
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Chapter 8: Planning and Learning

To think more generally about uses of environment models
Integration of (unifying) planning, learning, and execution
“Model-based reinforcement learning”

Objectives of this chapter:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

DP with Distribution models
In Chapter 4, we assumed access to a model of the world

These models describe all possibilities and their
probabilities
We call them Distribution models

– e.g., p(s’, r | s, a) for all s, a, s’, r
In Dynamic Programing we sweep the states:

in each state we consider all the possible rewards and next state
values
the model describes the next states and rewards and their
associated probabilities
using these values to update the value function

In Policy Iteration, we then improve the policy using the
computed value function

2

Paths to a policy

Model

Value
function

Policy

Experience

Direct RL
methods

Direct
planning

Greedification

Model
learning

SimulationEnvironmental
interaction

Model-based RL

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Sample Models

Model: anything the agent can use to predict how the
environment will respond to its actions
Sample model, a.k.a. a simulation model

produces sample experiences for given s, a
– sampled according to the probabilities

allows reset, exploring starts
often much easier to come by

Both types of models can be used mimic or simulate
experience: to produce hypothetical experience

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

Models

Consider modeling the sum of two dice
A distribution model would produce all possible sums
and their probabilities of occurring
A sample model would produce an individual sum
drawn according to the correct probability distribution

When we solved the Gambler’s problem with value
iteration, we used the distribution model
When you solved the Gambler’s problem with Monte-
Carlo, you implemented a sample model in your
environment code

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Planning: any computational process that uses a model to
create or improve a policy

We take the following (unusual) view:
update value functions using both real and simulated
experience
all state-space planning methods involve computing
value functions, either explicitly or implicitly
they all apply updates from simulated experience

6

Planning

132 CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

model produces a possible transition, and a distribution model generates all possible transitions weighted
by their probabilities of occurring. Given a starting state and a policy, a sample model could produce
an entire episode, and a distribution model could generate all possible episodes and their probabilities.
In either case, we say the model is used to simulate the environment and produce simulated experience.

The word planning is used in several di↵erent ways in di↵erent fields. We use the term to refer to any
computational process that takes a model as input and produces or improves a policy for interacting
with the modeled environment:

planning
model policy

In artificial intelligence, there are two distinct approaches to planning according to our definition.
State-space planning , which includes the approach we take in this book, is viewed primarily as a search
through the state space for an optimal policy or an optimal path to a goal. Actions cause transitions
from state to state, and value functions are computed over states. In what we call plan-space planning ,
planning is instead a search through the space of plans. Operators transform one plan into another, and
value functions, if any, are defined over the space of plans. Plan-space planning includes evolutionary
methods and “partial-order planning,” a common kind of planning in artificial intelligence in which the
ordering of steps is not completely determined at all stages of planning. Plan-space methods are di�cult
to apply e�ciently to the stochastic sequential decision problems that are the focus in reinforcement
learning, and we do not consider them further (but see, e.g., Russell and Norvig, 2010).

The unified view we present in this chapter is that all state-space planning methods share a common
structure, a structure that is also present in the learning methods presented in this book. It takes the
rest of the chapter to develop this view, but there are two basic ideas: (1) all state-space planning
methods involve computing value functions as a key intermediate step toward improving the policy, and
(2) they compute value functions by update operations applied to simulated experience. This common
structure can be diagrammed as follows:

values
backups

model
simulated
experience

policy
updates

Dynamic programming methods clearly fit this structure: they make sweeps through the space of
states, generating for each state the distribution of possible transitions. Each distribution is then used
to compute a backed-up value (update target) and update the state’s estimated value. In this chapter we
argue that various other state-space planning methods also fit this structure, with individual methods
di↵ering only in the kinds of updates they do, the order in which they do them, and in how long the
backed-up information is retained.

Viewing planning methods in this way emphasizes their relationship to the learning methods that
we have described in this book. The heart of both learning and planning methods is the estimation of
value functions by backing-up update operations. The di↵erence is that whereas planning uses simulated
experience generated by a model, learning methods use real experience generated by the environment.
Of course this di↵erence leads to a number of other di↵erences, for example, in how performance is
assessed and in how flexibly experience can be generated. But the common structure means that many
ideas and algorithms can be transferred between planning and learning. In particular, in many cases a
learning algorithm can be substituted for the key update step of a planning method. Learning methods
require only experience as input, and in many cases they can be applied to simulated experience just
as well as to real experience. The box below shows a simple example of a planning method based
on one-step tabular Q-learning and on random samples from a sample model. This method, which
we call random-sample one-step tabular Q-planning, converges to the optimal policy for the model
under the same conditions that one-step tabular Q-learning converges to the optimal policy for the real
environment (each state–action pair must be selected an infinite number of times in Step 1, and ↵ must
decrease appropriately over time).

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Planning Cont.

Classical DP methods are state-space planning methods
Heuristic search methods are state-space planning methods
A planning method based on Q-learning:
8.2. DYNA: INTEGRATING PLANNING, ACTING, AND LEARNING 133

Random-sample one-step tabular Q-planning

Do forever:
1. Select a state, S 2 S, and an action, A 2 A(s), at random
2. Send S, A to a sample model, and obtain

a sample next reward, R, and a sample next state, S0

3. Apply one-step tabular Q-learning to S, A, R, S0:
Q(S, A) Q(S, A) + ↵

⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

In addition to the unified view of planning and learning methods, a second theme in this chapter
is the benefits of planning in small, incremental steps. This enables planning to be interrupted or
redirected at any time with little wasted computation, which appears to be a key requirement for
e�ciently intermixing planning with acting and with learning of the model. Planning in very small
steps may be the most e�cient approach even on pure planning problems if the problem is too large to
be solved exactly.

8.2 Dyna: Integrating Planning, Acting, and Learning

When planning is done on-line, while interacting with the environment, a number of interesting issues
arise. New information gained from the interaction may change the model and thereby interact with
planning. It may be desirable to customize the planning process in some way to the states or decisions
currently under consideration, or expected in the near future. If decision making and model learning
are both computation-intensive processes, then the available computational resources may need to be
divided between them. To begin exploring these issues, in this section we present Dyna-Q, a simple
architecture integrating the major functions needed in an on-line planning agent. Each function appears
in Dyna-Q in a simple, almost trivial, form. In subsequent sections we elaborate some of the alternate
ways of achieving each function and the trade-o↵s between them. For now, we seek merely to illustrate
the ideas and stimulate your intuition.

Within a planning agent, there are at least two roles for real experience: it can be used to improve the
model (to make it more accurately match the real environment) and it can be used to directly improve
the value function and policy using the kinds of reinforcement learning methods we have discussed in
previous chapters. The former we call model-learning , and the latter we call direct reinforcement learning
(direct RL). The possible relationships between experience, model, values, and policy are summarized
in Figure 8.1. Each arrow shows a relationship of influence and presumed improvement. Note how
experience can improve value functions and policies either directly or indirectly via the model. It is the
latter, which is sometimes called indirect reinforcement learning, that is involved in planning.

planning

value/policy

experiencemodel

model
learning

acting

direct
RL

Figure 8.1: Relationships among learning, planning, and acting.

Environment program
Experiment program
Agent program

Paths to a policy

Model

Value
function

Policy

Experience

Direct RL
methods

Direct
planning

Greedification

Model
learning

SimulationEnvironmental
interaction

Dyna

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

9

Learning, Planning, and Acting

Two uses of real experience:
model learning: to improve
the model
direct RL: to directly
improve the value function
and policy

Improving value function and/or
policy via a model is sometimes
called indirect RL. Here, we
call it planning.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

10

Direct (model-free) vs. Indirect (model-based) RL

Indirect methods:
make fuller use of
experience: get better
policy with fewer
environment
interactions

Direct methods
simpler
not affected by bad
models

But they are very closely related and can be usefully combined:

planning, acting, model learning, and direct RL can occur
simultaneously and in parallel

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

The Dyna Architecture

Agent

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

The Dyna-Q Algorithm

model learning

planning

direct RL

8.2. INTEGRATING PLANNING, ACTING, AND LEARNING 189

Initialize Q(s, a) and Model(s, a) for all s 2 S and a 2 A(s)
Do forever:

(a) S current (nonterminal) state

(b) A "-greedy(S,Q)

(c) Execute action A; observe resultant reward, R, and state, S0

(d) Q(S,A) Q(S,A) + ↵[R+ �maxaQ(S0, a)�Q(S,A)]
(e) Model(S,A) R,S0

(assuming deterministic environment)

(f) Repeat n times:

S random previously observed state

A random action previously taken in S
R, S0 Model(S,A)
Q(S,A) Q(S,A) + ↵[R+ �maxaQ(S0, a)�Q(S,A)]

Figure 8.4: Dyna-Q Algorithm. Model(s, a) denotes the contents of the model
(predicted next state and reward) for state–action pair s, a. Direct reinforce-
ment learning, model-learning, and planning are implemented by steps (d),
(e), and (f), respectively. If (e) and (f) were omitted, the remaining algorithm
would be one-step tabular Q-learning.

Example 8.1: Dyna Maze Consider the simple maze shown inset in
Figure 8.5. In each of the 47 states there are four actions, up, down, right, and
left, which take the agent deterministically to the corresponding neighboring
states, except when movement is blocked by an obstacle or the edge of the
maze, in which case the agent remains where it is. Reward is zero on all
transitions, except those into the goal state, on which it is +1. After reaching
the goal state (G), the agent returns to the start state (S) to begin a new
episode. This is a discounted, episodic task with � = 0.95.

The main part of Figure 8.5 shows average learning curves from an ex-
periment in which Dyna-Q agents were applied to the maze task. The initial
action values were zero, the step-size parameter was ↵ = 0.1, and the explo-
ration parameter was " = 0.1. When selecting greedily among actions, ties
were broken randomly. The agents varied in the number of planning steps,
n, they performed per real step. For each n, the curves show the number of
steps taken by the agent in each episode, averaged over 30 repetitions of the
experiment. In each repetition, the initial seed for the random number gen-
erator was held constant across algorithms. Because of this, the first episode
was exactly the same (about 1700 steps) for all values of n, and its data are
not shown in the figure. After the first episode, performance improved for all
values of n, but much more rapidly for larger values. Recall that the n = 0
agent is a nonplanning agent, utilizing only direct reinforcement learning (one-
step tabular Q-learning). This was by far the slowest agent on this problem,
despite the fact that the parameter values (↵ and ") were optimized for it. The

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

A simple maze: problem description

47 states, 4 actions, deterministic dynamics
Obstacles and walls
Rewards are 0 except +1 for transition into goal state
γ = 0.95, discounted episodic task

Agent parameters:
α = 0.1, ϵ = 0.1
Initial action-values were all zero

Let’s compare one-step tabular Q-learning and Dyna-Q
with different values of n

13

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

Dyna-Q on a Simple Maze

rewards = 0 until goal, when =1

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

Dyna-Q Snapshots: Midway in 2nd Episode

S

G

S

G

WITHOUT PLANNING (N=0) WITH PLANNING (N=50)n n

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

The conflict between exploration and exploitation

Exploration in planning: trying actions that improve the
model

Make it more accurate
Make it a better match with the environment
Proactively discover when the model is wrong

Exploitation: behaving optimally with respect to the
current model

Simple heuristics can be effective

23

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Prioritizing Search Control

Consider the second episode in the Dyna maze
The agent has successfully reached the goal once…

In larger problems, the number of states is so large that
unfocused planning would be extremely inefficient

24

Prioritized Sweeping
‣ Consider the second episode, with Dyna-Q (using

one-step Q-learning)
- direct RL part only updates the value of the
transition leading into the goal

- if the problem is large, unfocused planning might
be extremely inefficient178 CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

S

G

S

G

WITHOUT PLANNING (N=0) WITH PLANNING (N=50)n n

Figure 8.6: Policies found by planning and nonplanning Dyna-Q agents halfway through
the second episode. The arrows indicate the greedy action in each state; if no arrow is shown
for a state, then all of its action values were equal. The black square indicates the location
of the agent.

agent took about 25 episodes to reach ("-)optimal performance, whereas the n = 5
agent took about five episodes, and the n = 50 agent took only three episodes.

Figure 8.6 shows why the planning agents found the solution so much faster than
the nonplanning agent. Shown are the policies found by the n = 0 and n = 50
agents halfway through the second episode. Without planning (n = 0), each episode
adds only one additional step to the policy, and so only one step (the last) has been
learned so far. With planning, again only one step is learned during the first episode,
but here during the second episode an extensive policy has been developed that by
the episode’s end will reach almost back to the start state. This policy is built by
the planning process while the agent is still wandering near the start state. By the
end of the third episode a complete optimal policy will have been found and perfect
performance attained.

In Dyna-Q, learning and planning are accomplished by exactly the same algorithm,
operating on real experience for learning and on simulated experience for planning.
Because planning proceeds incrementally, it is trivial to intermix planning and act-
ing. Both proceed as fast as they can. The agent is always reactive and always
deliberative, responding instantly to the latest sensory information and yet always
planning in the background. Also ongoing in the background is the model-learning
process. As new information is gained, the model is updated to better match real-
ity. As the model changes, the ongoing planning process will gradually compute a
di↵erent way of behaving to match the new model.

Exercise 8.1 The nonplanning method looks particularly poor in Figure 8.6 because
it is a one-step method; a method using eligibility traces would do better. Do you
think an eligibility trace method could do as well as the Dyna method? Explain why
or why not.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Large maze and random search control

25

Prioritized Sweeping

S

G

S

G

0 47 94 188 376 752 1504 3008 6016
10

2

3

4

5

6

7

10

10

10

10

10

10

No. States

No
. B

ac
ku

ps
 U

nt
il

O
pt

im
al

 S
ol

ut
io

n

Random Dyna

Largest−1st Dyna

Focused Dyna

10 100 1000 10000 100000 1000000

10000

8000

6000

4000

2000

53

Random Dyna

Largest−1st Dyna

Focused Dyna

No. Backups
St

ep
s

To
 G

oa
l

(Peng and Williams, 1993)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 26

Prioritized Sweeping

Which states or state-action pairs should be generated
during planning?
Work backwards from states whose values have just
changed:

Maintain a queue of state-action pairs whose values
would change a lot if backed up, prioritized by the size
of the change
When a new backup occurs, insert predecessors
according to their priorities
Always perform backups from first in queue

Moore & Atkeson 1993; Peng & Williams 1993
improved by McMahan & Gordon 2005; Van Seijen 2013

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 27

Prioritized Sweeping196CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty

Do forever:

(a) S current (nonterminal) state

(b) A policy(S,Q)

(c) Execute action A; observe resultant reward, R, and state, S0

(d) Model(S,A) R,S0

(e) P |R+ �maxaQ(S0, a)�Q(S,A)|.
(f) if P > ✓, then insert S,A into PQueue with priority P
(g) Repeat n times, while PQueue is not empty:

S,A first(PQueue)
R,S0 Model(S,A)
Q(S,A) Q(S,A) + ↵[R+ �maxaQ(S0, a)�Q(S,A)]
Repeat, for all S̄, Ā predicted to lead to S:

R̄ predicted reward for S̄, Ā, S
P |R̄+ �maxaQ(S, a)�Q(S̄, Ā)|.
if P > ✓ then insert S̄, Ā into PQueue with priority P

Figure 8.9: The prioritized sweeping algorithm for a deterministic environ-
ment.

the same structure as the one shown in Figure 8.5, except that they vary
in the grid resolution. Prioritized sweeping maintained a decisive advantage
over unprioritized Dyna-Q. Both systems made at most n = 5 backups per
environmental interaction.

Example 8.5: Rod Maneuvering The objective in this task is to maneuver
a rod around some awkwardly placed obstacles to a goal position in the fewest
number of steps (Figure 8.11). The rod can be translated along its long axis
or perpendicular to that axis, or it can be rotated in either direction around
its center. The distance of each movement is approximately 1/20 of the work
space, and the rotation increment is 10 degrees. Translations are deterministic
and quantized to one of 20⇥ 20 positions. The figure shows the obstacles and
the shortest solution from start to goal, found by prioritized sweeping. This
problem is still deterministic, but has four actions and 14,400 potential states
(some of these are unreachable because of the obstacles). This problem is
probably too large to be solved with unprioritized methods.

Prioritized sweeping is clearly a powerful idea, but the algorithms that have
been developed so far appear not to extend easily to more interesting cases.
The greatest problem is that the algorithms appear to rely on the assumption
of discrete states. When a change occurs at one state, these methods perform
a computation on all the predecessor states that may have been a↵ected. If
function approximation is used to learn the model or the value function, then
a single backup could influence a great many other states. It is not apparent

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 28

Prioritized Sweeping vs. Dyna-Q

Both use n=5 backups per
environmental interaction

Prioritized Sweeping vs
Dyna-Q (n=5)

S

G

S

G

S

G

S

G

S

G

8.4. PRIORITIZED SWEEPING 183

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty
Do forever:

(a) S current (nonterminal) state
(b) A policy(S, Q)
(c) Execute action A; observe resultant reward, R, and state, S0

(d) Model(S, A) R, S0

(e) P |R + � maxa Q(S0, a)�Q(S, A)|.
(f) if P > ✓, then insert S, A into PQueue with priority P
(g) Repeat n times, while PQueue is not empty:

S, A first(PQueue)
R, S0 Model(S, A)
Q(S, A) Q(S, A) + ↵

⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

Repeat, for all S̄, Ā predicted to lead to S:
R̄ predicted reward for S̄, Ā, S
P |R̄ + � maxa Q(S, a)�Q(S̄, Ā)|.
if P > ✓ then insert S̄, Ā into PQueue with priority P

Figure 8.9: The prioritized sweeping algorithm for a deterministic environment.

Example 8.4: Prioritized Sweeping on Mazes Prioritized sweeping has been
found to dramatically increase the speed at which optimal solutions are found in
maze tasks, often by a factor of 5 to 10. A typical example is shown in Figure 8.10.
These data are for a sequence of maze tasks of exactly the same structure as the
one shown in Figure 8.5, except that they vary in the grid resolution. Prioritized
sweeping maintained a decisive advantage over unprioritized Dyna-Q. Both systems
made at most n = 5 backups per environmental interaction.

Backups
until

optimal
solution

10

103

104

105

106

107

102

0 47 94 186 376 752 1504 3008 6016

Gridworld size (#states)

Dyna-Q

prioritized
sweeping

Figure 8.10: Prioritized sweeping significantly shortens learning time on the Dyna maze
task for a wide range of grid resolutions. Reprinted from Peng and Williams (1993).

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Improved Prioritized Sweeping with Small Backups

Planning is a form of state-space search
a massive computation which we want to control to
maximize its efficiency

Prioritized sweeping is a form of search control
focusing the computation where it will do the most good

But can we focus better?
Can we focus more tightly?
Small backups are perhaps the smallest unit of search work

and thus permit the most flexible allocation of effort

30

Expected and Sample Backups (One-Step)

142 CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

is just one strategy. For example, another would be to focus on states according to how easily they
can be reached from the states that are visited frequently under the current policy, which might be
called forward focusing. Peng and Williams (1993) and Barto, Bradtke and Singh (1995) have explored
versions of forward focusing, and the methods introduced in the next few sections take it to an extreme
form.

8.5 Expected vs. Sample Updates

The examples in the previous sections give some idea of the range of possibilities for combining methods
of learning and planning. In the rest of this chapter, we analyze some of the component ideas involved,
starting with the relative advantages of expected and sample updates.

Much of this book has been about di↵erent kinds of value-function updates, and we have considered
a great many varieties. Focusing for the moment on one-step updates, they vary primarily along three
binary dimensions. The first two dimensions are whether they update state values or action values
and whether they estimate the value for the optimal policy or for an arbitrary given policy. These two
dimensions give rise to four classes of updates for approximating the four value functions, q⇤, v⇤, q⇡, and

Value
estimated

Expected updates
(DP)

Sample updates
(one-step TD)

⇡

s

s0

⇡

rp

a

q⇡(s, a)

q⇤(s, a)

v⇡(s)

v⇤(s)

s

s0
r

max
a

p

policy evaluation

value iteration

r
s0

s, a

a0
⇡

p

q-policy evaluation

r
s0

s, a

a0
max

p

q-value iteration

s

A

S0
R

R

S0

s, a

A0

R

S0

s, a

max

TD(0)

Sarsa

Q-learning

a0

Figure 8.7: Diagrams of all the one-step updates considered in this book.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

32

Full vs. Sample Backups

b successor states, equally likely; initial error = 1;
assume all next states’ values are correct

144 CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

b = 2 (branching factor)

b =10

b =100

b =1000
b =10,000

sample
updates

expected
updates

1

0
0 1b 2b

RMS error
in value
estimate

Number of computationsmax
a0

Q(s0, a0)

Figure 8.8: Comparison of e�ciency of expected and sample updates.

Figure 8.8 shows the results of an analysis that suggests an answer to this question. It shows the
estimation error as a function of computation time for expected and sample updates for a variety of
branching factors, b. The case considered is that in which all b successor states are equally likely and
in which the error in the initial estimate is 1. The values at the next states are assumed correct, so the
expected update reduces the error to zero upon its completion. In this case, sample updates reduce the

error according to
q

b�1
bt where t is the number of sample updates that have been performed (assuming

sample averages, i.e., ↵ = 1/t). The key observation is that for moderately large b the error falls
dramatically with a tiny fraction of b updates. For these cases, many state–action pairs could have
their values improved dramatically, to within a few percent of the e↵ect of an expected update, in the
same time that a single state–action pair could undergo an expected update.

The advantage of sample updates shown in Figure 8.8 is probably an underestimate of the real e↵ect.
In a real problem, the values of the successor states would be estimates that are themselves updated.
By causing estimates to be more accurate sooner, sample updates will have a second advantage in that
the values backed up from the successor states will be more accurate. These results suggest that sample
updates are likely to be superior to expected updates on problems with large stochastic branching
factors and too many states to be solved exactly.

8.6 Trajectory Sampling

In this section we compare two ways of distributing updates. The classical approach, from dynamic
programming, is to perform sweeps through the entire state (or state–action) space, updating each state
(or state–action pair) once per sweep. This is problematic on large tasks because there may not be
time to complete even one sweep. In many tasks the vast majority of the states are irrelevant because
they are visited only under very poor policies or with very low probability. Exhaustive sweeps implicitly
devote equal time to all parts of the state space rather than focusing where it is needed. As we discussed
in Chapter 4, exhaustive sweeps and the equal treatment of all states that they imply are not necessary
properties of dynamic programming. In principle, updates can be distributed any way one likes (to
assure convergence, all states or state–action pairs must be visited in the limit an infinite number of
times; although an exception to this is discussed in Section 8.7 below), but in practice exhaustive sweeps
are often used.

The second approach is to sample from the state or state–action space according to some distribution.
One could sample uniformly, as in the Dyna-Q agent, but this would su↵er from some of the same
problems as exhaustive sweeps. More appealing is to distribute updates according to the on-policy

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

33

Trajectory Sampling

Trajectory sampling: perform updates along simulated trajectories
This samples from the on-policy distribution
Advantages when function approximation is used (Part II)
Focusing of computation:  
can cause vast uninteresting parts of the state space to be ignored:

Initial

states

Reachable under

 optimal control

Irrelevant states

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

34

Trajectory Sampling Experiment

one-step full tabular updates
uniform: cycled through all state-
action pairs
on-policy: backed up along
simulated trajectories
200 randomly generated
undiscounted episodic tasks
2 actions for each state, each with
b equally likely next states
0.1 prob of transition to terminal
state
expected reward on each transition
selected from mean 0 variance 1
Gaussian

146 CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

b=10

b=3

b=1
on-policy

uniform
1000 STATES

0

1

2

3

Value of
start state

under
greedy
policy

0 5,000 10,000 15,000 20,000

Computation time, in full backups

0

1

2

3

Value of
start state

under
greedy
policy

0 50,000 100,000 150,000 200,000

Computation time, in full backups

b=1

10,000 STATES

uniform

on-policy

uniform

on-policy

on-policy

uniform

expected updates

expected updates

Figure 8.9: Relative e�ciency of updates distributed uniformly across the state space versus focused on sim-
ulated on-policy trajectories, each starting in the same state. Results are for randomly generated tasks of two
sizes and various branching factors, b.

helps by focusing on states that are near descendants of the start state. If there are many states and
a small branching factor, this e↵ect will be large and long-lasting. In the long run, focusing on the
on-policy distribution may hurt because the commonly occurring states all already have their correct
values. Sampling them is useless, whereas sampling other states may actually perform some useful
work. This presumably is why the exhaustive, unfocused approach does better in the long run, at least
for small problems. These results are not conclusive because they are only for problems generated in
a particular, random way, but they do suggest that sampling according to the on-policy distribution
can be a great advantage for large problems, in particular for problems in which a small subset of the
state–action space is visited under the on-policy distribution.

8.7 Real-time Dynamic Programming

Real-time dynamic programming, or RTDP, is an on-policy trajectory-sampling version of DP’s value-
iteration algorithm. Because it is closely related to conventional sweep-based policy iteration, RTDP
illustrates in a particularly clear way some of the advantages that on-policy trajectory sampling can
provide. RTDP updates the values of states visited in actual or simulated trajectories by means of
expected tabular value-iteration updates as defined by (4.10). It is basically the algorithm that produced
the on-policy results shown in Figure 8.9.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

35

Heuristic Search

Used for action selection, not for changing a value function
(=heuristic evaluation function)
Backed-up values are computed, but typically discarded
Extension of the idea of a greedy policy — only deeper
Also suggests ways to select states to backup: smart
focusing:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

36

Summary of Chapter 8

Emphasized close relationship between planning and learning
Important distinction between distribution models and sample
models
Looked at some ways to integrate planning and learning

synergy among planning, acting, model learning
Distribution of backups: focus of the computation

prioritized sweeping
small backups
sample backups
trajectory sampling: backup along trajectories
heuristic search

Size of backups: full/sample; deep/shallow

