Reinforcement Learning

$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s'} p(s'|s, a) V^{\pi}(s')$$
Nalue func.
Reward
Dynamics
Only observed through samples (experience)

New Topic: Counterfactual / Batch RL

 \mathcal{D} : Dataset of *n* traj.s τ , $\tau \sim \pi_b$

Patient group 1

Outcome: 92

Patient group 2

Outcome: 91

Data Is Censored in that Only Observe Outcomes for Decisions Made

Patient group 1

Outcome: 92 Patient group 2 → ♣ ♣ → Outcome: 91

Need for Generalization

Why Can't We Just Use Q-Learning?

- Q-learning is an off policy RL algorithm
 - Can be used with data different than the state--action pairs would visit under the optimal Q state action values
- But deadly triad of bootstrapping, function approximation and off policy, and can fail

Important in Practice

BCQ figure from Fujimoto, Meger, Precup ICML 2019

Overlap Requirement: Data Must Support Policy Wish to Evaluate

Policy used to gather data Policy wish to evaluate

Probability of intervention

Antibiotics

Mechanical Ventilation

Vasopressor

No Overlap for Vasopressor⇒ Can't Do Off Policy Estimation for Desired Policy

Offline / Batch Reinforcement Learning

 \mathcal{D} : Dataset of n traj.s τ , $\tau \sim \pi_b$

 π : Policy mapping $s \to a$

 S_0 : Set of initial states

Common Tasks: Off Policy Evaluation & Optimization

 \mathcal{D} : Dataset of n traj.s τ , $\tau \sim \pi_b$

 π : Policy mapping $s \rightarrow a$

 S_0 : Set of initial states

Common Assumptions

- Stationary process: Policy will be evaluated in or deployed in the same stationary decision process as the behavior policy operated in to gather data
- Markov
- Sequential ignorability (no confounding)

$$\{Y(A_{1:(t-1)}, a_{t:T}), S_{t'}(A_{1:(t-1)}, a_{t:(t'-1)})\}_{t'=t+1}^T \perp A_t \mid \mathcal{F}_t$$

Overlap

$$\forall (s, a) \ \mu_e(s, a) > 0 \quad \to \mu_b(s, a) > 0$$

 \mathcal{D} : Dataset of n traj.s τ , $\tau \sim \pi_b$

 π : Policy mapping $s \to a$

 S_0 : Set of initial states

Common Tasks: Off Policy Evaluation & Optimization

 \mathcal{D} : Dataset of n traj.s τ , $\tau \sim \pi_b$

 π : Policy mapping $s \to a$

 S_0 : Set of initial states

Off Policy Reinforcement Learning

Off Policy Reinforcement Learning

Batch Off Policy Reinforcement Learning

Batch Off Policy Reinforcement Learning

Common Evaluation Criteria for Off Policy Evaluation

- Computational efficiency
- Performance accuracy

$$orall \mathcal{D}_i \in \{\mathcal{D}_1 \sim \mathcal{M}_1, \mathcal{D}_2 \sim \mathcal{M}_2, \dots, \mathcal{D}_K \sim \mathcal{M}_K\} \quad rac{1}{|
ho|} \sum_{s_0 \in
ho} (\hat{V}_{\mathcal{M}_i}^{\pi}(s_0, \mathcal{D}_i) - V_{\mathcal{M}_i}^{\pi}(s_0))^2$$

$$\lim_{|\mathcal{D}| \to \infty} \frac{1}{|\rho|} \sum_{s_0 \in \rho} \hat{V}^{\pi}(s_0, \mathcal{D}) \to \frac{1}{|\rho|} \sum_{s_0 \in \rho} V^{\pi}(s_0)$$

$$\frac{1}{|\rho|} \sum_{s_0 \in \rho} \hat{V}^{\pi}(s_0, \mathcal{D}) \le \frac{1}{|\rho|} \sum_{s_0 \in \rho} V^{\pi}(s_0) - f(n, \ldots)$$

 \mathcal{D} : Dataset of n traj.s τ , $\tau \sim \pi_b$

 π : Policy mapping $s \rightarrow a$

 S_0 : Set of initial states

Offline / Batch Reinforcement Learning

Tasks
$$\int_{s \in S_0} \hat{V}^\pi(s,\mathcal{D}) ds$$
 arg $\max_{\pi \in \mathcal{H}_i} \int_{s \in S_0} \hat{V}^\pi(s,\mathcal{D}) ds$

- Empirical accuracy
- Consistency
- Robustness
- Asymptotic efficiency
- Finite sample bounds
- Computational cost

- \mathcal{D} : Dataset of n traj.s τ , $\tau \sim \pi_b$
- π : Policy mapping $s \rightarrow a$
- S_0 : Set of initial states
- $\hat{V}^{\pi}(s,\mathcal{D})$: Estimate V(s) w/dataset \mathcal{D}

- Markov?
- Overlap?
- Sequential ignorability?

Batch Policy Optimization: Find a Good Policy That Will Perform Well in the Future

$$\underbrace{\max_{\pi \in \mathcal{H}_i} \max_{\mathcal{H}_i \in \{\mathcal{H}_1, \mathcal{H}_2, ...\}}}_{\text{Policy Optimization}} \underbrace{\int_{s \in S_0}^{\hat{V}^{\pi}(s, \mathcal{D}) ds}}_{\text{Policy Evaluation}}$$

$$\mathcal{H} = \mathcal{M}, \mathcal{V}, \Pi$$
?

 \mathcal{D} : Dataset of n traj.s τ , $\tau \sim \pi_b$

 π : Policy mapping $s \rightarrow a$

 S_0 : Set of initial states

Batch Policy Evaluation: Estimate the Performance of a Particular Decision Policy

$$\underset{\pi \in \mathcal{H}_{i}}{\operatorname{arg}} \underset{\pi \in \mathcal{H}_{i}}{\operatorname{max}} \underset{\mathcal{H}_{i} \in \{\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots\}}{\operatorname{max}} \underbrace{\int_{s \in S_{0}}^{\hat{V}^{\pi}(s, \mathcal{D}) ds}}_{\operatorname{Policy Evaluation}}$$

 \mathcal{D} : Dataset of n traj.s τ , $\tau \sim \pi_b$

 π : Policy mapping $s \rightarrow a$

 S_0 : Set of initial states

Policy Evaluation

Outline

- 1. Introduction and Setting
- 2. Offline batch evaluation using models
- 3. Offline batch evaluation using Q functions
- 4. Offline batch evaluation using importance sampling
- 5. Safe batch RL

Learn Dynamics and Reward Models from Data

 \mathcal{D} : Dataset of n traj.s τ , $\tau \sim \pi_b$

 π : Policy mapping $s \to a$

 S_0 : Set of initial states

Learn Dynamics and Reward Models from Data, Evaluate Policy

$$\hat{r}(s,a)$$
 $a_t \in \mathcal{A}$ $\hat{p}(s'|s,a)$ $\pi_t(s_t) o a_t$

$$V^{\pi} \approx (I - \gamma \hat{P}^{\pi})^{-1} \hat{R}^{\pi}$$

$$P^{\pi}(s'|s) = p(s'|s,\pi(s))$$

 \mathcal{D} : Dataset of \emph{n} traj.s τ , $\tau \sim \pi_\emph{b}$

 π : Policy mapping $s \rightarrow a$

 S_0 : Set of initial states

 $\hat{V}^{\pi}(s,\mathcal{D})$: Estimate V(s) w/dataset \mathcal{D}

Mannor, Simster, Sun, Tsitsiklis 2007

Better Dynamics/Reward Models for Existing Data (Improve likelihood)

Better Dynamics/Reward Models for Existing Data, May **Not** Lead to Better Policies for Future Use \rightarrow Bias due to Model **Misspecification**

Mandel, Liu, Brunskill, Popovic AAMAS 2014

Model Free Value Function Approximation: Fitted Q Evaluation

$$\mathcal{D} = (s_i, a_i, r_i, s_{i+1}) \ \forall i$$

$$\tilde{Q}^{\pi}(s_i, a_i) = r_i + \gamma V_{\theta}^{\pi}(s_{i+1})$$

$$\arg\min_{\theta}\sum_{i}(Q_{\theta}^{\pi}(s_{i},a_{i})- ilde{Q}^{\pi}(s_{i},a_{i}))^{2}$$

 \mathcal{D} : Dataset of n traj.s τ , $\tau \sim \pi_b$

 π : Policy mapping s o a

 S_0 : Set of initial states

 $\hat{V}^{\pi}(s,\mathcal{D})$: Estimate V(s) w/dataset \mathcal{D}

• Fitted Q evaluation, LSTD, ...

Algorithm 3 Fitted Q Evaluation: $FQE(\pi, c)$

Input: Dataset D = $\{x_i, a_i, x_i', c_i\}_{i=1}^n \sim \pi_D$. Function class F.

Policy π to be evaluated

1: Initialize $Q_0 \in \mathcal{F}$ randomly

2: **for** k = 1, 2, ..., K **do**

3: Compute target $y_i = c_i + \gamma Q_{k-1}(x_i', \pi(x_i')) \ \forall i$

4: Build training set $D_k = \{(x_i, a_i), y_i\}_{i=1}^n$

5: Solve a supervised learning problem:

$$Q_k = \operatorname*{arg\,min}_{f \in \mathrm{F}} \frac{1}{n} \sum_{i=1}^n (f(x_i, a_i) - y_i)^2$$

6: end for

Output: $\widehat{C}^{\pi}(x) = Q_K(x, \pi(x)) \quad \forall x$

Let's assume we use a DNN for F.

What is different vs DQN?

Model Free Policy Evaluation

- Challenge: still relies on Markov assumption
- Challenge: still relies on models being well specified or have no computable guarantees if there is misspecification

$$d_F^{\pi} = \sup_{g \in F} \inf_{f \in F} ||f - B^{\pi}g||_{\pi}$$

Batch Policy Optimization: Find a Good Policy That Will Perform Well in the Future

$$\underbrace{\max_{\pi \in \mathcal{H}_i} \max_{\mathcal{H}_i \in \{\mathcal{H}_1, \mathcal{H}_2, \dots\}}}_{\text{Policy Optimization}} \underbrace{\int_{s \in S_0} \hat{V}^{\pi}(s, \mathcal{D}) ds}_{\text{Policy Evaluation}}$$

$$\mathcal{H} = \mathcal{M}, \mathcal{V}, \Pi$$
?

Today will not be a comprehensive overview, but instead highlight some of the challenges involved & some approaches with desirable statistical properties convergence, sample efficiency & bounds

 $\mid \mathcal{D}$: Dataset of n traj.s au , $au \sim \pi_b$

 π : Policy mapping $s \to a$

 S_0 : Set of initial states

Policy Optimization: Find Good Policy to Deploy

$$\arg\max_{\pi\in\mathcal{H}_i} \max_{\mathcal{H}_i\in\{\mathcal{H}_1,\mathcal{H}_2,...\}} \int_{s\in S_0} \hat{V}^{\pi}(s,\mathcal{D}) ds$$

$$\mathcal{H} = \mathcal{M}, \mathcal{V}, \Pi$$
?

 \mathcal{D} : Dataset of n traj.s au, $au \sim \pi_b$

 π : Policy mapping $s \rightarrow a$

 S_0 : Set of initial states

Learn Dynamics and Reward Models from Data, Plan

$$\hat{V}^*(s) = \max_{a} \hat{r}(s, a) + \gamma \sum_{s'} \hat{p}(s'|s, a) \hat{V}^*(s')$$

Model Free Value Function Approximation: Fitted Q Iteration

$$\mathcal{D} = (s_i, a_i, r_i, s_{i+1}) \ \forall i$$

$$(\mathcal{T}f)(s,a) := R(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)}[V_f(s')]$$

 \mathcal{D} : Dataset of n traj.s τ , $\tau \sim \pi_b$

 π : Policy mapping $s \to a$

 S_0 : Set of initial states

Standard Assumptions for Off Policy / Counterfactual Estimation & Optimization

- Overlap
 - Have to take all actions that target policy would take
 - In infinite data / finite data
- No confounding

 \mathcal{D} : Dataset of n traj.s τ , $\tau \sim \pi_b$

 π : Policy mapping $s \rightarrow a$

 S_0 : Set of initial states

No Overlap for Vasopressor⇒ Can't Do Off Policy Estimation for Desired Policy

Limitations of Prior Work

- Typically assume overlap
 - Off policy estimation: for policy of interest
 - Off policy optimization: for all policies including optimal one (see concentrability assumption in batch RL)
- Unlikely to be true in many settings
- Many real datasets don't include complete random exploration
- Assuming overlap when it's not there can be a problem:
 - We can end up with a policy with estimated high performance, but actually does poorly when deployed

Surprise!

Agent orange and agent blue are trained with...

1. The same off-policy algorithm (DDPG).

2. The same dataset.

The Difference?

- 1. Agent orange: Interacted with the environment.
 - Standard RL loop.
 - Collect data, store data in buffer, train, repeat.

- 2. Agent blue: Never interacted with the environment.
 - Trained with data collected by agent orange concurrently.

- 1. Trained with the same off-policy algorithm.
- 2. Trained with the same dataset.
- 3. One interacts with the environment. One doesn't.

Off-policy deep RL fails when truly off-policy.

Value Predictions

$$Q(s,a) \leftarrow r + \gamma Q(s',a')$$

$$Q(s,a) \leftarrow r + \gamma Q(s',a')$$

- 1. $(s, a, r, s') \sim Dataset$
- 2. $a' \sim \pi(s')$

$$Q(s,a) \leftarrow r + \gamma Q(s',a')$$

$$(s',a') \notin Dataset \rightarrow Q(s',a') = \mathbf{bad}$$

 $\rightarrow Q(s,a) = \mathbf{bad}$

$$Q(s,a) \leftarrow r + \gamma Q(s',a')$$

$$(s',a') \notin Dataset \rightarrow Q(s',a') = \mathbf{bad}$$

 $\rightarrow Q(s,a) = \mathbf{bad}$

$$Q(s,a) \leftarrow r + \gamma Q(s',a')$$

$$(s',a') \notin Dataset \rightarrow Q(s',a') = \mathbf{bad}$$

 $\rightarrow Q(s,a) = \mathbf{bad}$

Attempting to evaluate π without (sufficient) access to the (s, a) pairs π visits.

Batch-Constrained Reinforcement Learning

Only choose π such that we have access to the (s, a) pairs π visits.

Batch-Constrained Reinforcement Learning

- 1. $a \sim \pi(s)$ such that $(s, a) \in Dataset$.
- 2. $a \sim \pi(s)$ such that $(s', \pi(s')) \in Dataset$.
- 3. $a \sim \pi(s)$ such that Q(s, a) is maxed.

Batch-Constrained Deep Q-Learning (BCQ)

First imitate dataset via generative model:

$$G(a|s) \approx P_{Dataset}(a|s).$$

 $\pi(s) = \operatorname{argmax}_{a_i} Q(s, a_i)$, where $a_i \sim G$ (I.e. select the best action that is likely under the dataset)

(+ some additional deep RL magic)

