Chapter 8: Planning and Learning

Objectives of this chapter:

@ To think more generally about uses of environment models
@ Integration of (unifying) planning, learning, and execution
@ “Model-based reinforcement learning”

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

DP with Distribution models

@ In Chapter 4, we assumed access to a model of the world

e These models describe all possibilities and their
probabilities
e We call them Distribution models
—e.g,p(s’,rls,a)foralls,a,s’, r
@ In Dynamic Programing we sweep the states:

e 1n each state we consider all the possible rewards and next state
values

e the model describes the next states and rewards and their
associated probabilities

e using these values to update the value function

@ In Policy Iteration, we then improve the policy using the
computed value function

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

Paths to a policy

Model
learning, ==

Direct

Simulation -
planning

Environmental
interaction

Experience

Direct RL

methods Value
‘“unction

Model-based RL

Sample Models

@ Model: anything the agent can use to predict how the
environment will respond to its actions

@ Sample model, a.k.a. a simulation model
e produces sample experiences for given s, a
— sampled according to the probabilities
e allows reset, exploring starts
e often much easier to come by

@ Both types of models can be used mimic or simulate
experience: to produce hypothetical experience

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Models

@ Consider modeling the sum of two dice

e A distribution model would produce all possible sums
and their probabilities of occurring

e A sample model would produce an individual sum
drawn according to the correct probability distribution

@ When we solved the Gambler’s problem with value
iteration, we used the distribution model

@ When you solved the Gambler’s problem with Monte-
Carlo, you implemented a sample model in your
environment code

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Planning

@ Planning: any computational process that uses a model to
create or improve a policy

model planning

» policy

@ We take the following (unusual) view:

e update value functions using both real and simulated
experience

e all state-space planning methods involve computing
value functions, either explicitly or implicitly

e they all apply updates from simulated experience

_ simulated updates
experience

model » values » policy

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

Planning Cont.

@ Classical DP methods are state-space planning methods
@ Heuristic search methods are state-space planning methods

@ A planning method based on Q-learning:

Random-sample one-step tabular Q-planning

Do forever:
1. Select a state, S € §, and an action, A € A(s), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S":
Q(S, A) + Q(S,A) + a|R + ymax, Q(S’,a) — Q(S, A)]

Environment program
Experiment program
Agent program

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Paths to a policy

Direct

Environmental _ .
planning

interaction

Direct RL o
methods] Value
vanction

Pyna

Learning, Planning, and Acting

@ Two uses of real experience:

. . value/policy

e model learning: to improve

the model .

acting

® fhrect RL: to directly | planning direct

improve the value function RL

and policy

@ Improving value function and/or model experience

policy via a model is sometimes
called indirect RL. Here, we _/
call it planning. model

learning

Direct (model-free) vs. Indirect (model-based) RL

® Direct methods @ Indirect methods:

e simpler e make fuller use of
experience: get better
policy with fewer
environment
interactions

e not affected by bad
models

But they are very closely related and can be usefully combined:

planning, acting, model learning, and direct RL can occur
simultaneously and in parallel

The Dyna Architecture

VA

/ \
P/olicy/value funct\ions

planning update

direct RL simulated

update experience
P /" real I
_experience h
model seare |
learning contro

Model

Agent

[Environ ment]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

The Dyna-Q Algorithm

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Do forever:
(a) S < current (nonterminal) state
(b) A + e-greedy(S, Q)
(c) Execute action A; observe resultant reward, R, and state, S’
(d) O(S, A) « Q(S, A) + a[R + v max, Q(S', a) — Q(S, A)] «—— direct RL
(e) Model(S,A) < R, S’ (assuming deterministic environment)<«— model learning
(f) Repeat n times:
S < random previously observed state
A < random action previously taken in S «— planning
R,S" «+ Model(S, A)
Q(S, A) < Q(S,A) + a[R + ymax, Q(S',a) — Q(S, A)]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

A simple maze: problem description

@ 4/ states, 4 actions, deterministic dynamics

@ Obstacles and walls

@ Rewards are 0 except +1 for transition into goal state
@ v =0.95, discounted episodic task

@ Agent parameters:
e 0=0.1,e=0.1

e Initial action-values were all zero

@ Let’s compare one-step tabular Q-learning and Dyna-Q
with different values of n

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

Dyna-Q on a Simple Maze

800
S

600+ . actions

Steps 0 planning steps ,
per 4004 | (direct RL only) rewards = O until goal, when =1

episode

5 planning steps

50 planning steps
200

14+

Episodes

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

Dyna-Q Snapshots: Midway in 2nd Episode

WITHOUT PLANNING (n=0) WITH PLANNING (n=50)
m G == [V =] |G

} AR ARAN K

S S el AR AN E
et W sl e el

m =

~— ===

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

The conflict between exploration and exploitation

@ Exploration in planning: trying actions that improve the
model

e Make it more accurate
e Make it a better match with the environment
e Proactively discover when the model is wrong

@ Exploitation: behaving optimally with respect to the
current model

@ Simple heuristics can be effective

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 73

Prioritizing Search Control

@ Consider the second episode in the Dyna maze

e The agent has successfully reached the goal once...

WITHOUT PLANNING (7n=0) WITH PLANNING (n=50)
O G ~—= ¥~y |G

f AR AR AN

S S b AnaRANNE
|1

_ Il B il

0 et 0 I O

@ In larger problems, the number of states 1s so large that
unfocused planning would be extremely inefficient

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Large maze and random search control

Random Dyna

10000
8000 —
= Largest—1st Dyna
S 8 6000
o
-
2{ 4000 -
Q
et
} n Focused Dyna
| 2000-
I
53
10 100 1000 10000 100000 1000000

No. Backups

(Peng and Williams, 1993)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 75

Prioritized Sweeping

@ Which states or state-action pairs should be generated
during planning?

@ Work backwards from states whose values have just
changed:

e Maintain a queue of state-action pairs whose values
would change a lot if backed up, prioritized by the size
of the change

e When a new backup occurs, insert predecessors
according to their priorities

e Always perform backups from first in queue
@ Moore & Atkeson 1993; Peng & Williams 1993
@ improved by McMahan & Gordon 2005; Van Seijen 2013

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 76

Prioritized Sweeping

Initialize Q(s,a), Model(s,a), for all s,a, and PQueue to empty
Do forever:
a) S < current (nonterminal) state

b) A + policy(S, Q)

e) P+ |R+ vymax, Q(5,a) — Q(S, A)|.
f) if P > 0, then insert S, A into PQueue with priority P
g) Repeat n times, while PQueue is not empty:
S, A+ first(PQueue)
R,S’" < Model(S, A)
Q(S,A) + Q(S, A) + a|R + ymax, Q(5', a) — Q(S, A)]
Repeat, for all S, A predicted to lead to S:
R + predicted reward for S, A, S
P+ |R+ymax, Q(S,a) — Q(S, A)|.
if P > @ then insert S, A into PQueue with priority P

(
E
(d) Model(S,A) «+ R, S’
(
(
(

c¢) Execute action A; observe resultant reward, R, and state, S’

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

27

Prioritized Sweeping vs. Dyna-Q

Backups
until
optimal
solution

Both use n=5 backups per
environmental interaction

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

ez

107_

106_

105_

prioritized
sweeping

104_

10°

102_

10

| | | I | | | |
0 47 94 186 376 752 1504 3008 6016

Gridworld size (#states)
78

Improved Prioritized Sweeping with Small Backups

@ Planning is a form of state-space search

e a massive computation which we want to control to
maximize its efficiency

@ Prioritized sweeping 1s a form of search control
e focusing the computation where it will do the most good
@ But can we focus better?
@ Can we focus more tightly?
@ Small backups are perhaps the smallest unit of search work

e and thus permit the most flexible allocation of effort

Expected and Sample Backups (One-Step)

Value
estimated

Uz ()

V4 (8)

(8,)

q«(s,a)

Expected updates
(DP)

S

i

OO0 OO OO

policy evaluation

S

max

rA R

OO0 OO O 0¥

value iteration

s,a

g-value iteration

Sample updates
(one-step TD)

S

L
R

o5’
TD(0)

T
Ly

Sarsa

s,a

Sl
max

[] [] .CLI

Q-learning

Full vs. Sample Backups

1 -
sample expected
updates updates
N
RMS error b =2 (branching factor)
in value
estimate
O B T ’ T |
0 1b 2b

Number of max Q(s',a") computations
a

b successor states, equally likely; initial error = 1;
assume all next states’ values are correct

Trajectory Sampling

@ Trajectory sampling: perform updates along simulated trajectories
@ This samples from the on-policy distribution
@ Advantages when function approximation is used (Part II)

@ Focusing of computation:
can cause vast uninteresting parts of the state space to be ignored:

Initial

states

Reachable under Irrelevant states

optimal control

Trajectory Sampling Experiment

one-step full tabular updates
. 1000 STATES
uniform: cycled through all state- —
action pairs start state |
. under on-policy
on-policy: backed up along Ty |

uniform

simulated trajectories

on-policy

200 randomly generated 0
undiscounted episodic tasks Computation time, in expected updates

on-polic
o

uniform

2 actions for each state, each with
b equally likely next states

0.1 prob of transition to terminal 10,000 STATES

State Value of
start state

S
1

under

expected reward on each transition greedy

. olic
selected from mean O variance 1 Potey
Gaussian

0 SO,IOOO 1002000 1 502000 200:000
Computation time, in expected updates

Heuristic Search

@ Used for action selection, not for changing a value function
(=heuristic evaluation function)

@ Backed-up values are computed, but typically discarded
@ Extension of the 1dea of a greedy policy — only deeper

@ Also suggests ways to select states to backup: smart
focusing:

0 Y AN /R
R 9

Summary of Chapter 8

@ Emphasized close relationship between planning and learning

@ Important distinction between distribution models and sample
models

@ Looked at some ways to integrate planning and learning
e synergy among planning, acting, model learning
@ Distribution of backups: focus of the computation
e prioritized sweeping
e small backups
e sample backups
e trajectory sampling: backup along trajectories
e heuristic search

@ Size of backups: full/sample; deep/shallow

