Reinforcement Learning

St, at)
St € S ‘

’/Tt(St — dt

atEA

VT(s) = rls,7(s))+1' > p(s'ls. a) V7(s)

' S/ TV
Value func. Reward Dynamics

| |

Only observed through samples (experience)




New Topic: Counterfactual / Batch RL

5t at)
st €8 ‘

’/Tt(St — dt

atE.A

D: Dataset of ntraj.s 7, 7 ~ mp
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Data Is Censored in that Only Observe Outcomes for Decisions Made

Patient group 1 = .z~. @A =  Qutcome: 92

- :
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Need for Generalization

b= @A =  Outcome: 92

B2 B2 ™  Outcome: 91

@ k m) Outcome: 85
o b ?
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Why Can’t We Just Use Q-Learning?

e Q-learning is an off policy RL algorithm
o Can be used with data different than the state--action pairs
would visit under the optimal Q state action values

e But deadly triad of bootstrapping, function approximation and off
policy, and can falil

16



Important in Practice
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Overlap Requirement: Data Must Support Policy
Wish to Evaluate

Policy used to gather data

Probability of

) : Policy wish to evaluate
intervention

Antibiotics Mechanical \asopressor
Ventilation
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No Overlap for Vasopressor= Can'’t Do Off Policy
Estimation for Desired Policy

.

Probability of

) : Policy wish to evaluate
intervention

Antibiotics Mechanical \asopressor
Ventilation 20



Offline / Batch Reinforcement Learning

D: Dataset of n traj.s 7, 7 ~ mp

m: Policy mapping s — a

So: Set of initial states

V7(s,D): Estimate V(s) w/dataset D

Tasks

Assumptions

Evaluation
Criteria

22



Common Tasks: Off Policy Evaluation & Optimization

/ V7 (s,D)ds
Tasks s€So
arg max / VW(S, D)ds
m€Hi  Jses, Evaluation
Criteria

Assumptions

D: Dataset of n traj.s 7, 7 ~ mp

m: Policy mapping s — a

So: Set of initial states

V7(s,D): Estimate V(s) w/dataset D




Common Assumptions

e Stationary process: Policy will be evaluated in or deployed in the same
stationary decision process as the behavior policy operated in to gather data
e Markov

e Sequential ignorability (no confounding)
{Y (A1.(t-1), aer), Sp(Ar.—1)s Qr—1)) Yomppr L As | F

e Overlap
V(s,a) pe(s,a) >0 — pp(s,a) > 0

D: Dataset of n traj.s 7, 7 ~ mp

m: Policy mapping s — a

So: Set of initial states

V™(s,D): Estimate V(s) w/dataset D
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Common Tasks: Off Policy Evaluation & Optimization

/ V7 (s,D)ds
Tasks s€So
arg max / VW(S, D)ds
m€Hi  Jses, Evaluation
Criteria

Assumptions

D: Dataset of n traj.s 7, 7 ~ mp

m: Policy mapping s — a

So: Set of initial states

V7(s,D): Estimate V(s) w/dataset D




Off Policy Reinforcement Learning

The 3D space of
all value functions

Wy The subspace of all value functions representable as vy,

A

Figure from Sutton & Barto 2018
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Off Policy Reinforcement Learning

The 3D space of
all value functions

wy The subspace of all value functions representable as vy,

Figure from Sutton & Barto 2018



Batch Off Policy Reinforcement Learning

e

The 3D space of )
all value functions 7w Uw

v

Wy The subspace of all value functions representable as v, 1‘_4 ‘

A

Figure from Sutton & Barto 2018
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Batch Off Policy Reinforcement Learning
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Common Evaluation Criteria for Off Policy Evaluation

e Computational efficiency
e Performance accuracy

VD; € {D1 ~ M1,Dy ~ May,...,Dg ~ Mk} r |Z VM (50, Di)—Vyy, (30))

so€Ep
lim — Vﬂ- 80, Vﬂ- 80
D] =00 | zezp Ipl OEE:,,
ol Z G |p| Z V7 (%) )

So€Ep So€Ep

D: Dataset of n traj.s 7, 7 ~ mp

m: Policy mapping s — a

So: Set of initial states

V7(s,D): Estimate V(s) w/dataset D




Offline / Batch Reinforcement Learning

/ V™ (s, D)ds
Tasks s€So

arg max / V™ (s, D)ds
s€ Sy

Empirical accuracy
Consistency
Robustness
Asymptotic efficiency
Finite sample bounds
Computational cost

TEH, Evaluation

Criteria

Assumptions

e Markov?
e Overlap?
e Sequential ignorability?

D: Dataset of n traj.s 7, 7 ~ mp
m: Policy mapping s — a

So: Set of initial states
V7(s,D): Estimate V(s) w/dataset D 31




Batch Policy Optimization: Find a Good Policy That Will
Perform Well in the Future

arg max max / V7 (s, D)ds
w€H; Hie{Hi,Ho,...} s€Sy

Policy Optimization Policy Evaluation
H=M,V, 17

D: Dataset of ntraj.s 7, 7 ~ mp

m: Policy mapping s — a

So: Set of initial states

V™ (s, D): Estimate V(s) w/dataset D
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Batch Policy Evaluation: Estimate the Performance of a
Particular Decision Policy

/ V™ (s, D)ds
SESy

\ - 7
~~

Policy Evaluation

D: Dataset of ntraj.s 7, 7 ~ mp

m: Policy mapping s — a

So: Set of initial states

V™ (s, D): Estimate V(s) w/dataset D
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Policy Evaluation
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Thomas, Philip, Georgios Theocharous, and Mohammad Ghavamzadeh. "High-confidence off-policy evaluation." In Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 29, no. 1. 2015.



Outline

Introduction and Setting

Offline batch evaluation using models

Offline batch evaluation using Q functions

Offline batch evaluation using importance sampling
Safe batch RL

akrowbd-~
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Learn Dynamics and Reward Models from Data

(s, a) r
p(s'ls, a) ‘

7Tt(5t — dt

81—6./4

D: Dataset of ntraj.s 7, 7 ~ mp

m: Policy mapping s — a

So: Set of initial states

V7™ (s, D): Estimate V(s) w/dataset D

39




Learn Dynamics and Reward Models from Data, Evaluate Policy

(s, a)

dt € ./4

p(s’[s, a) ‘

’/Tt(St — dt

(V44 = (I — ,}/ﬁ'/r)—l /,-_\\’W D: Dataset of n traj.s 7, 7 ~ mp
m: Policy mapping s — a
So: Set of initial states

PW(S,|S) — p(S’lS, 7T(S)) \A/O”(s,D): Estimate V/(s) w/dataset D

e Mannor, Simster, Sun, Tsitsiklis 2007 40




Better Dynamics/Reward Models for Existing Data (Improve
likelihood)

1.0

0.8t

o
o

Normalized score
©
Py
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Log-likelihood
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Better Dynamics/Reward Models for Existing Data, May Not Lead to
Better Policies for Future Use — Bias due to Model Misspecification

1.0

0.8f

o
o

Normalized score
o
Py

0.2f

- Unbiased Reward Estimator )
L Mandel, Liu,
Log-likelihood

Brunskill, Popovic
AAMAS 2014 4,

0.0 .
5-State 10-State 15-State 20-State



Model Free Value Function Approximation: Fitted Q Evaluation

D = (Siaaiariasi—i—l) Vi

~

Q™ (siyai) = ri+~vVy(sit1)

argming Y . ( Qg (si, ai) — @W(Si, ai))?

D: Dataset of ntraj.s 7, 7 ~ mp
m: Policy mapping s — a
So: Set of initial states

~

V7(s,D): Estimate V(s) w/dataset D

e Fitted Q evaluation, LSTD, ...
45



Algorithm 3 Fitted Q Evaluation: FQE(, ¢)

Input: Dataset D = {z;, a;, z;,c; };—; ~ 7p. Function class F.
Policy 7 to be evaluated
1: Initialize Q)o € F randomly
2: fork=1,2,..., K do
3:  Compute target y; = ¢; + YQr—1(x;, w(x;)) Vi
4:  Build training set Dx, = {(z;, a:), ¥i }ie1
5 Solve a supervised learning problem:

Qrx = ar% Igin % Z?:1(f($z', a;) — yz‘)z
(=

6: end for
Output: C" () = Qk(z,7(x)) Vz

Let’s assume
we use a DNN
for F.

What is
different vs
DQN?

Le, H., Voloshin, C., & Yue, Y. (2019, May). Batch policy learning under constraints. In International Conference on Machine Learning

46



Model Free Policy Evaluation

e Challenge: still relies on Markov assumption
e Challenge: still relies on models being well specified or have no computable
guarantees if there is misspecification

d%. = sup inf — B™gl|
F o= supinf|If — Bl

48



Batch Policy Optimization: Find a Good Policy That Will

Perform Well in the Future

arg max max / V™ (s,D)ds
TEH; H;E{Hl,Hg,...} s€Sy
Policy Optimization Policy Evaluation

H=M,V, 7

e Today will not be a comprehensive overview, but instead highlight some
of the challenges involved & some approaches with desirable statistical
properties convergence, sample efficiency & bounds

D: Dataset of ntraj.s 7, 7 ~ mp
m: Policy mapping s — a
So: Set of initial states

~

V7(s,D): Estimate V(s) w/dataset D




Policy Optimization: Find Good Policy to Deploy

arg max max / V™(s,D)ds
n€H; H;e{H1,Ho,...} s€So

H=M,V, 7

D: Dataset of ntraj.s 7, 7 ~ mp

m: Policy mapping s — a

So: Set of initial states

V™ (s, D): Estimate V(s) w/dataset D




Learn Dynamics and Reward Models from Data, Plan

(s, a) r
p(s'ls, a) ‘

’/Tt(St — dt

atE.A

V*(s) = max (s, a) + v Z A(s'|s,a)V*(s')

S/



Model Free Value Function Approximation: Fitted Q Iteration

D = (Siaaiariasi—{—l) Vi

(Tf)(87 a) = R(S’ CL) T ,Y]ES’NP(S,G,) [Vf (S,)]

D: Dataset of ntraj.s 7, 7 ~ mp

m: Policy mapping s — a

So: Set of initial states

V™ (s, D): Estimate V(s) w/dataset D




Standard Assumptions for Off Policy / Counterfactual
Estimation & Optimization

e Overlap
o Have to take all actions that target policy would take
o Ininfinite data / finite data

e No confounding

D: Dataset of n traj.s 7, 7 ~ mp

m: Policy mapping s — a

So: Set of initial states

V7™ (s, D): Estimate V(s) w/dataset D




No Overlap for Vasopressor= Can'’t Do Off Policy
Estimation for Desired Policy

.

Probability of

) : Policy wish to evaluate
intervention

Antibiotics Mechanical \asopressor
Ventilation



Limitations of Prior Work

Typically assume overlap

o Off policy estimation: for policy of interest

o Off policy optimization: for all policies including optimal one
(see concentrability assumption in batch RL)

Unlikely to be true in many settings

Many real datasets don’t include complete random exploration

Assuming overlap when it's not there can be a problem:

o We can end up with a policy with estimated high performance,
but actually does poorly when deployed
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Surprise!

Agent orange and agent blue are trained with...
1. The same off-policy algorithm (DDPG).

2. The same dataset.



The Difference?

1. Agent orange: Interacted with the environment.

e Standard RL loop.
* Collect data, store data in buffer, train, repeat.

2. Agent blue: Never interacted with the environment.
* Trained with data collected by agent orange concurrently.



1. Trained with the same off-policy algorithm.

2. Trained with the same dataset.
3. One interacts with the environment. One doesn’t.



Off-policy deep RL fails when truly off-policy.



Estimated Value

Value Predictions
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Extrapolation Error

Q(s,a) «r+yQ(s,a’)



Extrapolation Error

Q(s,a) <« r +vyQ(s,a’)
Rl

GIVEN GENERATED



Extrapolation Error

Q(s,a) «r+yQ(s,a’)

1. (s,a,7,s')~Dataset
2. a ~m(s")



Extrapolation Error

Q(s,a) «r+yQ(s,a’)

(s’,a’) € Dataset —» Q(s’,a’) = bad
— Q(s,a) = bad



Extrapolation Error

Q(s,a) «r+yQ(s,a’)

(s’,a’) € Dataset - Q(s’,a’) = bad
— Q(s,a) = bad



Extrapolation Error

Q(s,a) <« r +yQ(s,a’)

(s’,a’) € Dataset - Q(s’,a’) = bad
— Q(s,a) = bad



Extrapolation Error

Attempting to evaluate m without (sufficient)
access to the (s, a) pairs T visits.



Batch-Constrained Reinforcement Learning

Only choose i such that we have access to
the (s, a) pairs T visits.



Batch-Constrained Reinforcement Learning

1. a~m(s) such that (s,a) € Dataset.
2. a~m(s) such that (S’,ﬂ(s’)) € Dataset.
3. a~m(s) such that Q(s, a) is maxed.




Batch-Constrained Deep Q-Learning (BCQ)

First imitate dataset via generative model:
G(a‘s) ~ PDataset(a‘S)-

n(s) = argmax,, Q (s, a;), where a;~G
(l.e. select the best action that is likely under the dataset)

(+ some additional deep RL Magic)
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