Multi-arm Bandits

Sutton and Barto, Chapter 2

The simplest
reinforcement learning problem

Regret

- The action-value is the mean reward for action a,

$$
Q(a)=\mathbb{E}[r \mid a]
$$

- The optimal value V^{*} is

$$
V^{*}=Q\left(a^{*}\right)=\max _{a \in \mathcal{A}} Q(a)
$$

- The regret is the opportunity loss for one step

$$
I_{t}=\mathbb{E}\left[V^{*}-Q\left(a_{t}\right)\right]
$$

- The total regret is the total opportunity loss

$$
L_{t}=\mathbb{E}\left[\sum_{\tau=1}^{t} V^{*}-Q\left(a_{\tau}\right)\right]
$$

■ Maximise cumulative reward \equiv minimise total regret

LMulti-Armed Bandits

$\left\llcorner_{\text {Regret }}\right.$

Counting Regret

- The count $N_{t}(a)$ is expected number of selections for action a
- The gap Δ_{a} is the difference in value between action a and optimal action $a^{*}, \Delta_{a}=V^{*}-Q(a)$
- Regret is a function of gaps and the counts

$$
\begin{aligned}
L_{t} & =\mathbb{E}\left[\sum_{\tau=1}^{t} V^{*}-Q\left(a_{\tau}\right)\right] \\
& =\sum_{a \in \mathcal{A}} \mathbb{E}\left[N_{t}(a)\right]\left(V^{*}-Q(a)\right) \\
& =\sum_{a \in \mathcal{A}} \mathbb{E}\left[N_{t}(a)\right] \Delta_{a}
\end{aligned}
$$

- A good algorithm ensures small counts for large gaps
- Problem: gaps are not known!

Lecture 9: Exploration and Exploitation

L Multi-Armed Bandits

L Regret

Linear or Sublinear Regret

- If an algorithm forever explores it will have linear total regret

■ If an algorithm never explores it will have linear total regret
■ Is it possible to achieve sublinear total regret?

Greedy Algorithm

- We consider algorithms that estimate $\hat{Q}_{t}(a) \approx Q(a)$
- Estimate the value of each action by Monte-Carlo evaluation

$$
\hat{Q}_{t}(a)=\frac{1}{N_{t}(a)} \sum_{t=1}^{T} r_{t} \mathbf{1}\left(a_{t}=a\right)
$$

- The greedy algorithm selects action with highest value

$$
a_{t}^{*}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} \hat{Q}_{t}(a)
$$

- Greedy can lock onto a suboptimal action forever
$■ \Rightarrow$ Greedy has linear total regret

ϵ-Greedy Algorithm

- The ϵ-greedy algorithm continues to explore forever
- With probability $1-\epsilon$ select $a=\operatorname{argmax} \hat{Q}(a)$
- With probability ϵ select a random action
- Constant ϵ ensures minimum regret

$$
I_{t} \geq \frac{\epsilon}{\mathcal{A}} \sum_{a \in \mathcal{A}} \Delta_{a}
$$

$■ \Rightarrow \epsilon$-greedy has linear total regret

Optimistic Initialisation

- Simple and practical idea: initialise $Q(a)$ to high value
- Update action value by incremental Monte-Carlo evaluation
- Starting with $N(a)>0$

$$
\hat{Q}_{t}\left(a_{t}\right)=\hat{Q}_{t-1}+\frac{1}{N_{t}\left(a_{t}\right)}\left(r_{t}-\hat{Q}_{t-1}\right)
$$

- Encourages systematic exploration early on

■ But can still lock onto suboptimal action
$■ \Rightarrow$ greedy + optimistic initialisation has linear total regret
$■ \quad \Rightarrow \epsilon$-greedy + optimistic initialisation has linear total regret

Decaying ϵ_{t}-Greedy Algorithm

■ Pick a decay schedule for $\epsilon_{1}, \epsilon_{2}, \ldots$
■ Consider the following schedule

$$
\begin{aligned}
c & >0 \\
d & =\min _{a \mid \Delta_{\mathrm{a}}>0} \Delta_{i} \\
\epsilon_{t} & =\min \left\{1, \frac{c|\mathcal{A}|}{d^{2} t}\right\}
\end{aligned}
$$

■ Decaying ϵ_{t}-greedy has logarithmic asymptotic total regret!

- Unfortunately, schedule requires advance knowledge of gaps
- Goal: find an algorithm with sublinear regret for any multi-armed bandit (without knowledge of \mathcal{R})

Lower Bound

- The performance of any algorithm is determined by similarity between optimal arm and other arms
- Hard problems have similar-looking arms with different means

■ This is described formally by the gap Δ_{a} and the similarity in distributions $K L\left(\mathcal{R}^{a} \| \mathcal{R}^{a} *\right)$

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

$$
\lim _{t \rightarrow \infty} L_{t} \geq \log t \sum_{a \mid \Delta_{a}>0} \frac{\Delta_{a}}{K L\left(\mathcal{R}^{a} \| \mathcal{R}^{a^{*}}\right)}
$$

L Multi-Armed Bandits

L Upper Confidence Bound

Optimism in the Face of Uncertainty

■ Which action should we pick?
■ The more uncertain we are about an action-value

- The more important it is to explore that action
- It could turn out to be the best action

L Multi-Armed Bandits

L Upper Confidence Bound

Optimism in the Face of Uncertainty (2)

- After picking blue action
- We are less uncertain about the value
- And more likely to pick another action

■ Until we home in on best action

Upper Confidence Bounds

- Estimate an upper confidence $\hat{U}_{t}(a)$ for each action value
- Such that $Q(a) \leq \hat{Q}_{t}(a)+\hat{U}_{t}(a)$ with high probability
- This depends on the number of times $N(a)$ has been selected
- Small $N_{t}(a) \Rightarrow$ large $\hat{U}_{t}(a)$ (estimated value is uncertain)
- Large $N_{t}(a) \Rightarrow$ small $\hat{U}_{t}(a)$ (estimated value is accurate)

■ Select action maximising Upper Confidence Bound (UCB)

$$
a_{t}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} \hat{Q}_{t}(a)+\hat{U}_{t}(a)
$$

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let X_{1}, \ldots, X_{t} be i.i.d. random variables in [0,1], and let $\bar{X}_{t}=\frac{1}{\tau} \sum_{\tau=1}^{t} X_{\tau}$ be the sample mean. Then

$$
\mathbb{P}\left[\mathbb{E}[X]>\bar{X}_{t}+u\right] \leq e^{-2 t u^{2}}
$$

■ We will apply Hoeffding's Inequality to rewards of the bandit

- conditioned on selecting action a

$$
\mathbb{P}\left[Q(a)>\hat{Q}_{t}(a)+U_{t}(a)\right] \leq e^{-2 N_{t}(a) U_{t}(a)^{2}}
$$

L Multi-Armed Bandits

L Upper Confidence Bound

Calculating Upper Confidence Bounds

- Pick a probability p that true value exceeds UCB
- Now solve for $U_{t}(a)$

$$
\begin{aligned}
e^{-2 N_{t}(a) U_{t}(a)^{2}} & =p \\
U_{t}(a) & =\sqrt{\frac{-\log p}{2 N_{t}(a)}}
\end{aligned}
$$

- Reduce p as we observe more rewards, e.g. $p=t^{-4}$
- Ensures we select optimal action as $t \rightarrow \infty$

$$
U_{t}(a)=\sqrt{\frac{2 \log t}{N_{t}(a)}}
$$

L Multi-Armed Bandits

L Upper Confidence Bound

UCB1

- This leads to the UCB1 algorithm

$$
a_{t}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(a)+\sqrt{\frac{2 \log t}{N_{t}(a)}}
$$

Theorem

The UCB algorithm achieves logarithmic asymptotic total regret

$$
\lim _{t \rightarrow \infty} L_{t} \leq 8 \log t \sum_{a \mid \Delta_{a}>0} \Delta_{a}
$$

Gradient-Bandit Algorithms

- Let $H_{t}(a)$ be a learned preference for taking action a

$$
\operatorname{Pr}\left\{A_{t}=a\right\} \doteq \frac{e^{H_{t}(a)}}{\sum_{b=1}^{k} e^{H_{t}(b)}} \doteq \pi_{t}(a)
$$

Note that this allows us to work with unnormalized preferences and turn them into probabilities!

Same idea as using potentials in graphical models

Gradient-Bandit Algorithms

- Let $H_{t}(a)$ be a learned preference for taking action a

$$
\begin{aligned}
& \operatorname{Pr}\left\{A_{t}=a\right\} \doteq \frac{e^{H_{t}(a)}}{\sum_{b=1}^{k} e^{H_{t}(b)}} \doteq \pi_{t}(a) \\
& H_{t+1}\left(A_{t}\right) \doteq H_{t}\left(A_{t}\right)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(1-\pi_{t}\left(A_{t}\right)\right) \\
& \bar{R}_{t} \doteq \frac{1}{t} \sum_{i=1}^{t} R_{i}
\end{aligned}
$$

Gradient-Bandit Algorithms

- Let $H_{t}(a)$ be a learned preference for taking action a

$$
\operatorname{Pr}\left\{A_{t}=a\right\} \doteq \frac{e^{H_{t}(a)}}{\sum_{b=1}^{k} e^{H_{t}(b)}} \doteq \pi_{t}(a)
$$

$$
H_{t+1}(a) \doteq H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(\mathbf{1}_{a=A_{t}}-\pi_{t}(a)\right), \quad \forall a
$$

$$
\bar{R}_{t} \doteq \frac{1}{t} \sum_{i=1}^{t} R_{i}
$$

Gradient-Bandit Algorithms

- Let $H_{t}(a)$ be a learned preference for taking action a

$$
\operatorname{Pr}\left\{A_{t}=a\right\} \doteq \frac{e^{H_{t}(a)}}{\sum_{b=1}^{k} e^{H_{t}(b)}} \doteq \pi_{t}(a)
$$

$$
H_{t+1}(a) \doteq H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(\mathbf{1}_{a=A_{t}}-\pi_{t}(a)\right), \quad \forall a
$$

$$
\bar{R}_{t} \doteq \frac{1}{t} \sum_{i=1}^{t} R_{i}
$$

Gradient-Bandit Algorithms

- Let $H_{t}(a)$ be a learned preference for taking action a

$$
\begin{aligned}
& \operatorname{Pr}\left\{A_{t}=a\right\} \doteq \frac{e^{H_{t}(a)}}{\sum_{b=1}^{k} e^{H_{t}(b)}} \doteq \pi_{t}(a) \\
& H_{t+1}(a) \doteq H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(\mathbf{1}_{a=A_{t}}-\pi_{t}(a)\right), \quad \forall a,
\end{aligned}
$$

$$
\bar{R}_{t} \doteq \frac{1}{t} \sum_{i=1}^{t} R_{i}
$$

Derivation of gradient-bandit algorithm

In exact gradient ascent:

$$
\begin{equation*}
H_{t+1}(a) \doteq H_{t}(a)+\alpha \frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathbb{E}\left[R_{t}\right] \doteq \sum_{b} \pi_{t}(b) q_{*}(b) \\
& \frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)}=\frac{\partial}{\partial H_{t}(a)}\left[\sum_{b} \pi_{t}(b) q_{*}(b)\right] \\
&=\sum_{b} q_{*}(b) \frac{\partial \pi_{t}(b)}{\partial H_{t}(a)} \\
&=\sum_{b}\left(q_{*}(b)-X_{t}\right) \frac{\partial \pi_{t}(b)}{\partial H_{t}(a)},
\end{aligned}
$$

where X_{t} does not depend on b, because $\sum_{b} \frac{\partial \pi_{t}(b)}{\partial H_{t}(a)}=0$.

$$
\begin{aligned}
\frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} & =\sum_{b}\left(q_{*}(b)-X_{t}\right) \frac{\partial \pi_{t}(b)}{\partial H_{t}(a)} \\
& =\sum_{b} \pi_{t}(b)\left(q_{*}(b)-X_{t}\right) \frac{\partial \pi_{t}(b)}{\partial H_{t}(a)} / \pi_{t}(b) \\
& =\mathbb{E}\left[\left(q_{*}\left(A_{t}\right)-X_{t}\right) \frac{\partial \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} / \pi_{t}\left(A_{t}\right)\right] \\
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right) \frac{\partial \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} / \pi_{t}\left(A_{t}\right)\right]
\end{aligned}
$$

where here we have chosen $X_{t}=\bar{R}_{t}$ and substituted R_{t} for $q_{*}\left(A_{t}\right)$, which is permitted because $\mathbb{E}\left[R_{t} \mid A_{t}\right]=q_{*}\left(A_{t}\right)$.
For now assume: $\frac{\partial \pi_{t}(b)}{\partial H_{t}(a)}=\pi_{t}(b)\left(\mathbf{1}_{a=b}-\pi_{t}(a)\right)$. Then:

$$
\begin{aligned}
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right) \pi_{t}\left(A_{t}\right)\left(\mathbf{1}_{a=A_{t}}-\pi_{t}(a)\right) / \pi_{t}\left(A_{t}\right)\right] \\
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right)\left(\mathbf{1}_{a=A_{t}}-\pi_{t}(a)\right)\right] .
\end{aligned}
$$

$$
H_{t+1}(a)=H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(\mathbf{1}_{a=A_{t}}-\pi_{t}(a)\right),(\text { from (1), QED) }
$$

Thus it remains only to show that

$$
\frac{\partial \pi_{t}(b)}{\partial H_{t}(a)}=\pi_{t}(b)\left(\mathbf{1}_{a=b}-\pi_{t}(a)\right)
$$

Recall the standard quotient rule for derivatives:

$$
\frac{\partial}{\partial x}\left[\frac{f(x)}{g(x)}\right]=\frac{\frac{\partial f(x)}{\partial x} g(x)-f(x) \frac{\partial g(x)}{\partial x}}{g(x)^{2}} .
$$

Using this, we can write...

Quotient Rule: $\quad \frac{\partial}{\partial x}\left[\frac{f(x)}{g(x)}\right]=\frac{\frac{\partial f(x)}{\partial x} g(x)-f(x) \frac{\partial g(x)}{\partial x}}{g(x)^{2}}$

$$
\begin{align*}
\frac{\partial \pi_{t}(b)}{\partial H_{t}(a)} & =\frac{\partial}{\partial H_{t}(a)} \pi_{t}(b) \\
& =\frac{\partial}{\partial H_{t}(a)}\left[\frac{e^{H_{t}(b)}}{\sum_{c=1}^{k} e^{H_{t}(c)}}\right] \\
& =\frac{\frac{\partial e^{H_{t}(b)}}{\partial H_{t}(a)} \sum_{c=1}^{k} e^{H_{t}(c)}-e^{H_{t}(b) \frac{\partial \sum_{c=1}^{k} e^{H_{t}(c)}}{\partial H_{t}(a)}}}{\left(\sum_{c=1}^{k} e^{H_{t}(c)}\right)^{2}} \tag{Q.R.}\\
& =\frac{\mathbf{1}_{a=b} e^{H_{t}(a)} \sum_{c=1}^{k} e^{H_{t}(c)}-e^{H_{t}(b)} e^{H_{t}(a)}}{\left(\sum_{c=1}^{k} e^{H_{t}(c)}\right)^{2}} \quad\left(\frac{\partial e^{x}}{\partial x}=e^{x}\right) \\
& =\frac{\mathbf{1}_{a=b} e^{H_{t}(b)}}{\sum_{c=1}^{k} e^{H_{t}(c)}}-\frac{e^{H_{t}(b)} e^{H_{t}(a)}}{\left(\sum_{c=1}^{k} e^{H_{t}(c)}\right)^{2}} \\
& =\mathbf{1}_{a=b} \pi_{t}(b)-\pi_{t}(b) \pi_{t}(a) \\
& =\pi_{t}(b)\left(\mathbf{1}_{a=b}-\pi_{t}(a)\right) \tag{Q.E.D.}
\end{align*}
$$

Summary Comparison of Bandit Algorithms

Discussion

- These are all simple methods
- but they are complicated enough-we will build on them
- we should understand them completely
- there are still open questions
- Our first algorithms that learn from evaluative feedback
- and thus must balance exploration and exploitation
- Our first algorithms that appear to have a goal -that learn to maximize reward by trial and error

Our first dimensions!

- Problems vs Solution Methods
- Evaluative vs Instructive
- Associative vs Non-associative

Problem space

Problem space

Problem space

	Single State	Associative
Instructive feedback		Supervised learning
Evaluative feedback	Bandits (Function optimization)	

Problem space

	Single State	Associative
Instructive feedloack	Averaging	Supervised learning
Evaluative feedloack	Bandits (Function optimization)	

Problem space

	Single State	Associative
Instructive feedback	Averaging	Supervised learning
Evaluative feedback	Bandits (Function optimization)	Associative Search (Contextual bandits)

