Sequential decision making
Monte Carlo Policy Evaluation
Temporal-Difference Learning

Recall: Agent-Environment Interface

'_l Agent J
state reward action

St Rt At
Rt+1 [
S.. | Environment J<

\.

Agent and environment interact at discrete time steps: #=10,1,2,3,...

Agent observes state at stept: S, €8
produces action at step 7 : A, € A(S,)
gets resulting reward: R, € R C R

and resulting next state: §,,, € §*

r+1

Recall: Policy Evaluation

Policy Evaluation: for a given policy 7, compute the
state-value function vy

Recall: State-value function for policy

o
k
E Y Rt+k—|—1
k=0

ve(s) = EfGy | Se=s] = E;

St_S]

Recall: Bellman equation for v,
vr(s) = D mlals) 3 p(s',7ls, 0) |7+ y0e(s)]

—a system of ISl simultaneous equations

Recall: Iterative Methods

Vo —V1 —2 =2V —2 Vgt —2 " —2 Ugp

a “sweep”)

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

VEa1(s) = Zﬂ(a\s) Zp(s’, r|s,a) [7“ + ’yvk(sl)} Vs e d

Dynamic Programming Policy Evaluation

V(S) < E,[R,, +7V(S,)] =D m@l$) > p(s', 1S, a)lr + 4V ()]

/

o o o
O O O .i O
ROERK O LQ};\Q olie

\ / /7 \
\ / \ / \

/
/

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

From Planning to Learning

1 DP requires a probability model (as opposed to a
generative or simulation model)

1 We can interact with the world, learning a model (rewards
and transitions) and then do DP

1 This approach is called model-based RL
1 Full probability model may hard to learn though

1 Today: direct learning of the value function from
interaction

1 Still focusing on evaluating a fixed policy

24

Simple Monte Carlo

V(S,) < V(S)+a|G, - V(S,))]

St
()

\ | / \
\ \ /

/
/

@ O ©
LI

S

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Monte Carlo Methods

1 Monte Carlo methods are learning methods
Experience — values, policy

1 Monte Carlo methods can be used in two ways:
" model-free: No model necessary and still attains optimality
» simulated: Needs only a simulation, not a full model

1 Monte Carlo methods learn from complete sample returns
= Defined for episodic tasks (in the book)

1 Like an associative version of a bandit method

Backup diagram for Monte Carlo

1 Entire rest of episode included O

1 Only one choice considered at O
each state (unlike DP) C

= thus, there will be an ®
explore/exploit dilemma C

/

/

™ Does not bootstrap from

) [
successor states’s values
(unlike DP)
1 Time required to estimate one ®

state does not depend on the
total number of states

terminal state

Monte Carlo Policy Evaluation

1 Goal: learn v, (s)
1 Given: some number of episodes under st which contain s

1 Idea: Average returns observed after visits to s

A Every-Visit MC: average returns for every time s is visited
In an episode

A First-visit MC: average returns only for first time s 1s
visited 1n an episode

1 Both converge asymptotically

First-visit Monte Carlo policy evaluation

Initialize:
m <— policy to be evaluated
V < an arbitrary state-value function
Returns(s) < an empty list, for all s € §

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode:
G < return following the first occurrence of s
Append G to Returns(s)
V(s) <+ average(Returns(s))

MC vs supervised regression

1 Target returns can be viewed as a supervised label (true
value we want to fit)

1 State is the input

1 We can use any function approximator to fit a function
from states to returns! Neural nets, linear, nonparametric...

A Unlike supervised learning: there is strong correlation
between inputs and between outputs!

1 Due to the lack of iid assumptions, theoretical results from
supervised learning cannot be directly applied

12

Blackjack example

1 Object: Have your card sum be greater than the dealer’s
without exceeding 21.

[States (200 of them):
= current sum (12-21) i
= dealer’s showing card (ace-10) ET‘\
= do I have a useable ace? =

1 Reward: +1 for winning, O for a draw, -1 for losing

1 Actions: stick (stop receiving cards), hit (receive another
card)

1 Policy: Stick if my sum is 20 or 21, else hit
1 No discounting (y = 1)

Learned blackjack state-value functions

After 10,000 episodes After 500,000 episodes

T ——

ace 76

No
usable
ace

Simplest TD Method

V(S,) < V(S)+a|R

r+1

+yV(S,,)-V(S)]

SO

r+1

L

LN

e
l/
oo
// \\//

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

TD methods bootstrap and sample

@ Bootstrapping: update involves an estimate
@ MC does not bootstrap
@ DP bootstraps
@ TD bootstraps
@ Sampling: update does not involve an
expected value
@ MC samples
@ DP does not sample
@ TD samples

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 16

TD Prediction

Policy Evaluation (the prediction problem):
for a given policy m, compute the state-value function vy

Recall: Simple every-visit Monte Carlo method:

V(S1) « V(S) + |G = V(Sy)]

target: the actual return after time ¢

The simplest temporal-difference method TD(0):

V(Sy) 4 V(S:) | Rt +7V (Seva) = V(S)
|

target: an estimate of the return

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

Example: Driving Home

FElapsed Time Predicted Predicted

State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43

arrive home 43 0 43

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1R

Driving Home

Changes recommended by
Monte Carlo methods (a=1)

45 -
___actual outcome
\
_ 40 -
Predicted
total
travel 35 -
time
30

T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

_ 4
Predicted

total
travel
time

Changes recommended
by TD methods (a=1)

actual
outcome

leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

19

Advantages of TD Learning

@ TD methods do not require a model of the environment,
only experience

@ TD, but not MC, methods can be fully incremental
@ You can learn before knowing the final outcome
@ Less memory
@ Less peak computation
@ You can learn without the final outcome
@ From incomplete sequences

@ Both MC and TD converge (under certain assumptions to
be detailed later), but which 1s faster?

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 70

Random Walk Example

~— OO —O—

start
0.8 -
100
0.6 - 1 10
Estimated (1) _——
value 0.4
true
values
Values learned by TD after 0.2 9
various numbers of episodes
0 : : | | |
A B C D E
State

V(S1) ¢ V(i) + | Ryt + 7V (Sea1) = V(Sy)]

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

21

TD and MC on the Random Walk

0.25

0.2\

RMS error, 0-157

averaged
over states 0.1- T T
o=.15 " N10=03
0.05 -
o=.1
o=.05
0 I I | |
0 25 50 75 100

Walks / Episodes

Data averaged over
100 sequences of episodes

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction k)

Batch Updating in TD and MC methods

Batch Updating: train completely on a finite amount of data,
e.g., train repeatedly on 10 episodes until convergence.

Compute updates according to TD or MC, but only update
estimates after each complete pass through the data.

For any finite Markov prediction task, under batch updating,
TD converges for sufficiently small a.

Constant-oo MC also converges under these conditions, but to
a different answer!

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction ke

Random Walk under Batch Updating

BATCH TRAINING

RMS error, .15
averaged
over states .14

D

.0 I I I]
0 25 50 75 100

Walks / Episodes

After each new episode, all previous episodes were treated as a batch,
and algorithm was trained until convergence. All repeated 100 times.

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction oY

You are the Predictor

Suppose you observe the following 8 episodes:

A,0,B,0
B, 1

, A

vviivvilivvilvvilive

, A

B,0

V(B)?
V(A)?

Assume Markov states, no discounting (y = 1)

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

75

You are the Predictor

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

V(A)?

276

You are the Predictor

@ The prediction that best matches the training data is V(A)=0
@ This minimizes the mean-square-error on the training set
@ This 1s what a batch Monte Carlo method gets

@ If we consider the sequentiality of the problem, then we
would set V(A)=.75

@ This 1s correct for the maximum likelihood estimate of a
Markov model generating the data

@ 1i.e,1f we do a best fit Markov model, and assume it is
exactly correct, and then compute what it predicts (how?)

@ This is called the certainty-equivalence estimate
@ This 1s what TD gets

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Application of TD
Dopamine neuron activity modelling

Empirical Data Complete Serial Compound
TD Model
1
Unpredicted A
Reward 0
-1 _
0 1 2
1
—
Predicted [-.%.; i\ TETRS R I g A
Reward [+, =%%] : w o
o
—
-1 _
0 1 2
1
Omitted . A
Reward

-1 -
0 1 2

Time

Cf. Shultz, Dayan et al, 1996; and lots of follow-up work including MNI, Psych.

Summary so far

@ Introduced one-step tabular model-free TD methods

@ These methods bootstrap and sample, combining aspects of
DP and MC methods

@ TD methods are computationally congenial

@ If the world 1s truly Markov, then TD methods will learn
faster than MC methods

@ MC methods have lower error on past data, but higher error
on future data

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 70

Unified View

width
of backup i
Temporal- Dynamic |
difference programming
learning

height
(depth)
of backup
Exhaustive
Monte ., search
Carlo

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

20)

