# Wrap-up of Bandits Sequential decision making Markov Decision Processes

## Admin Issues

- Homework I posted, due Jan 27 by midnight
- TA list finalized please monitor MyCourses for messages from TAs and discussion boards
- Return to in-person classes form Jan 24 lectures will continue to be recorded and open for zoom attendance for the whole term
- Office hours for Doina will be online (same zoom link as before)
- Up to 20% of lectures can be offered online we will use this as needed
- Please stay safe and follow university guidelines in terms of masking and self-isolating/caring for others who are sick

# Softmax (Boltzmann) Exploration

• Let  $H_t(a)$  be a learned preference for taking action a

$$\Pr\{A_t = a\} \doteq \frac{e^{H_t(a)}}{\sum_{b=1}^k e^{H_t(b)}} \doteq \pi_t(a)$$

Consider 
$$H_t(a) = Q_t(a)/T$$

This is Boltzmann or softmax exploration!

If the temperature T is very large (towards infinity) - same as uniform

If temperature T goes to 0, same as greedy

# A bit of recap

Problems vs Solution Methods

Evaluative vs Instructive feedback

Associative vs Non-associative learning

|                      | Single State | Associative |
|----------------------|--------------|-------------|
| Instructive feedback |              |             |
| Evaluative feedback  |              |             |

|                      | Single State                       | Associative |
|----------------------|------------------------------------|-------------|
| Instructive feedback |                                    |             |
| Evaluative feedback  | Bandits<br>(Function optimization) |             |

|                      | Single State                       | Associative            |
|----------------------|------------------------------------|------------------------|
| Instructive feedback |                                    | Supervised<br>learning |
| Evaluative feedback  | Bandits<br>(Function optimization) |                        |

|                         | Single State                       | Associative            |
|-------------------------|------------------------------------|------------------------|
| Instructive<br>feedback | Averaging (Imitiation)             | Supervised<br>learning |
| Evaluative feedback     | Bandits<br>(Function optimization) |                        |

|                      | Single State                       | Associative            |
|----------------------|------------------------------------|------------------------|
| Instructive feedback | Averaging (Imitiation)             | Supervised<br>learning |
| Evaluative feedback  | Bandits<br>(Function optimization) | Contextual bandits     |

#### More real motivations...

#### Clinical trials:



- choose a treatment A<sub>t</sub> for patient t
- ullet observe a response  $X_t \in \{0,1\}: \mathbb{P}(X_t=1) = \mu_{A_t}$
- Goal: maximize the number of patient healed

#### Recommendation tasks:



- recommend a movie  $A_t$  for visitor t
- observe a rating  $X_t \sim \nu_{A_t}$  (e.g.  $X_t \in \{1, \dots, 5\}$ )

#### Linear bandits

- An additive effects model.
- Suppose each round we take a decision  $x \in \mathcal{D} \subset \mathcal{R}^d$ .
  - x is paths on a graph.
  - x is a feature vector of properties of an ad
  - x is a which drugs are being taken
- Upon taking action *x*, we get reward *r*, with expectation:

$$\mathbb{E}[r|x] = \mu^{\top} x$$

- only d unknown parameters (and "effectively" 2<sup>d</sup> actions)
- $\bullet$  W desire an algorithm  ${\mathcal A}$  (mapping histories to decisions), which has low regret.

$$T\mu^{\top} x_* - \sum_{t=1}^{T} \mathbb{E}[\mu^{\top} x_t | \mathcal{A}] \leq ??$$

(where  $x_*$  is the best decision)

#### Regression!

Define:

$$A_t := \sum_{\tau < t} x_\tau x_\tau^\top + \lambda I, \ b_t := \sum_{\tau < t} x_\tau r_\tau$$

ullet Our estimate of  $\mu$ 

$$\hat{\mu}_t = A_t^{-1} b_t$$

Confidence of our estimate:

$$\|\mu - \hat{\mu}_t\|_{A_t}^2 \le \mathcal{O}(d \log t)$$

#### **LinUCB**

- Again, optimism in the face of uncertainty.
- Define:

$$B_t := \{\nu | \|\nu - \hat{\mu}_t\|_{A_t}^2 \le \mathcal{O}d \log t\}$$

(Lin UCB) take action:

$$\mathbf{X}_t = \operatorname{argmax}_{\mathbf{X} \in \mathcal{D}} \max_{\nu \in \mathcal{B}_t} \nu^{\top} \mathbf{X}$$

then update  $A_t$ ,  $B_t$ ,  $b_t$ , and  $\hat{\mu}_t$ .

Equivalently, take action:

$$x_t = \operatorname{argmax}_{x \in \mathcal{D}} \ \hat{\mu}_t^{\top} x + (d \log t) \sqrt{x A_t^{-1} x}$$

#### What about context?

#### Clinical trials:



- choose a treatment A<sub>t</sub> for patient t
- ullet observe a response  $X_t \in \{0,1\}: \mathbb{P}(X_t=1) = \mu_{A_t}$
- Goal: maximize the number of patient healed

#### Recommendation tasks:



- recommend a movie  $A_t$  for visitor t
- observe a rating  $X_t \sim \nu_{A_t}$  (e.g.  $X_t \in \{1, \dots, 5\}$ )

#### The Contextual Bandit Game

- Game: for t = 1, 2, ...
  - At each time t, we obtain context (e.g. side information, user information) ct
  - Our feasible action set is A<sub>t</sub>.
  - We choose arm  $a_t \in A_t$  and receive reward  $r_{t,a_t}$ . (what assumptions on the reward process?)
- Goal: Algorithm  $\mathcal{A}$  to have low regret:

$$\mathbb{E}[\sum_{t}(r_{t,a_t^*}-r_t)|\mathcal{A}]\leq ??$$

where  $\mathbb{E}[r_{t,a_t^*}]$  is the optimal expected reward at time t.

#### How should we model outcomes?

- Example: ad (or movie, song, etc) prediction.
   What is prob. that a user u clicks on an ad a.
- How should we model the click probability of a for user u?
- Featurizations: suppose we have  $\phi_{\mathrm{ad}}(a) \in \mathcal{R}^{d_{\mathrm{ad}}}$  and  $\phi_{\mathrm{user}}(u) \in \mathcal{R}^{d_{\mathrm{user}}}$ .
- We could make an "outer product" feature vector *x* as:

$$x(a, u) = \text{Vector}(\phi_{\text{ad}}(a)\phi_{\text{user}}(u)^{\top}) \in \mathcal{R}^{d_{\text{ad}}d_{\text{user}}}$$

• We could model the probabilities as:

$$\mathbb{E}[click = 1|a,u] = \mu^{\top}x(a,u)$$

(or log linear)

• How do we estimate  $\mu$ ?

#### Contextual Linear bandits

- Suppose each round t, we take a decision  $x \in \mathcal{D}_t \subset \mathcal{R}^d$  ( $D_t$  may be time varying).
  - map each ad/user a to x(a, u).
  - $D_t = \{x(a, u_t) | a \text{ is a feasible ad at time } t\}$
  - Our decision is a feature vector in  $x \in D_t$ .
- Upon taking action  $x_t \in D_t$ , we get reward  $r_t$ , with expectation:

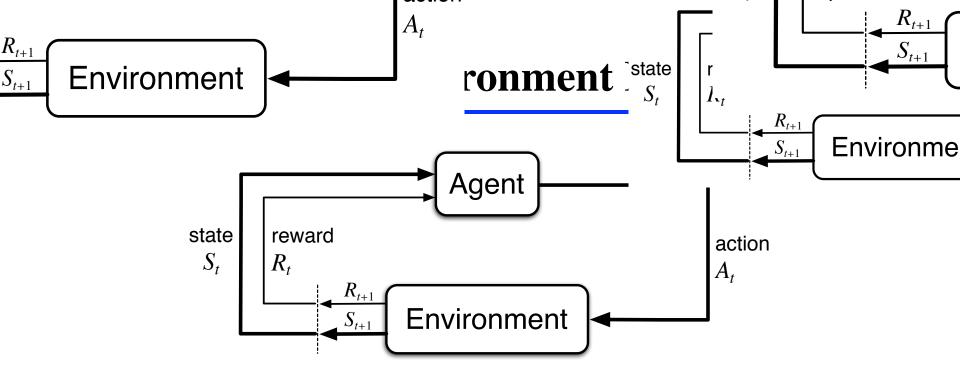
$$\mathbb{E}[r_t|x_t\in D_t]=\mu^\top x_t$$

(here  $\mu$  is assumed constant over time).

Our regret:

$$\mathbb{E}\left[\sum_{t}(\mu^{\top} X_{t,a_t^*} - \mu^{\top} X_t)|\mathcal{A}\right] \leq ??$$

(where  $x_{t,a_t^*}$  is the best decision at time t)



Agent and environment interact at discrete time steps: t = 0, 1, 2, 3, ...

Agent observes state at step t:  $S_t \in S$ 

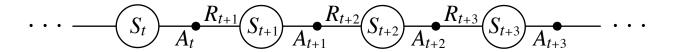
produces action at step t:  $A_t \in \mathcal{A}(S_t)$ 

gets resulting reward:  $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$ 

and resulting next state:  $S_{t+1} \in S^+$ 

## **Trajectory and History**

☐ A sequence of states, actions and rewards



- $\blacksquare$  We will sometimes use the notation  $\tau_{ij} = S_i A_i R_{i+1} ... S_j$
- ☐ We will use the term *history* to refer to the trajectory prior to the current time step
- ☐ In general, next states and rewards can depend on the history since the beginning of time

## **Markov Property**

- ☐ An assumption about the environment
- Next state and reward depend only on the previous state and action, and noting else that happened in the past

$$p(S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a) = p(S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a, \tau_t), \forall \tau_t$$

- ☐ The assumption is useful to develop, analyze and understand algorithms
- It does NOT mean it has to always hold

#### **Markov Decision Processes**

- ☐ If a reinforcement learning task has the Markov Property, it is basically a **Markov Decision Process (MDP)**.
- ☐ If state and action sets are finite, it is a **finite MDP**.
- ☐ To define a finite MDP, you need to give:
  - state and action sets
  - one-step "dynamics"

$$p(s', r|s, a) = \mathbf{Pr}\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\}$$

$$p(s'|s,a) \doteq \Pr\{S_{t+1} = s' \mid S_t = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$
$$r(s,a) \doteq \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s',r|s,a)$$

### The Agent Learns a Policy

**Policy** at step  $t = \pi_t =$ a mapping from states to action probabilities  $\pi_t(a \mid s) = \text{probability that } A_t = a \text{ when } S_t = s$ 

Special case - deterministic policies:

 $\pi_t(s)$  = the action taken with prob=1 when  $S_t = s$ 

- ☐ Reinforcement learning methods specify how the agent changes its policy as a result of experience.
- □ Roughly, the agent's goal is to get as much reward as it can over the long run.

## **An Example Finite MDP**

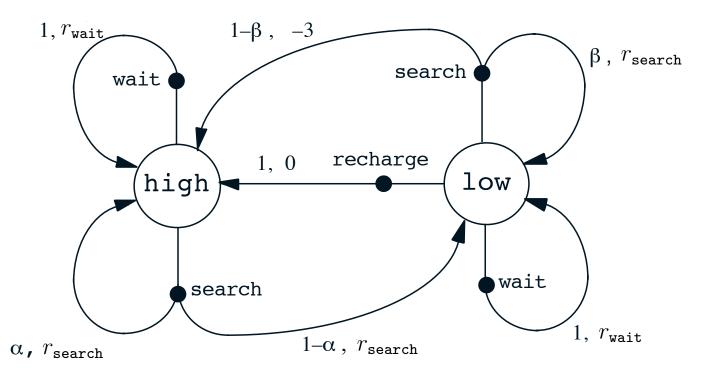
#### Recycling Robot

- ☐ At each step, robot has to decide whether it should (1) actively search for a can, (2) wait for someone to bring it a can, or (3) go to home base and recharge.
- ☐ Searching is better but runs down the battery; if runs out of power while searching, has to be rescued (which is bad).
- Decisions made on basis of current energy level: high, low.
- ☐ Reward = number of cans collected

## **Recycling Robot MDP**

$$\begin{split} \mathcal{S} &= \left\{ \text{high,low} \right\} \\ \mathcal{A}(\text{high}) &= \left\{ \text{search,wait} \right\} \\ \mathcal{A}(\text{low}) &= \left\{ \text{search,wait,recharge} \right\} \end{split}$$

 $r_{\rm search}$  = expected no. of cans while searching  $r_{\rm wait}$  = expected no. of cans while waiting  $r_{\rm search} > r_{\rm wait}$ 



## The Markov Property

- $\square$  By "the state" at step t, the book means whatever information is available to the agent at step t about its environment.
- ☐ The state can include immediate "sensations," highly processed sensations, and structures built up over time from sequences of sensations.
- ☐ Ideally, a state should summarize past sensations so as to retain all "essential" information, i.e., it should have the **Markov Property**:

$$\mathbf{Pr}\{R_{t+1} = r, S_{t+1} = s' \mid S_0, A_0, R_1, \dots, S_{t-1}, A_{t-1}, R_t, S_t, A_t\} = p(s', r \mid s, a) = \mathbf{Pr}\{R_{t+1} = r, S_{t+1} = s' \mid S_t, A_t\}$$

 $\square$  for all  $s' \in S^+, r \in \mathcal{R}$ , and all histories  $S_0, A_0, R_1, ..., S_{t-1}, A_{t-1}, R_t, S_t, A_t$ .

# The Meaning of Life (goals, rewards, and returns)

#### **Goals and Rewards**

- ☐ Is a scalar reward signal an adequate notion of a goal?— maybe not, but it is surprisingly flexible.
- ☐ A goal should specify **what** we want to achieve, not **how** we want to achieve it.
- ☐ A goal must be outside the agent's direct control—thus outside the agent.
- ☐ The agent must be able to measure success:
  - explicitly;
  - frequently during its lifespan.

### The reward hypothesis

- ☐ That all of what we mean by goals and purposes can be well thought of as the maximization of the cumulative sum of a received scalar signal (reward)
- $\square$  A sort of *null hypothesis*.
  - Probably ultimately wrong, but so simple we have to disprove it before considering anything more complicated

# Rewards and returns

- The objective in RL is to maximize long-term future reward
- That is, to choose  $A_t$  so as to maximize  $R_{t+1}, R_{t+2}, R_{t+3}, \ldots$

the discount rate

- But what exactly should be maximized?
- The <u>discounted return</u> at time t:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$$

| $\gamma$    | Reward sequence | Return |
|-------------|-----------------|--------|
| 0.5(or any) | 1 0 0 0         |        |
| 0.5         | 002000          |        |
| 0.9         | 002000          |        |
| 0.5         | -12632000       |        |

# 4 value functions

|            | state<br>values | action<br>values |
|------------|-----------------|------------------|
| prediction | $v_{\pi}$       | $q_{\pi}$        |
| control    | $v_*$           | $q_*$            |

- All theoretical objects, mathematical ideals (expected values)
- Distinct from their estimates:

$$V_t(s)$$
  $Q_t(s,a)$ 

# Values are expected returns

The value of a state, given a policy:

$$v_{\pi}(s) = \mathbb{E}\{G_t \mid S_t = s, A_{t:\infty} \sim \pi\} \qquad v_{\pi} : S \to \Re$$

The value of a state-action pair, given a policy:

$$q_{\pi}(s, a) = \mathbb{E}\{G_t \mid S_t = s, A_t = a, A_{t+1:\infty} \sim \pi\} \qquad q_{\pi} : S \times A \to \Re$$

The optimal value of a state:

$$v_*(s) = \max_{\pi} v_{\pi}(s) \qquad v_* : S \to \Re$$

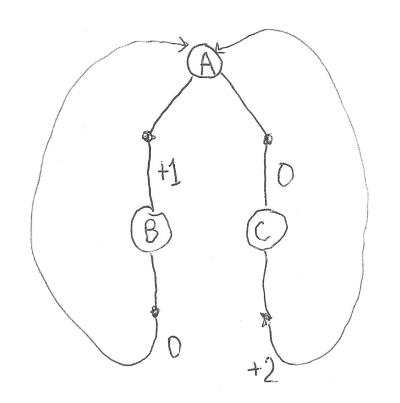
• The optimal value of a state-action pair:

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a) \qquad q_* : S \times A \to \Re$$

• Optimal policy:  $\pi_*$  is an optimal policy if and only if

$$\pi_*(a|s) > 0$$
 only where  $q_*(s,a) = \max_b q_*(s,b)$   $\forall s \in S$ 

• in other words,  $\pi_*$  is optimal iff it is *greedy* wrt  $q_*$ 



What policy is optimal?

A: left

B: Right C: Other

If 8=0?

If 8=.99

If 8=.99

#### Return

Suppose the sequence of rewards after step *t* is:

$$R_{t+1}, R_{t+2}, R_{t+3}, \dots$$

What do we want to maximize?

At least three cases, but in all of them, we seek to maximize the **expected return**,  $E\{G_t\}$ , on each step t.

- Total reward,  $G_t$  = sum of all future reward in the episode
- <u>Discounted reward</u>,  $G_t$  = sum of all future *discounted* reward
- Average reward,  $G_t$  = average reward per time step

### **Episodic Tasks**

**Episodic tasks**: interaction breaks naturally into episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we almost always use simple *total reward*:

$$G_{t} = R_{t+1} + R_{t+2} + \cdots + R_{T},$$

where *T* is a final time step at which a **terminal state** is reached, ending an episode.

### **Continuing Tasks**

Continuing tasks: interaction does not have natural episodes, but just goes on and on...

In this class, for continuing tasks we will always use *discounted* return:

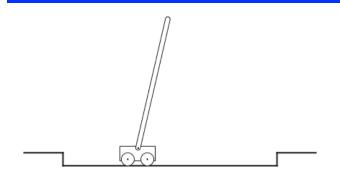
$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1},$$

where  $\gamma$ ,  $0 \le \gamma \le 1$ , is the **discount rate**.

shortsighted  $0 \leftarrow \gamma \rightarrow 1$  farsighted

Typically,  $\gamma = 0.9$ 

## An Example: Pole Balancing



Avoid **failure:** the pole falling beyond a critical angle or the cart hitting end of track

As an **episodic task** where episode ends upon failure:

reward = +1 for each step before failure

⇒ return = number of steps before failure

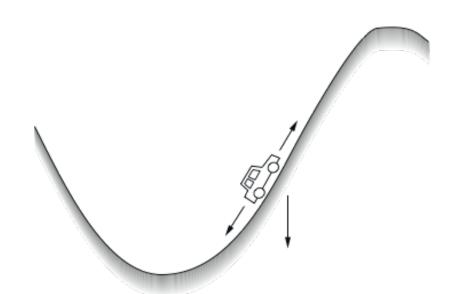
As a **continuing task** with discounted return:

reward = -1 upon failure; 0 otherwise

 $\Rightarrow$  return =  $-\gamma^k$ , for k steps before failure

In either case, return is maximized by avoiding failure for as long as possible.

## **Another Example: Mountain Car**



Get to the top of the hill as quickly as possible.

reward = −1 for each step where **not** at top of hill

⇒ return = − number of steps before reaching top of hill

Return is maximized by minimizing number of steps to reach the top of the hill.

## A Trick to Unify Notation for Returns

- ☐ In episodic tasks, we number the time steps of each episode starting from zero.
- $\square$  We usually do not have to distinguish between episodes, so instead of writing  $S_{t,j}$  for states in episode j, we write just  $S_t$
- ☐ Think of each episode as ending in an absorbing state that always produces reward of zero:

$$(S_0)$$
  $R_1 = +1$   $(S_1)$   $R_2 = +1$   $(S_2)$   $R_3 = +1$   $(S_2)$   $R_3 = +1$   $(S_3 = +1)$   $(S_4 = 0)$   $(S_5 = 0)$   $(S_5 = 0)$ 

 $\square$  We can cover <u>all</u> cases by writing  $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$ ,

where  $\gamma$  can be 1 only if a zero reward absorbing state is always reached.

#### **Value Functions**

☐ The **value of a state** is the expected return starting from that state; depends on the agent's policy:

#### State - value function for policy $\pi$ :

$$v_{\pi}(s) = E_{\pi} \left\{ G_{t} \mid S_{t} = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right\}$$

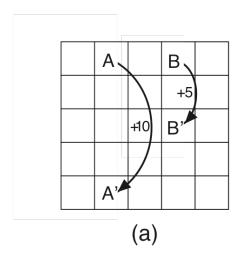
☐ The value of an action (in a state) is the expected return starting after taking that action from that state; depends on the agent's policy:

#### Action - value function for policy $\pi$ :

$$q_{\pi}(s,a) = E_{\pi} \left\{ G_{t} \mid S_{t} = s, A_{t} = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s, A_{t} = a \right\}$$

#### Gridworld

- Actions: north, south, east, west; deterministic.
- $\square$  If would take agent off the grid: no move but reward = -1
- $\Box$  Other actions produce reward = 0, except actions that move agent out of special states A and B as shown.





State-value function for equiprobable random policy;  $\gamma = 0.9$ 

### Bellman Equation for a Policy $\pi$

The basic idea:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma \left( R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots \right)$$

$$= R_{t+1} + \gamma G_{t+1}$$

So: 
$$v_{\pi}(s) = E_{\pi} \left\{ G_{t} | S_{t} = s \right\}$$
$$= E_{\pi} \left\{ R_{t+1} + \gamma v_{\pi} (S_{t+1}) | S_{t} = s \right\}$$

Or, without the expectation operator:

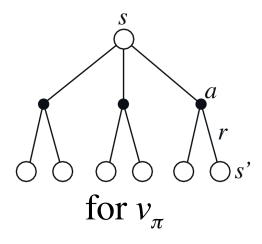
$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[ r + \gamma v_{\pi}(s') \right]$$

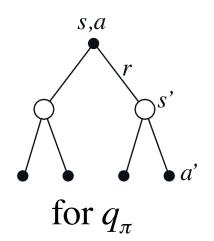
## More on the Bellman Equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[ r + \gamma v_{\pi}(s') \right]$$

This is a set of equations (in fact, linear), one for each state. The value function for  $\pi$  is its unique solution.

#### **Backup diagrams**:



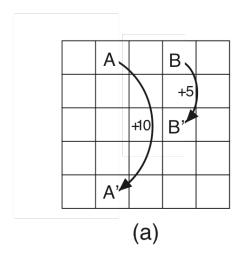


## Iterative Policy Evaluation - One array version

```
Input \pi, the policy to be evaluated
Initialize an array V(s) = 0, for all s \in S^+
Repeat
   \Delta \leftarrow 0
   For each s \in S:
         v \leftarrow V(s)
         V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
         \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output V \approx v_{\pi}
```

#### Gridworld

- ☐ Actions: north, south, east, west; deterministic.
- $\square$  If would take agent off the grid: no move but reward = -1
- $\Box$  Other actions produce reward = 0, except actions that move agent out of special states A and B as shown.





| 3.3  | 8.8  | 4.4  | 5.3  | 1.5  |
|------|------|------|------|------|
| 1.5  | 3.0  | 2.3  | 1.9  | 0.5  |
| 0.1  | 0.7  | 0.7  | 0.4  | -0.4 |
| -1.0 | -0.4 | -0.4 | -0.6 | -1.2 |
| -1.9 | -1.3 | -1.2 | -1.4 | -2.0 |
| (b)  |      |      |      |      |

 $0.0 \qquad \gamma = 0.9$ 

State-value function

for equiprobable

random policy;