
Policy-Based Reinforcement Learning

I Previously we approximated paramateric value functions

vw(s) ⇡ v⇡(s)
qw(s, a) ⇡ q⇡(s, a)

I A policy can be generated from these values (e.g., greedy)
I In this lecture we directly parametrise the policy directly

⇡✓(a|s) = p(a|s, ✓)

I This lecture, we focus on model-free reinforcement learning

Value-based and policy-based RL: terminology

I Value Based
I Learn values
I Implicit policy (e.g. ✏ -greedy)

I Policy Based
I No values
I Learn policy

I Actor-Critic
I Learn values
I Learn policy

Value Function Policy

Actor
Critic

Value-Based Policy-Based

Advantages and disadvantages of policy-based RL

Advantages:
I True objective
I Easy extended to high-dimensional or continuous action spaces
I Can learn stochastic policies
I Sometimes policies are simple while values and models are complex

I E.g., complicated dynamics, but optimal policy is always “move forward”

Disadvantages:
I Could get stuck in local optima
I Obtained knowledge can be specific, does not always generalise well
I Does not necessarily extract all useful information from the data

(when used in isolation)

Policy Learning Objective

Policy Objective Functions

I Goal: given policy ⇡✓(s, a), find best parameters ✓

I How do we measure the quality of a policy ⇡✓?
I In episodic environments we can use the average total return per episode

I In continuing environments we can use the average reward per step

Policy Objective Functions: Episodic

I Episodic-return objective:

JG(✓) = ES0⇠d0,⇡✓

" 1’
t=0

�tRt+1

#

= ES0⇠d0,⇡✓ [G0]
= ES0⇠d0[E⇡✓ [Gt | St = S0]]
= ES0⇠d0[v⇡✓ (S0)]

where d0 is the start-state distribution This objective equals the expected value of the
start state

Policy Objective Functions: Average Reward

I Average-reward objective

JR(✓) = E⇡✓ [Rt+1]
= ESt⇠d⇡✓

⇥
EAt⇠⇡✓ (St) [Rt+1 | St]

⇤
=

’
s

d⇡✓ (s)
’
a

⇡✓(s, a)
’
r

p(r | s, a)r

where d⇡(s) = p(St = s | ⇡) is the probability of being in state s in the long run
Think of it as the ratio of time spent in s under policy ⇡

Policy Gradients

Policy Optimisation

I Policy based reinforcement learning is an optimization problem
I Find ✓ that maximises J(✓)
I We will focus on stochastic gradient ascent, which is often quite efficient

(and easy to use with deep nets)
I Some approaches do not use gradient

I Hill climbing / simulated annealing
I Genetic algorithms / evolutionary strategies

Policy Gradient

I Idea: ascent the gradient of the objective J(✓)

�✓ = ↵r✓J(✓)

I Where r✓J(✓) is the policy gradient

r✓J(✓) =
©≠≠≠
´

@J(✓)
@✓1
...

@J(✓)
@✓n

™ÆÆÆ
¨

I and ↵ is a step-size parameter
I Stochastic policies help ensure J(✓) is smooth

(typically/mostly)

!"#$%"&'(%")*+,#'-'!"#$%%" (%")*+,#'.+/0+,#

� !"#$%&'('%$&#()&*+$,*$#&&-&$$$$."'%"$
'*$%-/0'*,('-*$.'("$("#$1)*%('-*$
,22&-3'/,(-& %,*$0#$)+#4$(-$
%&#,(#$,*$#&&-&$1)*%('-*$$$$$$$$$$$$$

� !"#$2,&(',5$4'11#&#*(',5-1("'+$#&&-&$
1)*%('-*$$$$$$$$$$$$$$$$6$("#$7&,4'#*($
%,*$*-.$0#$)+#4$(-$)24,(#$("#$
'*(#&*,5$8,&',05#+$'*$("#$1)*%('-*$
,22&-3'/,(-& 9,*4$%&'('%:;$$$$$$

<&,4'#*($4#+%#*($=>?

Gradients on parameterized policies

I How to compute this gradient r✓J(✓)?
I Assume policy ⇡✓ is differentiable almost everywhere (e.g., neural net)
I For average reward

r✓J(✓) = r✓E⇡✓ [R] .
I How does E[R] depend on ✓?

Contextual Bandits Policy Gradient

I Consider a one-step case (a contextual bandit) such that J(✓) = E⇡✓ [R(S, A)].
(Expectation is over d (states) and ⇡ (actions))
(For now, d does not depend on ⇡)

I We cannot sample Rt+1 and then take a gradient:
Rt+1 is just a number and does not depend on ✓!

I Instead, we use the identity:

r✓E⇡✓ [R(S, A)] = E⇡✓ [R(S, A)r✓ log ⇡(A|S)] .

(Proof on next slide)
I The right-hand side gives an expected gradient that can be sampled
I Also known as REINFORCE (Williams, 1992)

The score function trick

Let rsa = E [R(S, A) | S = s, A = s]

r✓E⇡✓ [R(S, A)] = r✓
’
s

d(s)
’
a

⇡✓(a|s) rsa

=
’
s

d(s)
’
a

rsa r✓⇡✓(a|s)

=
’
s

d(s)
’
a

rsa ⇡✓(a|s)
r✓⇡✓(a|s)
⇡✓(a|s)

=
’
s

d(s)
’
a

⇡✓(a|s) rsa r✓ log ⇡✓(a|s)

= Ed,⇡✓ [R(S, A) r✓ log ⇡✓(A|S)]

Contextual Bandit Policy Gradient

r✓E[R(S, A)] = E[r✓ log ⇡✓(A|S)R(S, A)] (see previous slide)

I This is something we can sample
I Our stochastic policy-gradient update is then

✓ t+1 = ✓ t + ↵Rt+1r✓ log ⇡✓t (At |St) .

I In expectation, this is the following the actual gradient
I So this is a pure (unbiased) stochastic gradient algorithm
I Intuition: increase probability for actions with high rewards

Policy gradients: reduce variance

I Note that, in general

E [br✓ log ⇡(At |St)] = E

"’
a

⇡(a|St)br✓ log ⇡(a|St)
#

= E

"
br✓

’
a

⇡(a|St)
#

= E [br✓1] = 0

I This is true if b does not depend on the action (but it can depend on the state)
I Implies we can subtract a baseline to reduce variance

✓ t+1 = ✓ t + ↵(Rt+1 � b(St))r✓ log ⇡✓t (At |St) .

I We will also use this fact in proofs below

Example: Softmax Policy

I Consider a softmax policy on action preferences h(s, a) as an example
I Probability of action is proportional to exponentiated weight

⇡✓(a|s) =
eh(s,a)Õ
b eh(s,b)

I The gradient of the log probability is

r✓ log ⇡✓(At |St) = r✓h(St, At)| {z }
gradient of preference

�
’
a

⇡✓(a|St)r✓h(St, a)
| {z }

expected gradient of preference

Policy Gradient Theorem

Policy Gradient Theorem

I The policy gradient approach also applies to (multi-step) MDPs
I Replaces reward R with long-term return Gt or value q⇡(s, a)
I There are actually two policy gradient theorems (Sutton et al., 2000):

average return per episode & average reward per step

Policy gradient theorem (episodic)

Theorem
For any differentiable policy ⇡✓(s, a), let d0 be the starting distribution over states in which we
begin an episode. Then, the policy gradient of J(✓) = E [G0 | S0 ⇠ d0] is

r✓J(✓) = E⇡✓

"
T’
t=0

�tq⇡✓ (St, At)r✓ log ⇡✓(At |St) | S0 ⇠ d0

#

where

q⇡(s, a) = E⇡[Gt | St = s, At = a]
= E⇡[Rt+1 + �q⇡(St+1, At+1) | St = s, At = a]

Policy gradients on trajectories

I Policy gradients do not need to know the MDP dynamics
I Kind of surprising; shouldn’t we know how the policy influences the states?

Episodic policy gradients: proof

I Consider trajectory ⌧ = S0, A0, R1, S1, A1, R1, S2, . . . with return G(⌧)

r✓J✓(⇡) = r✓E [G(⌧)] = E [G(⌧)r✓ log p(⌧)] (score function trick)

r✓ log p(⌧) = r✓ log

p(S0)⇡(A0 |S0)p(S1 |S0, A0)⇡(A1 |S1) · · ·

�

= r✓

log p(S0) + log ⇡(A0 |S0) + log p(S1 |S0, A0) + log ⇡(A1 |S1) + · · ·

�

= r✓

log ⇡(A0 |S0) + log ⇡(A1 |S1) + · · ·

�

So:

r✓J✓(⇡) = E⇡[G(⌧)r✓
T’
t=0

log ⇡(At |St)]

Episodic policy gradients: proof (continued)

r✓ J✓(⇡) = E⇡[G(⌧)
T’
t=0
r✓ log ⇡(At |St)]

= E⇡[
T’
t=0

G(⌧)r✓ log ⇡(At |St)]

= E⇡[
T’
t=0

T’
k=0

�kRk+1

!
r✓ log ⇡(At |St)]

= E⇡[
T’
t=0

T’
k=t

�kRk+1

!
r✓ log ⇡(At |St)]

= E⇡[
T’
t=0

�t

T’
k=t

�k�tRk+1

!
r✓ log ⇡(At |St)]

= E⇡[
T’
t=0

�
�tGt

�
r✓ log ⇡(At |St)] = E⇡[

T’
t=0
�tq⇡(St, At)r✓ log ⇡(At |St)]

Episodic policy gradients algorithm

r✓J✓(⇡) = E⇡[
T’
t=0

�tq⇡(St, At)r✓ log ⇡(At |St)]

I We can sample this, given a whole episode
I Typically, people pull out the sum, and split up this into separate gradients, e.g.,

�✓ t = �
tGtr✓ log ⇡(At |St)

such that E⇡[
Õ

t �✓ t] = r✓J✓(⇡)
I Typically, people ignore the �t term, use �✓ t = Gtr✓ log ⇡(At |St)
I This is actually okay-ish — we just partially pretend on each step that we could have

started an episode in that state instead
(alternatively, view it as a slightly biased gradient)

Policy gradient theorem (average reward)

Theorem
For any differentiable policy ⇡✓(s, a), the policy gradient of J(✓) = E [R | ⇡] is

r✓J(✓) = E⇡[q⇡✓ (St , At)r✓ log ⇡✓(At |St)]
where

q⇡(s, a) = E⇡[Rt+1 � ⇢ + q⇡(St+1, At+1) | St = s, At = a]
⇢ = E⇡[Rt+1] (Note: global average, not conditioned on state or action)

(Expectation is over both states and actions)

Policy gradient theorem (average reward)

Alternatively (but equivalently):

Theorem
For any differentiable policy ⇡✓(s, a), the policy gradient of J(✓) = E [R | ⇡] is

r✓J(✓) = E⇡[Rt+1

1’
n=0

r✓ log ⇡✓(At�n |St�n)]

(Expectation is over both states and actions)

Actor Critics

Policy gradients: reduce variance

I Recall E⇡[b(St)r log ⇡(At |St)] = 0, for any b(St) that does not depend on At

I A common baseline is v⇡(St)

r✓J✓(⇡) = E

"’
t=0

�t (q⇡(St, At) � v⇡(St))r✓ log ⇡(At |St)
#

I Typically, we estimate vw(s) ⇡ v⇡(s) explicitly, and sample

q⇡(St, At) ⇡ Gt

I We can minimise variance further by bootstrapping, e.g., Gt = Rt+1 + �vw(St+1)
I More on these techniques in the next lecture

Critics

I A critic is a value function, learnt via policy evaluation:
What is the value v⇡✓ of policy ⇡✓ for current parameters ✓?

I This problem was explored in previous lectures, e.g.
I Monte-Carlo policy evaluation
I Temporal-Difference learning
I n-step TD

Actor-Critic

Critic Update parameters w of vw by TD (e.g., one-step) or MC

Actor Update ✓ by policy gradient
function O��-���� A���� C�����

Initialise s, ✓

for t = 0, 1, 2, . . . do

Sample At ⇠ ⇡✓(St)
Sample Rt+1 and St+1
�t = Rt+1 + �vw(St+1) � vw(St) [one-step TD-error, or advantage]

w w + � �t rwvw(St) [TD(0)]

✓ ✓ + ↵ �t r✓ log ⇡✓(At | St) [Policy gradient update (ignoring �t term)]

Policy gradient variations

I Many extensions and variants exist
I Take care: bad policies lead to bad data
I This is different from supervised learning

(where learning and data are independent)

Increasing robustness with trust regions

I One way to increase stability is to regularise

I A popular method is to limit the difference between subsequent policies

I For instance, use the Kullbeck-Leibler divergence:

KL(⇡oldk⇡✓) = E

π
⇡old(a | S) log ⇡✓(a | S)

⇡old(a | S) da
�
.

(Expectation is over states)
I A divergence is like a distance between distributions
I Then maximise J(✓) � ⌘KL(⇡oldk⇡✓), for some hyperparameter ⌘

c.f. TRPO (Schulman et al. 2015), PPO (Abbeel & Schulman 2016), MPO (Abdolmaleki et al. 2018)

Continuous action spaces

Continuous actions

I Pure value-based RL can be non-trivial to extend to continuous action spaces
I How to approximate q(s, a)?
I How to compute max

a
q(s, a)?

I When directly updating the policy parameters, continuous actions are easier
I Most algorithms discussed today can be used for discrete and continuous actions
I Note: exploration in high-dimensional continuous spaces can be challenging

Example: Gaussian policy

I As example, consider a Gaussian policy

I E.g., mean is some function of state µ✓(s)
I For simplicity, lets consider fixed variance of �2 (can be parametrized as well)
I Policy is Gaussian, At ⇠ N(µ✓(St),�2)

(here µ✓ is the mean — not to be confused with the behaviour policy!)
I The gradient of the log of the policy is then

r✓ log ⇡✓(s, a) =
At � µ✓(St)
�2 rµ✓(s)

I This can be used, for instance, in REINFORCE / actor critic

Example: Policy gradient with Gaussian policy

I Gaussian policy gradient update:

✓ t+1 = ✓ t + �(Gt � v(St))r✓ log ⇡✓(At |St)

= ✓ t + �(Gt � v(St))
At � µ✓(St)
�2 rµ✓(St)

I Intuition: if return was high, move µ✓(St) toward At

Gradient ascent on value

I Policy gradients work well, but do not strongly exploit the critic
I If values generalise well, perhaps we can rely on them more?

1. Estimate qw ⇡ q⇡ , e.g., with Sarsa

2. Define deterministic actor: At = ⇡✓(St)
3. Improve actor (policy improvement) by gradient ascent on the value:

�✓ / @Q⇡(s, a)
@✓

=
@Q⇡(s, ⇡✓(St))
@⇡✓(St)

@⇡✓(St)
@✓

I Known under various names:
“Action-dependent heuristic dynamic programming” (ADHDP; Werbos 1990, Prokhorov & Wunsch 1997)
“Gradient ascent on the value” (van Hasselt & Wiering 2007)
These days, mostly know as: “Deterministic policy gradient” (DPG; Silver et al. 2014)

I It’s a form of policy iteration

Continuous actor-critic learning automaton (Cacla)

We can also define the error in action space, rather than parameter space

1. at = Actor✓(St) (get current (continuous) action proposal)

2. At ⇠ ⇡(·|St, at) (e.g., At ⇠ N(at, ⌃)) (explore)

3. �t = Rt+1 + �vw(St+1) � vw(St) (compute TD error)

4. Update vw(St) (e.g., using TD) (policy evaluation)

5. If �t > 0, update Actor✓(St) towards At (policy improvement)

✓ t+1 ✓ t + �(At � at)r✓tActor✓t (St)

6. If �t 0, do not update Actor✓
Note: update magnitude does not depend on the value magnitude

Note: don’t update ‘away’ from ‘bad’ actions

	Introduction
	Finite Difference Policy Gradient
	Monte-Carlo Policy Gradient
	Likelihood Ratios

