
Multi-arm Bandits
Sutton and Barto, Chapter 2

The simplest
reinforcement learning

problem

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Regret

Regret

The action-value is the mean reward for action a,

Q(a) = E [r |a]

The optimal value V ⇤ is

V ⇤ = Q(a⇤) = max
a2A

Q(a)

The regret is the opportunity loss for one step

lt = E [V ⇤ � Q(at)]

The total regret is the total opportunity loss

Lt = E
"

tX

⌧=1

V ⇤ � Q(a⌧)

#

Maximise cumulative reward ⌘ minimise total regret

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Regret

Counting Regret

The count Nt(a) is expected number of selections for action a

The gap �a is the di↵erence in value between action a and
optimal action a⇤, �a = V ⇤ � Q(a)

Regret is a function of gaps and the counts

Lt = E
"

tX

⌧=1

V ⇤ � Q(a⌧)

#

=
X

a2A
E [Nt(a)] (V

⇤ � Q(a))

=
X

a2A
E [Nt(a)]�a

A good algorithm ensures small counts for large gaps

Problem: gaps are not known!

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Regret

Linear or Sublinear Regret

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Total regret

ϵ-greedy
greedy

Time-steps

decaying ϵ-greedy

If an algorithm forever explores it will have linear total regret

If an algorithm never explores it will have linear total regret

Is it possible to achieve sublinear total regret?

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Greedy and ✏-greedy algorithms

Greedy Algorithm

We consider algorithms that estimate Q̂t(a) ⇡ Q(a)

Estimate the value of each action by Monte-Carlo evaluation

Q̂t(a) =
1

Nt(a)

TX

t=1

rt1(at = a)

The greedy algorithm selects action with highest value

a⇤t = argmax
a2A

Q̂t(a)

Greedy can lock onto a suboptimal action forever

) Greedy has linear total regret

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Greedy and ✏-greedy algorithms

✏-Greedy Algorithm

The ✏-greedy algorithm continues to explore forever
With probability 1� ✏ select a = argmax

a2A
Q̂(a)

With probability ✏ select a random action

Constant ✏ ensures minimum regret

lt �
✏

A
X

a2A
�a

) ✏-greedy has linear total regret

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Greedy and ✏-greedy algorithms

Optimistic Initialisation

Simple and practical idea: initialise Q(a) to high value

Update action value by incremental Monte-Carlo evaluation

Starting with N(a) > 0

Q̂t(at) = Q̂t�1 +
1

Nt(at)
(rt � Q̂t�1)

Encourages systematic exploration early on

But can still lock onto suboptimal action

) greedy + optimistic initialisation has linear total regret

) ✏-greedy + optimistic initialisation has linear total regret

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Greedy and ✏-greedy algorithms

Decaying ✏t-Greedy Algorithm

Pick a decay schedule for ✏1, ✏2, ...

Consider the following schedule

c > 0

d = min
a|�a>0

�i

✏t = min

⇢
1,

c |A|
d2t

�

Decaying ✏t-greedy has logarithmic asymptotic total regret!

Unfortunately, schedule requires advance knowledge of gaps

Goal: find an algorithm with sublinear regret for any
multi-armed bandit (without knowledge of R)

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Lower Bound

Lower Bound

The performance of any algorithm is determined by similarity
between optimal arm and other arms

Hard problems have similar-looking arms with di↵erent means

This is described formally by the gap �a and the similarity in
distributions KL(Ra||Ra⇤)

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

lim
t!1

Lt � log t
X

a|�a>0

�a

KL(Ra||Ra⇤)

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Upper Confidence Bound

Optimism in the Face of Uncertainty

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6

Q

Q(a3)Q(a2)

Q(a1)

p(Q)

Which action should we pick?

The more uncertain we are about an action-value

The more important it is to explore that action

It could turn out to be the best action

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Upper Confidence Bound

Optimism in the Face of Uncertainty (2)

After picking blue action

We are less uncertain about the value

And more likely to pick another action

Until we home in on best action

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Upper Confidence Bound

Upper Confidence Bounds

Estimate an upper confidence Ût(a) for each action value

Such that Q(a)  Q̂t(a) + Ût(a) with high probability

This depends on the number of times N(a) has been selected

Small Nt(a)) large Ût(a) (estimated value is uncertain)
Large Nt(a)) small Ût(a) (estimated value is accurate)

Select action maximising Upper Confidence Bound (UCB)

at = argmax
a2A

Q̂t(a) + Ût(a)

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Upper Confidence Bound

Hoe↵ding’s Inequality

Theorem (Hoe↵ding’s Inequality)

Let X1, ...,Xt be i.i.d. random variables in [0,1], and let
X t =

1

⌧

Pt
⌧=1

X⌧ be the sample mean. Then

P
⇥
E [X] > X t + u

⇤
 e�2tu2

We will apply Hoe↵ding’s Inequality to rewards of the bandit

conditioned on selecting action a

P
h
Q(a) > Q̂t(a) + Ut(a)

i
 e�2Nt(a)Ut(a)2

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Upper Confidence Bound

Calculating Upper Confidence Bounds

Pick a probability p that true value exceeds UCB

Now solve for Ut(a)

e�2Nt(a)Ut(a)2 = p

Ut(a) =

s
� log p

2Nt(a)

Reduce p as we observe more rewards, e.g. p = t�4

Ensures we select optimal action as t ! 1

Ut(a) =

s
2 log t

Nt(a)

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Upper Confidence Bound

UCB1

This leads to the UCB1 algorithm

at = argmax
a2A

Q(a) +

s
2 log t

Nt(a)

Theorem

The UCB algorithm achieves logarithmic asymptotic total regret

lim
t!1

Lt  8 log t
X

a|�a>0

�a

Gradient-Bandit Algorithms
• Let be a learned preference for taking action aHt(a)

2.7. GRADIENT BANDITS 39

of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
is below baseline, then probability is decreased. The non-selected actions move in
the opposite direction.

Figure 2.4 shows results with the gradient-bandit algorithm on a variant of the
10-armed testbed in which the true expected rewards were selected according to a
normal distribution with a mean of +4 instead of zero (and with unit variance as
before). This shifting up of all the rewards has absolutely no a↵ect on the gradient-
bandit algorithm because of the reward baseline term, which instantaneously adapts
to the new level. But if the baseline were omitted (that is, if R̄t was taken to be

%
Optimal
action

Steps

α = 0.1

100%

80%

60%

40%

20%

0%

α = 0.4

α = 0.1

α = 0.4

without baseline

with baseline

0 250 500 750 1000

Figure 2.4: Average performance of the gradient-bandit algorithm with and without a
reward baseline on the 10-armed testbed with E[q(a)] = 4.

Note that this allows us to work with unnormalized preferences and turn
them into probabilities!

Same idea as using potentials in graphical models

2.7. GRADIENT BANDITS 39

of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
is below baseline, then probability is decreased. The non-selected actions move in
the opposite direction.

Figure 2.4 shows results with the gradient-bandit algorithm on a variant of the
10-armed testbed in which the true expected rewards were selected according to a
normal distribution with a mean of +4 instead of zero (and with unit variance as
before). This shifting up of all the rewards has absolutely no a↵ect on the gradient-
bandit algorithm because of the reward baseline term, which instantaneously adapts
to the new level. But if the baseline were omitted (that is, if R̄t was taken to be

%
Optimal
action

Steps

α = 0.1

100%

80%

60%

40%

20%

0%

α = 0.4

α = 0.1

α = 0.4

without baseline

with baseline

0 250 500 750 1000

Figure 2.4: Average performance of the gradient-bandit algorithm with and without a
reward baseline on the 10-armed testbed with E[q(a)] = 4.

R̄t
.
=

1

t

tX

i=1

Ri

Gradient-Bandit Algorithms
• Let be a learned preference for taking action aHt(a)

2.7. GRADIENT BANDITS 39

of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
is below baseline, then probability is decreased. The non-selected actions move in
the opposite direction.

Figure 2.4 shows results with the gradient-bandit algorithm on a variant of the
10-armed testbed in which the true expected rewards were selected according to a
normal distribution with a mean of +4 instead of zero (and with unit variance as
before). This shifting up of all the rewards has absolutely no a↵ect on the gradient-
bandit algorithm because of the reward baseline term, which instantaneously adapts
to the new level. But if the baseline were omitted (that is, if R̄t was taken to be

%
Optimal
action

Steps

α = 0.1

100%

80%

60%

40%

20%

0%

α = 0.4

α = 0.1

α = 0.4

without baseline

with baseline

0 250 500 750 1000

Figure 2.4: Average performance of the gradient-bandit algorithm with and without a
reward baseline on the 10-armed testbed with E[q(a)] = 4.

Gradient-Bandit Algorithms
• Let be a learned preference for taking action aHt(a)

2.7. GRADIENT BANDITS 39

of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
is below baseline, then probability is decreased. The non-selected actions move in
the opposite direction.

Figure 2.4 shows results with the gradient-bandit algorithm on a variant of the
10-armed testbed in which the true expected rewards were selected according to a
normal distribution with a mean of +4 instead of zero (and with unit variance as
before). This shifting up of all the rewards has absolutely no a↵ect on the gradient-
bandit algorithm because of the reward baseline term, which instantaneously adapts
to the new level. But if the baseline were omitted (that is, if R̄t was taken to be

%
Optimal
action

Steps

α = 0.1

100%

80%

60%

40%

20%

0%

α = 0.4

α = 0.1

α = 0.4

without baseline

with baseline

0 250 500 750 1000

Figure 2.4: Average performance of the gradient-bandit algorithm with and without a
reward baseline on the 10-armed testbed with E[q(a)] = 4.

R̄t
.
=

1

t

tX

i=1

Ri

Ht+1(a)
.
= Ht(a) + ↵

�
Rt � R̄t

��
1a=At � ⇡t(a)

�
, 8a,

Gradient-Bandit Algorithms
• Let be a learned preference for taking action aHt(a)

2.7. GRADIENT BANDITS 39

of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
is below baseline, then probability is decreased. The non-selected actions move in
the opposite direction.

Figure 2.4 shows results with the gradient-bandit algorithm on a variant of the
10-armed testbed in which the true expected rewards were selected according to a
normal distribution with a mean of +4 instead of zero (and with unit variance as
before). This shifting up of all the rewards has absolutely no a↵ect on the gradient-
bandit algorithm because of the reward baseline term, which instantaneously adapts
to the new level. But if the baseline were omitted (that is, if R̄t was taken to be

%
Optimal
action

Steps

α = 0.1

100%

80%

60%

40%

20%

0%

α = 0.4

α = 0.1

α = 0.4

without baseline

with baseline

0 250 500 750 1000

Figure 2.4: Average performance of the gradient-bandit algorithm with and without a
reward baseline on the 10-armed testbed with E[q(a)] = 4.

R̄t
.
=

1

t

tX

i=1

Ri

Ht+1(a)
.
= Ht(a) + ↵

�
Rt � R̄t

��
1a=At � ⇡t(a)

�
, 8a,

Gradient-Bandit Algorithms
• Let be a learned preference for taking action aHt(a)

2.7. GRADIENT BANDITS 39

of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
is below baseline, then probability is decreased. The non-selected actions move in
the opposite direction.

Figure 2.4 shows results with the gradient-bandit algorithm on a variant of the
10-armed testbed in which the true expected rewards were selected according to a
normal distribution with a mean of +4 instead of zero (and with unit variance as
before). This shifting up of all the rewards has absolutely no a↵ect on the gradient-
bandit algorithm because of the reward baseline term, which instantaneously adapts
to the new level. But if the baseline were omitted (that is, if R̄t was taken to be

%
Optimal
action

Steps

α = 0.1

100%

80%

60%

40%

20%

0%

α = 0.4

α = 0.1

α = 0.4

without baseline

with baseline

0 250 500 750 1000

Figure 2.4: Average performance of the gradient-bandit algorithm with and without a
reward baseline on the 10-armed testbed with E[q(a)] = 4.

R̄t
.
=

1

t

tX

i=1

Ri

%
Optimal
action

Steps

α = 0.1

100%

80%

60%

40%

20%

0%

α = 0.4

α = 0.1

α = 0.4

without baseline

with baseline

1 250 500 750 1000

Ht+1(a)
.
= Ht(a) + ↵

�
Rt � R̄t

��
1a=At � ⇡t(a)

�
, 8a,

Derivation of gradient-bandit algorithm
In exact gradient ascent:

Ht+1(a)
.
= Ht(a) + ↵

@ E [Rt]

@Ht(a)
, (1)

where:
E[Rt]

.
=

X

b

⇡t(b)q⇤(b),

@ E[Rt]

@Ht(a)
=

@

@Ht(a)

"
X

b

⇡t(b)q⇤(b)

#

=
X

b

q⇤(b)
@ ⇡t(b)

@Ht(a)

=
X

b

�
q⇤(b)� Xt

�@ ⇡t(b)

@Ht(a)
,

where Xt does not depend on b, because
P

b

@ ⇡t(b)
@Ht(a)

= 0.

@ E[Rt]

@Ht(a)
=

X

b

�
q⇤(b)� Xt

�@ ⇡t(b)

@Ht(a)

=
X

b

⇡t(b)
�
q⇤(b)� Xt

�@ ⇡t(b)

@Ht(a)
/⇡t(b)

= E
�
q⇤(At)� Xt

�@ ⇡t(At)

@Ht(a)
/⇡t(At)

�

= E
�
Rt � R̄t

�@ ⇡t(At)

@Ht(a)
/⇡t(At)

�
,

where here we have chosen Xt = R̄t and substituted Rt for q⇤(At),
which is permitted because E[Rt |At] = q⇤(At).

For now assume: @ ⇡t(b)
@Ht(a)

= ⇡t(b)
�
1a=b � ⇡t(a)

�
. Then:

= E
⇥�
Rt � R̄t

�
⇡t(At)

�
1a=At

� ⇡t(a)
�
/⇡t(At)

⇤

= E
⇥�
Rt � R̄t

��
1a=At

� ⇡t(a)
�⇤

.

Ht+1(a) = Ht(a) + ↵
�
Rt � R̄t

��
1a=At

� ⇡t(a)
�
, (from (1), QED)

Thus it remains only to show that

@ ⇡t(b)

@Ht(a)
= ⇡t(b)

�
1a=b � ⇡t(a)

�
.

Recall the standard quotient rule for derivatives:

@

@x


f (x)

g(x)

�
=

@f (x)
@x g(x)� f (x)@g(x)@x

g(x)2
.

Using this, we can write...

Thus it remains only to show that

@ ⇡t(b)

@Ht(a)
= ⇡t(b)

�
1a=b � ⇡t(a)

�
.

Recall the standard quotient rule for derivatives:

@

@x


f (x)

g(x)

�
=

@f (x)
@x g(x)� f (x)@g(x)@x

g(x)2
.

Using this, we can write...

Quotient Rule:

@ ⇡t(b)

@Ht(a)
=

@

@Ht(a)
⇡t(b)

=
@

@Ht(a)

"
e
Ht(b)

P
k

c=1 e
Ht(c)

#

=
@eHt (b)

@Ht(a)

P
k

c=1 e
Ht(c) � e

Ht(b) @
P

k

c=1 e
Ht (c)

@Ht(a)⇣P
k

c=1 e
Ht(c)

⌘2 (Q.R.)

=
1a=be

Ht(a)
P

k

c=1 e
Ht(c) � e

Ht(b)eHt(a)

⇣P
k

c=1 e
Ht(c)

⌘2 (@e
x

@x = e
x)

=
1a=be

Ht(b)

P
k

c=1 e
Ht(c)

� e
Ht(b)eHt(a)

⇣P
k

c=1 e
Ht(c)

⌘2

= 1a=b⇡t(b)� ⇡t(b)⇡t(a)

= ⇡t(b)
�
1a=b � ⇡t(a)

�
. (Q.E.D.)

Summary Comparison of Bandit Algorithms

" / ↵ / c / Q0

Average
reward

over first
1000 steps

1.5

1.4

1.3

1.2

1.1

1

!-greedy

UCB

gradient
bandit

greedy with
optimistic

initialization
α = 0.1

1 2 41/21/41/81/161/321/641/128

Discussion
• These are all simple methods

• but they are complicated enough—we will build on them

• we should understand them completely

• there are still open questions

• Our first algorithms that learn from evaluative feedback

• and thus must balance exploration and exploitation

• Our first algorithms that appear to have a goal 
—that learn to maximize reward by trial and error

Our first dimensions!

• Problems vs Solution Methods

• Evaluative vs Instructive

• Associative vs Non-associative

Problem space

Single State Associative

Instructive
feedback

Evaluative
feedback

Problem space

Single State Associative

Instructive
feedback

Evaluative
feedback

Bandits

(Function optimization)

Problem space

Single State Associative

Instructive
feedback

Supervised
learning

Evaluative
feedback

Bandits

(Function optimization)

Problem space

Single State Associative

Instructive
feedback Averaging Supervised

learning

Evaluative
feedback

Bandits

(Function optimization)

Problem space

Single State Associative

Instructive
feedback Averaging Supervised

learning

Evaluative
feedback

Bandits

(Function optimization)

Associative
Search

(Contextual bandits)

