Sequential decision making
Control: Q-learning
What can we say formally about convergence!

How to do control? GPI!

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation

m

U V

7~ greedy (V)

improvement

i)

Monte Carlo Estimation of Action Values

Estimate gr for the current policy

| RN\ R/ Re
(Sf} s, O S, 050 (5) S
Q(Sta Ar) <« Q(Sp Az) + G(Gt — Q(Sp Ar))

T—t
where G, =) yY*"'R,,,
k=1

and T is the time of entering terminal state

Monte Carlo Estimation of Action Values (Q)

1 gx(s,a) - average return starting from state s and action a
following m

1 Converges asymptotically if every state-action pair is
visited

1 Exploring starts: Every state-action pair has a non-zero
probability of being the starting pair

On-policy Monte Carlo Control

O On-policy: learn about policy currently executing
1 How do we get rid of exploring starts?
= The policy must be eternally soft:
—m(als) > 0 for all s and a

= ¢.g. e-soft policy:
AL O T AR
non-max max (greedy)

— probability of an action =

1 Similar to GPI: move policy fowards greedy policy
(e.g., e-greedy)
1 Converges to best g-soft policy

Convergence of MC Control

1 Greedified policy meets the conditions for policy improvement:
QWk(Svﬂ-k—H(S)) qwk(saargmaxqﬂk (570’))

a

Max gr, (s,a)

Gy, (5, k()

U, (S).

vV IV

[And thus must be = m, by the policy improvement theorem

1 This assumes exploring starts and infinite number of episodes
for MC policy evaluation
1 To solve the latter:
= ypdate only to a given level of performance

= alternate between evaluation and improvement per episode

11

TD-Style Learning for Action-Values

Estimate gr for the current policy

Rt+1 m Rt+2 m Rt+3
- — S, —o St ® A\ ° (Sis p—o— - - -
t St,At " St+1’At+l w Sl‘+2;At+2 " St+3,At+3

After every transition from a nonterminal state, S, , do this:

0(S,.A) < 0O(S,,A)+a| R, +70(S,,.A4,)-0(,.A)]
If S,,, 1s terminal, then define Q(S,,,A,,,) =0

+1°

Sarsa: On-Policy TD Control

Turn this into a control method by always updating the
policy to be greedy with respect to the current estimate:

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize .S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S,4) < Q(S, 4) + a[R+7Q(5", 4") — Q(S, A)]
S« S A A

until S is terminal

Q-Learning: Off-Policy TD Control

One-step Q-learning:

Q(St, At) + Q(St, Ar) + {Rtﬂ + 7y max Q(Si+1,a) — Q(Sy, At)} /%\

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a[R + ymax, QS a) — Q(S, A)]
S« S

until S is terminal

Cliffwalking

R=-1|) > safe path
> optimal path
S The Cliff G
R PW)W
e—greedy, € =0.1
Sarsa
=25-
Reward _so- _
per Q-learning
epsiode
~751
-100 T T T T 1
0 100 200 300 400 500

Episodes

Expected Sarsa

@ Instead of the sample value-of-next-state, use the expectation!

Q(St, A) + Q(St, Ay) + :Rt—l—l + YE[Q(St+1, At+1) | St+1] — Q(Sy, At)}

— QS Ar) + o :Rt+1 +7>_ m(a|S11)Q(Sk41,a) - Q(St,At)}

! !
A\ /N

Q-learning Expected Sarsa

@ Expected Sarsa’s performs better than Sarsa (but costs more)

van Seijen, van Hasselt, Whiteson, & Wiering 2009

Performance on the Cliff-walking Task

40 F
O = e S R S SUUNE CRRLP- Sh N~ S
Q-learning
Reward R O G anante o
per 80) e .V"'V‘,.g--‘D“"E'""D . Q-learning
episode x ¥V gt
= _;“_v‘ ‘_IZI‘
x .~ @ Interim Performance
100l -7 (after 100 episodes)
g
v
m

01 02 03 04 05 06 07
@

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

0.8

0.9

12

Off-policy Expected Sarsa

@ Expected Sarsa generalizes to arbitrary behavior policies u

@ 1n which case it includes Q-learning as the special case in
which 5t is the greedy policy

Q(St, Ar) < Q(St, At) + « :Rt+1 +YE[Q(St+1, At41) | Sev1] — Q(St, At)}
— QS Ar) + o :Rt+1 +7>_ m(a|S11)Q(St41,0) — Q(S:, At)}

e] !
A /N

Nothing
changes
here

Q-learning Expected Sarsa

@ This idea seems to be new

Maximization Bias Example

100% ¢

~ N(=0.1,1)
[\ 0 0
‘,r" AN . < ° /,D *+—>
75% | \. : wrong N/ right
." \ START
[\
% ;' AN
’v \
Wrong 50% .
actions \Q\-Iearnlng
25% | N
N .
B%f-—-————————— o —————— optimal
3 . . .
1 100 200 300
Episodes

Tabular Q-learning: Q(St, Ay) + Q(St, Ar) + « [Rtﬂ + 7 max Q(St11,a) — Q(St, Ay)

Hado van Hasselt 2010
Double Q-Learning
Train 2 action-value functions, Q1 and Q>
Do Q-learning on both, but
® never on the same time steps (1 and (> are indep.)
® pick Q1 or (> at random to be updated on each step
If updating Q1, use Q> for the value of the next state:

Q1(St, Ar) < Q1(St, Ar) ‘|‘04(Rt—|—1 + Q2 (St+1, argmax Q1(S¢11, Cl)) —Q1(S;, At))

Action selections are (say) e-greedy with respect to the sum
of 01 and 0>

Hado van Hasselt 2010

Double Q-Learning

Initialize Q1(s,a) and Q2(s,a),Vs € 8,a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Qs (terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @1 and Qs (e.g., e-greedy in Q1 + Q2)
Take action A, observe R, S’
With 0.5 probabilility:

Q1(8,4) « Qu(S, 4) + a(R+7Qs (8", argmax, Q1 (5", a)) — Qu(S, 4))
else:

Q2(S, A) < Q2(S, A) + Oé(R + Q1 (9, argmax, Q2(S',a)) — Q2(S, A))
S« 5’

until S is terminal

Example of Maximization Bias

100% ¢

. N(—0.1,1)
[\ 0 0
‘,r" N : < ® /,D -—>
75% | \. : wrong N/ right
|.' \ START
| N\
% !' \
r' N\
Wrong 50% " .
actions “Q-learning
\ Double AN
25% \Q-learning g
50/8 ___________ V __ e et e ann opt|ma|
1 100 200 300
Episodes

Double Q-learning;
Q1(St, Ar) < Q1(St, Ar) +a [Rt+1 +7Q2(St11, argmax Q1 (Si11,a)) — Q1(St, Ay)

Summary

@ Extend prediction to control by employing some form of GPI
@ On-policy control: Sarsa, Expected Sarsa
@ Off-policy control: Q-learning, Expected Sarsa

@ Avoiding maximization bias with Double Q-learning

Lecture 2: Markov Decision Processes

L Markov Processes

L Markov Chains

Markov Process

A Markov process is a memoryless random process, i.e. a sequence
of random states 51, S,, ... with the Markov property.

Definition
A Markov Process (or Markov Chain) is a tuple (S, P)

m S is a (finite) set of states

m P is a state transition probability matrix,
Pssl =P [51_-4.]_ =5 | St = 5]

Lecture 2: Markov Decision Processes
L Markov Processes
L Markov Property

State Transition Matrix

For a Markov state s and successor state s’, the state transition
probability is defined by

PSS/ =P [St+1 = Sl ‘ St = 5]

State transition matrix P defines transition probabilities from all
states s to all successor states s,

to

P = from _
Pn]_ [N Pnn

where each row of the matrix sums to 1.

Lecture 2: Markov Decision Processes

LMarkov Reward Processes

L mRrP

Markov Reward Process

A Markov reward process is a Markov chain with values.

A Markov Reward Process is a tuple (S,P,R,)

m S is a finite set of states

m P is a state transition probability matrix,

7355/ =P [5t+1 = S/ | St = S]
m R is a reward function, Rs = E[R;41 | St = 5]
m 7 is a discount factor, v € [0, 1]

Lecture 2: Markov Decision Processes
LMarkov Reward Processes

L Bellman Equation

Bellman Equation in Matrix Form

The Bellman equation can be expressed concisely using matrices,

v=R+~vyPv

where v is a column vector with one entry per state
v(1) Ri1 P11 ... Pin| |v(1)

v(n) Rn P11 .. P v(n)

Lecture 2: Markov Decision Processes
LMarkov Reward Processes

L Bellman Equation

Solving the Bellman Equation

m The Bellman equation is a linear equation
m It can be solved directly:

v="R+~Pv
(I —yP)v=R
v=(>-~P) 'R

m Computational complexity is O(n®) for n states

m Direct solution only possible for small MRPs

m There are many iterative methods for large MRPs, e.g.
m Dynamic programming
m Monte-Carlo evaluation
m Temporal-Difference learning

Lecture 2: Markov Decision Processes
LMarkov Decision Processes
L Policies

Policies (2)

Given an MDP M = (S, A, P, R,~) and a policy 7
The state sequence 51, S, ... is a Markov process (S, P™)

The state and reward sequence S1, R», So, ... is a Markov
reward process (S, P™, R™,)

m where

T = Z m(als)P2,

acA

Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LBellman Expectation Equation

Bellman Expectation Equation for Q™

Lecture 2: Markov Decision Processes

LMarkov Decision Processes

LBellman Expectation Equation

Bellman Expectation Equation for g, (2)

4r(s',a") = a’

Ge(s,a) =R2+7 3. P2 " w(@ls)an(s'.)

s'eS a'eA

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Value Function Space

Consider the vector space V over value functions

There are |S| dimensions

Each point in this space fully specifies a value function v(s)
What does a Bellman backup do to points in this space?
We will show that it brings value functions closer

And therefore the backups must converge on a unique solution

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Value Function co-Norm

m We will measure distance between state-value functions u and
v by the co-norm

m i.e. the largest difference between state values,

= vlloe = max [u(s) — v(s)|

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Bellman Expectation Backup is a Contraction

m Define the Bellman expectation backup operator T™,
T™(v) =R"™ +~P"v

m This operator is a y-contraction, i.e. it makes value functions
closer by at least -,

T (u) = TT(V)lloo = [[(RT +7PTu) = (RT +7P"V) ||
= P (u = v)llso
< |VPT[u = vllsolloo
<Hu—=vllso

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Contraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an
operator T(v), where T is a y-contraction,

m T converges to a unique fixed point

m At a linear convergence rate of ~y

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Convergence of Iter. Policy Evaluation and Policy lteration

The Bellman expectation operator T™ has a unique fixed point

vy is a fixed point of T™ (by Bellman expectation equation)

[

[

m By contraction mapping theorem

m lterative policy evaluation converges on v,
[

Policy iteration converges on v,

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Bellman Optimality Backup is a Contraction

m Define the Bellman optimality backup operator T,
T* — Ra a
(v) max +Pv

m This operator is a y-contraction, i.e. it makes value functions
closer by at least y (similar to previous proof)

177 () = T*(V)lloo < AlJu = Vil

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Convergence of Value Iteration

m The Bellman optimality operator T* has a unique fixed point
m v, is a fixed point of T* (by Bellman optimality equation)
m By contraction mapping theorem

m Value iteration converges on v,

