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Reinforcement Learning

Environment

Learning by interaction with a stochastic, unknown environment

Maximizing long-term return allows formulating goals

Agent needs to try actions and observe
teacher/supervision is not necessary

A very natural formulation of learning for intelligence
(cf. Silver, Singh, Precup & Sutton, 2020)
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Reinforcement Learning Can Solve Impressive Tasks

e Successes obtained with extensive simulation data and computation

e Task is clear and specific (win the game)

e More data and more compute lead to better agents (Rich Sutton’s bitter
lesson)



Today’s Perspective




High-Level View of Agent

Agent has one stream of experience (observations, actions, rewards) to
support all learning processes

Focus remains on maximizing return
Agent is “smaller” than the entire environment

— Only has time to travel on a specific trajectory
— Cannot compute arbitrarily fast or remember all the relevant experience
in a replay buffer

Asynchronous learning

— The world moves at its own speed

— Agent has a time scale at which it can perceive, act and learn

— Agent can also choose the time scale at which it updates its
representation



Should We Think This Way?

e Yes!

— Naturalistic perspective: the conditions in which intelligence has
developed in the natural world

— Realistic perspective: the onus is on the agent to do well given its
current circumstances

— Natural for AGlI, but also consistent with real applications like robotics,
health care, energy management...

e Nol

— Are we handicapping ourselves too much?
— Does this perspective go against the Bitter Lesson?

e Next: explore the implications of this approach on algorithmic solutions



Sequential decision making

e At time t, agent receives an observation from set X and can choose an
action from set A (think finite for now)

e Goal of the agent is to maximize long-term return
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Some observations

We usually think of the infinite tree of all possible observations and
actions

Today: focusing on one specific path through the tree

If there is no structure (ie every node is completely different), there is
nothing interesting to learn!

Markovian assumption: trajectories through the tree cluster into
equivalence classes, which we call states

This allows many ways of doing credit assignment: TD(0), TD()),
Monte Carlo

Because we cluster an infinite tree into a finite number of clusters, it
makes sense to make recurrence assumptions: states will be revisited



An example of non-Markovian structure

Linear predictive state representations (Littman et al, 2001, Singh et al,
2004)

Make a systems dynamics matrix, with histories as rows and future
sequences as columns

Assume systems dynamics matrix has finite rank

One can show that POMDPs, k-order Markov models are equivalent to
linear PSRs



“Small Agent” Perspective

Agent’s trajectory will cover a minuscule fraction of all possible
trajectories

Notions of recurrence like in MDPs no longer make sense (the agent is
really transient)

Yet the agent still needs to do as well as possible along its current
trajectory

So it needs to construct a knowledge representation that allows it to
generalize quickly

Agent state: the internal representation used by the agent to predict and
act

Agent state will have to be learned

The representation will inherently be lossy/imperfect



An Evolution of ldeas

Dynamic programming: agent needs to find an optimal policy at all
states

Reinforcement learning: agent focuses on states that are actually
encountered during its experience

This is what allows tackling large environments like Go!

One step further: agent’s learning should enable it to do well in the
future on the trajectory that will be encountered!

Optimality is not an absolute notion, but relative to the agent's
circumstances, available data and capacity

Eg child cooking at home vs chef
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Desirable Algorithmic Properties

e Scalability (a la bitter lesson): the more data and compute are available,
the better performance should be

e Graceful degradation: future performance should be really good if the
agent is in similar situations to what it has seen, and is allowed to

degrade as the situations are increasingly different

e Self-reliance: the agent should be able to learn and understand the world
from its own experience
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Exploration for " Small’ Agents

Every time step of experience matters: goal is cumulative, online return!
The agent does NOT have enough time to visit all nodes!

State coverage, visitation counts and similar measures are no longer
useful

Exploration needs to improve the speed of learning on the agent’s
trajectory

Information-directed sampling is a promising algorithmic path, albeit
difficult computationally at the moment
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Credit Assignment and Generalization

Agent needs to construct its state and decide on a time scale at which
to make decisions

Learning is driven by mismatch between predictions and observations

The raw feedback signal is return, but the agent can choose to learn
about other signals

Demultiplexing: decompose a single signal (return) into a variety of
signals
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Relation to Existing Frameworks: Multi-task RL
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e Suppose the observation x; = (s¢, k;) where k; is the index of a state at
time ¢ and s; is the state inside the task

e The setup can be modelled as sequential decision making in this (much
larger) problem

e Typically the task id is not available to the agent
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Why is multi-task useful?

e Agent can propagate credit to many nodes in the tree! Not just temporal
predecessors

e Task structure exists only in the agent’s head, in order to make credit
assignment easier

e Note that multi-task is the same as regular RL, just in a much larger and
more structured problem
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Hierarchical RL: Options

e A way of behaving (internal policy) and a termination condition

e /mpact on exploration! DIAYN, action repeats, ....
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Hierarchical RL: Temporally extended updates
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e Could be done through a model or through a value update

e /mpact on credit assignment! More efficient credit propagation
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Some observations

The options paper describes options as a way of behaving, which has an
associated model

In that paper, models are built for the options that are executing

In reality, options that execute could (should?) be disconnected from
extended models used for credit assignment!

Exploration options need to make the agent move consistently away from
where it is

Credit assignment should likely be done considering "smarter” options
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General Value Functions (GVFs)

Given a cumulant function ¢, continuation function v and policy 7, the
General Value Function v, . . is defined as:
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Cf. Horde architecture (Sutton et al, 2011); Adam White's thesis;
inspiration from Pandemonium architecture

Special case: policy is optimal wrt ¢, ~, V.~ - Universal Value Function

approximation (UVFA) (Schaul et al, 2015)

Agent can use a multitude of cumulants and time scales!
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Partial Models / GVFs
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e Apply only in specific circumstances

e Predict only specific features / cumulants
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Alternative credit assignment patterns
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e Mixture of remembering history / backward models and using a forward
model to update

e See recent work on backward models (Chelu, Van Hasselt & Precup,
NeurlPS'2020) and expected traces (van Hasselt et al, 2020)
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The Role of Planning

Planning is often used with two (rather different) meanings:

— Allowing an agent to change its mind on the current decision, by using
a model (eg through lookahead search)
Eg model-predictive control
— Changing the value function estimates by using a model
Eg Dyna
Planning should always be useful if the agent’s representation is imperfect
/ limited!

Planning can allow us to recombine existing knowledge zero-shot
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lllustration

e Planning over pre-trained GVFs achieves 75x improvement in sample size
compared to Q-learning
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Conclusion

An agent that is much smaller than its environment will be pressured to
find structure on its current trajectory: continually, online, not striving
for optimality but for gradual improvement.

The structure it builds drives two important computations: exploration
decisions and credit assignment

While agent implementations often link these two computations, they
can and perhaps should be more decoupled

Many of the ingredients needed already exist (information-directed
sampling, GVFs, options, affordances, partial models)
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Looking Ahead

e From a theoretical point of view, we need to formalize the problem
further

Moving away from usual stationarity/recurrence assumptions to fully
transient agents

e From an empirical point of view, we should think of the appropriate
environments

Reconsider reward sparsity as a mark of interesting problems?
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