the features ¢ could be non-linear (eg coming from a convnet)
but they must be fixed

e In this case, value iteration using an expectation model is the same as
using a full model

19

Generalizing Expectation Models: General Value
Functions (GVFs)

Given a cumulant function ¢, state-dependent continuation function -y
and policy 7, the General Value Function v . is defined as:

00 k
/Uw,c,*y<3) = E Z C(Ska Aka Sk+1> H 7<Sz)|St = S, At:oo ~ T
k=t 1=t+1

Cumulant ¢ can output a vector (even a matrix)

Continuation function v maps states to [0,1] (further generalizations are
possible)

Cf. Horde architecture (Sutton et al, 2011); Adam White's thesis;
inspiration from Pandemonium architecture

*

Special case: policy is optimal wrt ¢, v, v,
approximation (UVFA) (Schaul et al, 2015)

- Universal Value Function

20

Expectation Models of Options are GVFs

e The reward model for an option w is defined as:
ro(s) = Eu[r(St, Ar) + (1 = Bu(St41))7w(Se41)[Se = s

e This means the option reward model is a GVF:

— policy is
— cumulant is the environment reward r
— continuation function is v(1 — f3,,)

e Expected option transition model can be similarly written as a GVF

21

Successor Representations

A Successor representation of states

M(s', s?)
1
]

]

-
@) ooal

M(s', s°)

\‘]
1 |(»f
1

goal

goal

e Successor representation (Dayan, 1992): special case when ¢ is a 1-hot encoding of

states
e Stachenfeld et al (Nat. neurosci, 2017): Successor representation is linked to place

cells in hippocampus

22

Successor states and successor features are GVFs

Successor features (Barreto et al, 2017, 2018) are a natural extension of
successor states (Dayan, 1992)

Successor states give the expected occupancy of future states

If states are defined by a feature vector ¢(s), successor features give the
expected, discounted sum of future feature vectors from a state.

In GVF terms, the cumulant is ¢ = ¢, and there is a fixed policy and
discount

Interesting property highlighted in Barreto et al:

v?T,WTC,"y (S) — WTUW,CN (8)

which leads to one-shot computation of new GVFs

23

Using Approximate Models: PlaNet (Hafner et al, 2019)

rJ

r, rz

o

a? 3

1]

r,
3
S1 S2 S:1 S .

T T o T
0. S, o, o, o, o, o, 0,

e Building on world models work by Ha and Schmidhuber (2017)

e Learn a model that tries to fit the observations (using a loss function)

24

PlaNet Planning Process

O o ®
poot f
N
I+Q I+‘ I*C
O o
f ot
\ .
®-1-0 I*O I*Q I*Q

i A

O O Qj

A A T
L - -
1-@— I+Q I*‘

e At planning time, only abstract states are generated

25

Model True Model True

Dreamer (Hafner et al, 2020)

‘ encode images

compute states

%
l
1

predict rewards

‘ reconstruction

Input Images Future Outcomes

1 2 3 4 5 6 10 15 20 25 30 35 40 45 50

26

Value Propagation in Dreamer

encode images

imagine ahead

predict rewards

predict values

27

Dreamer and Planet Results

Model-based {

Bl Dreamer (823) Model-free { mm D4PG (786)
Bl PlaNet (332) 23 days of interaction | mm A3C (243)

28 hours of interaction

UML)

Reward
(== o BN« BN o

b = b [- [[—
28 8B &5 55:237"’ﬁ &E%S Jg°§2%E§S?3§ 3:-;2..»5 a%z%
g2 <3 2 <3 388 £3 2= S =8 e 2 Qa SH wd <P £5 2 20 G &

ZSEUVU=s I =5 > oS X ¢ = = 0 =1 E2 v Gk T
E= Z&n U B2 ¢ 3% 22 55 S ET B £ =5 Ex = 2T Fa E z = £
=2 = = S U - - £ = - E-,‘o;,.x.,_g o S = = T
?m P oe = : U =C" re P> [~ t m g : (5
o U= s = £ Vw o sw;m .= wn

o = [t = =
=] o = ~ A

Model-based methods achieve comparable results to model-free with much less data

28

Using Approximate Models: MuZero (Schrittwieser et al,

Nature, 2020)

po,V pw’v 1

N
f f
I

N
4\
h
m a t+1 m d t+2

©
_*%km
N

e Rather than predict the entire environment, make sure predictions are

accurate for values, rewards and actions

e Values are trained with observed returns, actions to mimic the policy

obtained through search

29

Execution in MuZero

st

l
h
Y

PV «f

1

V)

e Model is rolled forward in Monte Carlo Tree Search-style

30

MuZero Results

| @
[e0]
o
©
[o
= <
b3 K=)
[aV]
=)
dg
o o o o o o
o o o o o
o o o o o
ITo) <~) N —
piemay
. Qe
©
=)
©
8 r S
<
=)
| N
o
o
- Q
B Sk e L T
SR REE =
BB |k R
3 ©
@Iv i R |H o
S [SF DR .
Pl sk R [S
B[Sk R | o
| 28| S ekl ©
B |k e L o
- Q
| ©
o
©
=)
<
=)
[aV]
=)
T o
o o o =) o o
o o o o o
o o o o o
o) <~) N —

o3

Millions of training steps

Millions of training steps Millions of training steps

Millions of training steps

MuZero outperforms R2D2 (best model-free agent at the time)

31

Partial Model Learning (Khetarpal et al, ICML’2020)

Model for left

action is not

aligned with the
environment

— >
+F,

model
Baseline model Affordance model
does not predict
/ anything for right
/ action since no intent
can be completed
+F,
Affordance-aware model
Left action > Right action Igl:ier?l;istligg Model >< Agent position

Estimated Gaussian Model . Estimated Gaussian Model

for Left action

for Right action

e Talvitie & Singh, 2010-2018: build models only in certain parts of the environment,

and predict only certain aspects

e GVFs predict only certain aspects, so do abstract models

e This work: predict only in certain parts of the environment

32

Conclusions

Model-based RL is conceptually appealing as an approach to building
general Al agents

Some model-based RL agents are starting to deliver on the promise of
comparable or better performance than model-free, with better sample
complexity

Theoretical results on model-based vs model-free are still largely
inconclusive

Intuitively, abstract, jumpy and partial models and planning should be
even better

Lots of open questions in this area of research!

Using models for continual learning is an important open avenue

33

