Multi-arm Bandits

Sutton and Barto, Chapter 2

The simplest
reinforcement learning
problem

Lecture 9: Exploration and Exploitation
I—Multi-Armed Bandits
|—Regret

Regret

The action-value is the mean reward for action a,
QR(a) = E[r|a]
m The optimal value V* is

V*=Q(a") = max Q(a)

m The regret is the opportunity loss for one step
l =E[V" — Q(a;)]
m The total regret is the total opportunity loss

t
Le=E|) V*-Q(ar)
=1

m Maximise cumulative reward = minimise total regret

Lecture 9: Exploration and Exploitation
I—Multi-Armed Bandits
|—Regret

Counting Regret

m The count N¢(a) is expected number of selections for action a

m The gap A, is the difference in value between action a and
optimal action a*, A, = V* — Q(a)
m Regret is a function of gaps and the counts

> ovr- Q(aT)}
=) E[N:(a)] (V* - Q(a))

acA

=) E[N(a)] A,

acA

Lt:]E

m A good algorithm ensures small counts for large gaps
m Problem: gaps are not known!

Lecture 9: Exploration and Exploitation
I—Multi-Armed Bandits
|—Regret

Linear or Sublinear Regret

greedy
e-greedy

Total regret
decaying e-greedy

Time-steps

m |f an algorithm forever explores it will have linear total regret
m |f an algorithm never explores it will have linear total regret

m s it possible to achieve sublinear total regret?

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
|—Greedy and e-greedy algorithms

Greedy Algorithm

m We consider algorithms that estimate Q:(a) ~ Q(a)

m Estimate the value of each action by Monte-Carlo evaluation

m [he greedy algorithm selects action with highest value

at = argmax Q(a)
acA

m Greedy can lock onto a suboptimal action forever

m = Greedy has linear total regret

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
|—Greedy and e-greedy algorithms

e-Greedy Algorithm

m [he e-greedy algorithm continues to explore forever

m With probability 1 — ¢ select a = argmax Q(a)
ac A
m With probability € select a random action

m Constant € ensures minimum regret

m = e-greedy has linear total regret

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
|—Greedy and e-greedy algorithms

Optimistic Initialisation

m Simple and practical idea: initialise Q(a) to high value
m Update action value by incremental Monte-Carlo evaluation
m Starting with N(a) > 0

N\

Qi(ar) = Qt—l +

Nt(at) (”t — Qt—l)

Encourages systematic exploration early on

O
m But can still lock onto suboptimal action

m = greedy + optimistic initialisation has linear total regret
O

= e-greedy + optimistic initialisation has linear total regret

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
|—Greedy and e-greedy algorithms

Decaying e;-Greedy Algorithm

m Pick a decay schedule for €1, e, ...

m Consider the following schedule

c >0

d= min A;
a|A;>0

. c| Al
€+ = Mmin , ﬂ

m Decaying €;-greedy has logarithmic asymptotic total regret!
m Unfortunately, schedule requires advance knowledge of gaps

m Goal: find an algorithm with sublinear regret for any
multi-armed bandit (without knowledge of R)

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
|—Lower Bound

L ower Bound

m The performance of any algorithm is determined by similarity
between optimal arm and other arms

m Hard problems have similar-looking arms with different means

m This is described formally by the gap A, and the similarity in
distributions KL(R?||R?x)

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

lim Lt

> logt
LS gt) KL(R3||R3)
a|A;>0

Lecture 9: Exploration and Exploitation
I—Multi-Armed Bandits
|—Upper Confidence Bound

Optimism in the Face of Uncertainty

Qa) Qa)

Q(a)

1.6 1.2 0.8 0.4 0 0.4 0.8 1.2 1.6 2 24 2.8 3.2 3.6 4 4.4 4.8 52 5.6

m Which action should we pick?
m The more uncertain we are about an action-value
m [he more important it is to explore that action

m |t could turn out to be the best action

Lecture 9: Exploration and Exploitation
I—Multi-Armed Bandits
|—Upper Confidence Bound

Optimism in the Face of Uncertainty (2)

_—

m After picking blue action
m We are less uncertain about the value
m And more likely to pick another action

m Until we home in on best action

Lecture 9: Exploration and Exploitation
I—Multi-Armed Bandits
|—Upper Confidence Bound

Upper Confidence Bounds

m Estimate an upper confidence U,(a) for each action value
m Such that Q(a) < Q:(a) + U:(a) with high probability
m This depends on the number of times N(a) has been selected

m Small N;(a) = large qt(a) (estimated value is uncertain)
m Large Ni(a) = small U;(a) (estimated value is accurate)

m Select action maximising Upper Confidence Bound (UCB)

ar = argmax Q¢(a) + Us(a)
acA

Lecture 9: Exploration and Exploitation
I—Multi-Armed Bandits
|—Upper Confidence Bound

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Aet Xi,...,Xt be i.i.d. random variables in [0,1], and let
X: = %Zizl X, be the sample mean. Then

P[E[X] > X+ u] < e 2%

m We will apply Hoeffding's Inequality to rewards of the bandit

m conditioned on selecting action a

P [Q(a) > CA?t(a) + Ut(a)} < e_2Nt(a)Ut(a)2

Lecture 9: Exploration and Exploitation
I—Multi-Armed Bandits
|—Upper Confidence Bound

Calculating Upper Confidence Bounds

Pick a probability p that true value exceeds UCB

m Now solve for U;(a)

e—2Nt(a) Ut(a)2 — p

—log p
Ut(a) — \/ZNt(a)

m Reduce p as we observe more rewards, e.g. p =t~ *

m Ensures we select optimal action as t — o©

Ut(a) = \/ illto(i)t

Lecture 9: Exploration and Exploitation
I—Multi-Armed Bandits
|—Upper Confidence Bound

UCB1

m This leads to the UCB1 algorithm

2logt
a; = argmax Q(a) +
‘ ac A (3) N¢(a)

Theorem

The UCB algorithm achieves logarithmic asymptotic total regret

im L <8logt » A,

t— 00
a|A;>0

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a
. et
Pridi=a} = SOy eHe(d) = m(a)

Note that this allows us to work with unnormalized preferences and turn
them into probabilities!

Same idea as using potentials in graphical models

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a

Pridi=a} = z’g_l CHi (D) m(@)

Ht_|_1(At) = Ht(At) —|— Q{(Rt — Rt) (]. — Wt(At))

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a

. el
Pridi=a} = SOy eHe(d) = m(a)

Hyi1(a) = Hi(a) + a(Ry — Ry) (1a=a, — m(a)), Va,

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a

. el
Pridi=a} = SOy eHe(d) = m(a)

Hyi1(a) = Hi(a) + a(Ry — Ry) (1a=a, — m(a)), Va,

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a

Pr{d—a} = "
I‘{ t_a/} T 2]521 th(b)
Hiy1(a)
1 d
Ry = - Z R;
1=1
%
Optimal
action

= Hi(a) + a(Rt — Rt) (Lo=a, —
100% [
80%
60%
40%
20% |

0% L,

Wt(a)

me(a)), Va,

]

o= 01 - g
Wline
a =0.

i IR -

/ a=01__

f_,w*”"* without baseline
————————————§=0.

4

e A A b b

R

500 750

Steps

250

1000

Derivation of gradient-bandit algorithm

In exact gradient ascent:

OF [Ri]

Ht-l—l(a) = Ht(a) + 8Ht(a) y (1)

where:

E[R:] = Z m¢(b)q«(b),
b

OE[R:] O
OH:(a) OH:(a)

where X; does not depend on b, because) _, gzzgsg = 0.

OE[R:] 0 m(b)
(a) ~ 20)aHt(a)

O
= L r(b)a-(b)aHtE i/wt()

=K ((t) - Xt) 867;5(/4)) /Wt(At)]
— B[(R R) T)]

where here we have chosen X; = R; and substituted R; for g.(A;),
which is permitted because E[R;:|At] = g.(A¢).

For now assume: g:,igsg = 7¢(b)(1a=p — me(a)). Then:
=E|[(R: — Rt)ﬂ't(At)(la:At — m¢(a)) /me(Ar)]
=E[(R: — Re) (1aza, — me(a))] -

Hep1(a) = He(a) + (Re — Re) (1a—p, — me(a)), (from (1), QED)

Thus it remains only to show that

0 m(b)
OH:(a)

= 7¢(b) (]-a:b — ﬂt(a)).

Recall the standard quotient rule for derivatives:

%, [f(x)] _ Adg(x) — f(x) 5
Ox | g(x) |

Using this, we can write...

8f(><) ag(x)
Quotient Rule: 88 [f(x)] _ g(x) — f(X)
X

g(x) g(x)?
aﬂ't(b))
9H:(a) ~ oHe(a) "t P
9 oHe(b)
8Ht(a) Sk eti(e)
HeHt(b) c (b) O eHt(c)
8Ht(a) Zc 1 th() — e’ (5) Z Ht(a)

- 5 (Q.R.)
(Zlc(:l th(C))

B la:ber(a) Zlc(:l oHi(c) _ gHi(b) gHe(a) o -

— 9er _
(Zlc(:l th(C))2

He (b) eHe(b) gHe(2)

la:be

Sk eth(a) (Zlé:l th(c))2

= 1,_pm(b) — me(b)me(a)
= 7¢(b) (La=p — m(a)). (Q.E.D.)

Summary Comparison of Bandit Algorithms

' UCB greedy with
optimistic
initialization

o =0.1

1.4}

Average ;|

e-greedy _— |
reward .\
: gradient\
over first ol bandit
1000 steps
1.1+
1-

1/128 1/64 1/32 1/16 1/

e/ a/c/ Qo

Discussion

* These are all simple methods
* but they are complicated enough—we will build on them
* we should understand them completely
* there are still open questions
* Our first algorithms that learn from evaluative feedback
* and thus must balance exploration and exploitation

* Our first algorithms that appear to have a goal
—that learn to maximize reward by trial and error

Our first dimensions!

* Problems vs Solution Methods
 Evaluative vs Instructive

* Associative vs Non-associative

Problem space

Single State Associative

Instructive
feedback

Evaluative
feedback

Problem space

Single State Associative

Instructive
feedback

Evaluative Bandits
1i{={=1e 0tz 1ed.€ | (Function optimization)

Problem space

Single State Associative

Instructive Supervised
feedback learning

Evaluative Bandits
1i{={=1e 0tz 1ed.€ | (Function optimization)

Problem space

Single State Associative

Instructive Averaqin Supervised
feedback Jng learning

Evaluative Bandits
1i{={=1e 0tz 1ed.€ | (Function optimization)

Problem space

Single State Associative

Instructive A . Supervised
veraging

feedback learning
Evaluative Bandits Assoclative
Search

1i{={=1e 0tz 1ed.€ | (Function optimization)

(Contextual bandits)

