
Thoughts on Reinforcement Learning for AI

Doina Precup

Reinforcement Learning

• Learning by interaction with a stochastic, unknown environment

• Maximizing long-term return allows formulating goals

• Agent needs to try actions and observe their outcomes,
teacher/supervision is not necessary

• A very natural formulation of learning for intelligence
(cf. Silver, Singh, Precup & Sutton, 2020)

1

Reinforcement Learning Can Solve Impressive Tasks

The Game of Go

~10170 unique positions

~200 moves long

~200 branching factor

~10360 complexity

• Successes obtained with extensive simulation data and computation

• Task is clear and specific (win the game)

• More data and more compute lead to better agents (Rich Sutton’s bitter
lesson)

2

Today’s Perspective

LÈ¡áyÒ�įŘį�ºµò��µÒ¡y®O�¡µ�ºÈ��´�µÒį5�yÈµ¡µ�įLÈº�®�´

Y ¡ÌįÌ�ÇÖ�µÒ¡y®įĘºÅÒ¡´y®ęį���¡Ì¡ºµį´y¬¡µ�įº�Ò�µį
´�yµÌċ

Ɣ ��Ò¡á�®èįÈ�yÌºµįyµ�įÒÈy��Ğº��įÌ ºÈÒįyµ�į
®ºµ�ĞÒ�È´į�ºµÌ�ÇÖ�µ��Ìįyµ�įÅyèĞº��

Ɣ]µ¬µºâµį�ºµ�¡Ò¡ºµÌįŀłįį<���įÒºį�çÅ®ºÈ�į
Ęy�Ò¡á�®èįÌ�yÈ� į�ºÈį¡µ�ºÈ´yÒ¡ºµęį

ż Y �įħâºÈ®�Ĩį¡ÌįÖµ¬µºâµ
ż O�âyÈ�įÌÒÈÖ�ÒÖÈ�įÖµ¬µºâµ
ż "����y�¬į¡Ìįº�Ò�µįÌÅyÈÌ�Ċį�á�µį¡�į¬µºâµ

3

High-Level View of Agent

• Agent has one stream of experience (observations, actions, rewards) to
support all learning processes

• Focus remains on maximizing return

• Agent is “smaller” than the entire environment

– Only has time to travel on a specific trajectory
– Cannot compute arbitrarily fast or remember all the relevant experience

in a replay buffer

• Asynchronous learning

– The world moves at its own speed
– Agent has a time scale at which it can perceive, act and learn
– Agent can also choose the time scale at which it updates its

representation

4

Should We Think This Way?

• Yes!

– Naturalistic perspective: the conditions in which intelligence has
developed in the natural world

– Realistic perspective: the onus is on the agent to do well given its
current circumstances

– Natural for AGI, but also consistent with real applications like robotics,
health care, energy management...

• No!

– Are we handicapping ourselves too much?
– Does this perspective go against the Bitter Lesson?

• Next: explore the implications of this approach on algorithmic solutions

5

Sequential decision making

• At time t, agent receives an observation from set X and can choose an
action from set A (think finite for now)

• Goal of the agent is to maximize long-term return

£8
It
cieat assignment

ft
H v.Exploration
D ⑤
^
O O

-

- - - -
-

6

Some observations

• We usually think of the infinite tree of all possible observations and
actions

• Today: focusing on one specific path through the tree

• If there is no structure (ie every node is completely different), there is
nothing interesting to learn!

• Markovian assumption: trajectories through the tree cluster into
equivalence classes, which we call states

• This allows many ways of doing credit assignment: TD(0), TD(λ),
Monte Carlo

• Because we cluster an infinite tree into a finite number of clusters, it
makes sense to make recurrence assumptions: states will be revisited

7

An example of non-Markovian structure

• Linear predictive state representations (Littman et al, 2001, Singh et al,
2004)

• Make a systems dynamics matrix, with histories as rows and future
sequences as columns

• Assume systems dynamics matrix has finite rank

• One can show that POMDPs, k-order Markov models are equivalent to
linear PSRs

8

“Small Agent” Perspective

• Agent’s trajectory will cover a minuscule fraction of all possible
trajectories

• Notions of recurrence like in MDPs no longer make sense (the agent is
really transient)

• Yet the agent still needs to do as well as possible along its current
trajectory

• So it needs to construct a knowledge representation that allows it to
generalize quickly

• Agent state: the internal representation used by the agent to predict and
act

• Agent state will have to be learned

• The representation will inherently be lossy/imperfect

9

An Evolution of Ideas

• Dynamic programming: agent needs to find an optimal policy at all
states

• Reinforcement learning: agent focuses on states that are actually
encountered during its experience

This is what allows tackling large environments like Go!

• One step further: agent’s learning should enable it to do well in the
future on the trajectory that will be encountered!

• Optimality is not an absolute notion, but relative to the agent’s
circumstances, available data and capacity

• Eg child cooking at home vs chef

10

Desirable Algorithmic Properties

• Scalability (a la bitter lesson): the more data and compute are available,
the better performance should be

• Graceful degradation: future performance should be really good if the
agent is in similar situations to what it has seen, and is allowed to
degrade as the situations are increasingly different

• Self-reliance: the agent should be able to learn and understand the world
from its own experience

11

Exploration for ”Small” Agents

• Every time step of experience matters: goal is cumulative, online return!

• The agent does NOT have enough time to visit all nodes!

• State coverage, visitation counts and similar measures are no longer
useful

• Exploration needs to improve the speed of learning on the agent’s
trajectory

• Information-directed sampling is a promising algorithmic path, albeit
difficult computationally at the moment

12

Credit Assignment and Generalization

• Agent needs to construct its state and decide on a time scale at which
to make decisions

• Learning is driven by mismatch between predictions and observations

• The raw feedback signal is return, but the agent can choose to learn
about other signals

• Demultiplexing: decompose a single signal (return) into a variety of
signals

13

Relation to Existing Frameworks: Multi-task RL

I
¥
a
ai
Q

Dy
-
- - - -

• Suppose the observation xt = 〈st, kt〉 where kt is the index of a state at
time t and st is the state inside the task
• The setup can be modelled as sequential decision making in this (much

larger) problem
• Typically the task id is not available to the agent

14

Why is multi-task useful?

• Agent can propagate credit to many nodes in the tree! Not just temporal
predecessors

• Task structure exists only in the agent’s head, in order to make credit
assignment easier

• Note that multi-task is the same as regular RL, just in a much larger and
more structured problem

15

Hierarchical RL: Options
- - - - I

&
Ex
.

o

if !
' O i

it
. .

!

.

.

-

i

• A way of behaving (internal policy) and a termination condition

• Impact on exploration! DIAYN, action repeats,

16

Hierarchical RL: Temporally extended updates

• Could be done through a model or through a value update

• Impact on credit assignment! More efficient credit propagation

17

Some observations

• The options paper describes options as a way of behaving, which has an
associated model

• In that paper, models are built for the options that are executing

• In reality, options that execute could (should?) be disconnected from
extended models used for credit assignment!

• Exploration options need to make the agent move consistently away from
where it is

• Credit assignment should likely be done considering ”smarter” options

18

General Value Functions (GVFs)

• Given a cumulant function c, continuation function γ and policy π, the
General Value Function vπ,γ,c is defined as:

vπ,c,γ(s) = E

[∞∑
k=t

c(Sk, Ak, Sk+1)

k∏
i=t+1

γ(Si)|St = s,At:∞ ∼ π

]

• Cf. Horde architecture (Sutton et al, 2011); Adam White’s thesis;
inspiration from Pandemonium architecture

• Special case: policy is optimal wrt c, γ, v∗c,γ - Universal Value Function
approximation (UVFA) (Schaul et al, 2015)

• Agent can use a multitude of cumulants and time scales!

19

Partial Models / GVFs

⑥ ⑧ BO

* Et Ha
I • a

o. I.¥¥E¥b
I

-
-
- -

to
*
O OB

• Apply only in specific circumstances

• Predict only specific features / cumulants

20

Alternative credit assignment patterns

Hunterfactual
O O

s d Do

O O

6¥
• Mixture of remembering history / backward models and using a forward

model to update

• See recent work on backward models (Chelu, Van Hasselt & Precup,
NeurIPS’2020) and expected traces (van Hasselt et al, 2020)

21

The Role of Planning

• Planning is often used with two (rather different) meanings:

– Allowing an agent to change its mind on the current decision, by using
a model (eg through lookahead search)
Eg model-predictive control

– Changing the value function estimates by using a model
Eg Dyna

• Planning should always be useful if the agent’s representation is imperfect
/ limited!

• Planning can allow us to recombine existing knowledge zero-shot

22

Illustration

C
O

L
L
O

Q
U

IU
M

P
A

P
E
R

C
O

M
P

U
T
E
R

S
C

IE
N

C
E
S

of arithmetic over features provides a rich interface for the agent
to interact with the environment at a higher level of abstraction
in which decisions correspond to preferences encoded as a vec-
tor w. Next, we discuss how this can be leveraged to speed up the
solution of an RL task.

Fast RL with GPE and GPI

We now describe how to build and use the adaptable policy
⇡ implemented by GPE and GPI. To make the discussion
more concrete, we consider a simple RL environment depicted
in Fig. 4. The environment consists of a 10⇥ 10 grid with four
actions available: A = {up, down, left, right}. The agent occu-
pies one of the grid cells, and there are also 10 objects spread
across the grid. Each object belongs to one of two types. At each
time step t , the agent receives an image showing its position and
the position and type of each object. Based on this information,
the agent selects an action a 2A, which moves it one cell along
the desired direction. The agent can pick up an object by moving
to the cell occupied by it; in this case, it gets a reward defined by
the type of the object. A new object then pops up in the grid, with
both its type and location sampled uniformly at random (more
details are in SI Appendix).

This simple environment can be seen as a prototypical mem-
ber of the class of problems in which GPE and GPI could be
useful. This becomes clear if we think of objects as instances of
(potentially abstract) concepts, here symbolized by their types,
and note that the navigation dynamics are a proxy for any sort
of dynamics that mediate the interaction of the agent with the
world. In addition, despite its small size, the number of possible
configurations of the grid is actually quite large, of the order of
1015. This precludes an exact representation of value functions
and illustrates the need for approximations that inevitably arises
in many realistic scenarios.

By changing the rewards associated with each object type, one
can create different tasks. We will consider that the agent wants
to build a set of SFs that give rise to a generalized policy
⇡ (s; w) that can adapt to different tasks through the vector of
preferences w. This can be either because the agent does not
know in advance the task it will face or because it will face more
than one task.

Defining a Basis for Behavior. In order to build the SFs , the
agent must define two things: features � and a set of policies ⇧.
Since � should be associated with rewarding events, we define

Fig. 4. Depiction of the environment used in the experiments. The shape of
the objects (square or triangle) represents their type; the agent is depicted
as a circle. We also show the first 10 steps taken by 3 policies, ⇡1, ⇡2, and
⇡3, that would perform optimally on tasks w1 = [1, 0], w2 = [0, 1], and w3 =

[1, �1] for any discount factor �� 0.5.

each feature �i as an indicator function signaling whether an
object of type i has been picked up by the agent (i.e., �2R2).
To be precise, we have that �i(s, a, s 0) = 1 if the transition from
state s to state s 0 is associated with the agent picking up an object
of type i , and �i(s, a, s 0) = 0 otherwise. These features induce a
set R� where task rw 2R� is characterized by how desirable or
undesirable each type of object is.

Now that we have defined �, we turn to the question of how to
determine an appropriate set of policies ⇧. We will restrict the
policies in ⇧ to be solutions to tasks rw 2R�. We start with what
is perhaps the simplest choice in this case: a set ⇧12 = {⇡1,⇡2}
whose two elements are solutions to the tasks w1 = [1, 0]> and
w2 = [0, 1]> (henceforth, we will drop the transpose superscript
to avoid clutter). Note that the goal in tasks w1 and w2 is to pick
up objects of one type while ignoring objects of the other type.

We are now ready to compute the SFs induced by our
choices of � and ⇧. In our experiments, we used an algorithm
analogous to Q-learning to compute approximate SFs ̃

⇡1 and
 ̃

⇡2 (pseudocode in SI Appendix). We represented the SFs using
multilayer perceptrons with two hidden layers (33).

The set of SFs ̃ yields a generalized policy ⇡ ̃(s; w) param-
eterized by w. We now evaluate ⇡ ̃ on the task whose goal is
to pick up objects of the first type while avoiding objects of
the second type. Using � defined above, this task can be rep-
resented as rw3(s, a, s 0) =�(s, a, s 0)>w3, with w3 = [1,�1]. We
thus evaluate the generalized policy instantiated as ⇡ ̃(s; w3).

Results are shown in Fig. 5A. As a reference, we also show
the learning curve of Q-learning (23) using the same architec-
ture to directly approximate Q⇡

w3
. GPE and GPI allow one to

compute an instantaneous solution for a new task, without any
learning on the task itself, that is competitive with the policies
found by Q-learning when using around 6⇥ 104 sample tran-
sitions. The performance of the policy ⇡ ̃ synthesized by GPE
and GPI corresponds to more than 70% of the performance
eventually achieved by Q-learning after processing 106 transi-
tions. This is quite an impressive result when we note that ⇡ ̃
managed to avoid objects of the second type even though its con-
stituents policies ⇡1 and ⇡2 were never trained to actively avoid
objects.

We used a total of 106 sample transitions to learn both SFs
 ̃

⇡1 and ̃
⇡2 , which is the same amount of data used by Q-

learning to achieve its final performance. The advantage of doing
the former is that, once we have the SFs, we can use GPE
and GPI to instantaneously compute a solution for any task in
R�. However, how well do GPE and GPI actually perform on
R�? To answer this question, we ran a second round of exper-
iments to assess the generalization of ⇡ ̃ over the entire set
R�. Since this evaluation clearly depends on the set of policies
used, we consider two other sets in addition to ⇧12 = {⇡1,⇡2}.
The new sets are ⇧34 = {⇡3,⇡4} and ⇧5 = {⇡5}, where the poli-
cies ⇡i are solutions to the tasks w3 = [1,�1], w4 = [�1, 1], and
w5 = [1, 1]. We repeated the previous experiment with each pol-
icy set and evaluated the resulting policies ⇡ ̃ over 19 tasks w
evenly spread over the nonnegative quadrants of the unit cir-
cle (tasks in the negative quadrant are uninteresting because
all of the agent must do is to avoid hitting objects). Results
are shown in Fig. 6A. As expected, the generalization ability of
GPE and GPI depends on the set of policies used. Perhaps more
surprising is how well the generalized policy ⇡ ̃ induced by some
of these sets perform across the entire space of tasks R�, some-
times matching the best performance of Q-learning when solving
each task individually.

These experiments show that a proper choice of base policies
⇧ can lead to good generalization over the entire set of tasks
R�. In general, though, it is unclear how to define an appropri-
ate⇧. Fortunately, we can refer to our theoretical understanding
of GPE and GPI to have some guidance. First, we know from

Barreto et al. PNAS Latest Articles | 5 of 9

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

O
ct

ob
er

 1
, 2

02
0

• Planning over pre-trained GVFs achieves 75x improvement in sample size
compared to Q-learning

23

Conclusion

• An agent that is much smaller than its environment will be pressured to
find structure on its current trajectory: continually, online, not striving
for optimality but for gradual improvement.

• The structure it builds drives two important computations: exploration
decisions and credit assignment

• While agent implementations often link these two computations, they
can and perhaps should be more decoupled

• Many of the ingredients needed already exist (information-directed
sampling, GVFs, options, affordances, partial models)

24

Looking Ahead

• From a theoretical point of view, we need to formalize the problem
further

Moving away from usual stationarity/recurrence assumptions to fully
transient agents

• From an empirical point of view, we should think of the appropriate
environments

Reconsider reward sparsity as a mark of interesting problems?

25

