
Off-Policy Learning

Project

❐ Two environments: one discrete, one continuous
❐ Jelly bean world: https://github.com/eaplatanios/jelly-bean-

world
❐ We will provide you with a learned feature space instead of

the native image space
❐ A Mujoco-based task: https://gym.openai.com/envs/

Hopper-v2/
❐ Project is carried out in teams of 2-4 students
❐ Deliverables: project report (4-pages NeurIPS style file), 2-

minute video presentation
❐ Leaderboard evaluation will be set up by us
❐

2

https://github.com/eaplatanios/jelly-bean-world
https://github.com/eaplatanios/jelly-bean-world
https://gym.openai.com/envs/Hopper-v2/
https://gym.openai.com/envs/Hopper-v2/

Project

❐ Measurements: return, variance of return over n runs,
number of steps until a certain performance level is reached

❐ Challenge: multi-task evaluation (problem changes after a
certain number of episodes)

❐ We will provide some baselines (random agent, TA basic
agent)

❐ Grading criteria based on performance, creativity of
project, presentation (written and video)

❐ Written report MUST include a statement of contributions
that all participants agree with

3

Off-policy Methods

❐ Learn the value of the target policy π from experience due
to behavior policy b

❐ For example, π is the greedy policy (and ultimately the
optimal policy) while 𝜇 is exploratory (e.g., 𝜀-soft)

❐ In general, we only require coverage, i.e., that b generates
behavior that covers, or includes, π

❐ Idea: importance sampling
– Weight each return by the ratio of the probabilities of

the trajectory under the two policies

4

110 CHAPTER 5. MONTE CARLO METHODS

that ⇡(a|s) > 0 implies µ(a|s) > 0. This is called the assumption of coverage. It
follows from coverage that µ must be stochastic in states where it is not identical
to ⇡. The target policy ⇡, on the other hand, may be deterministic, and, in fact,
this is a case of particular interest in control problems. In control, the target policy
is typically the deterministic greedy policy with respect to the current action-value
function estimate. This policy becomes a deterministic optimal policy while the
behavior policy remains stochastic and more exploratory, for example, an "-greedy
policy. In this section, however, we consider the prediction problem, in which ⇡ is
unchanging and given.

Almost all o↵-policy methods utilize importance sampling, a general technique for
estimating expected values under one distribution given samples from another. We
apply importance sampling to o↵-policy learning by weighting returns according to
the relative probability of their trajectories occurring under the target and behavior
policies, called the importance-sampling ratio. Given a starting state St, the prob-
ability of the subsequent state–action trajectory, At, St+1, At+1, . . . , ST , occurring
under any policy ⇡ is

T�1Y

k=t

⇡(Ak|Sk)p(Sk+1|Sk, Ak),

where p here is the state-transition probability function defined by (3.8). Thus,
the relative probability of the trajectory under the target and behavior policies (the
importance-sampling ratio) is

⇢T

t

.
=

Q
T�1
k=t

⇡(Ak|Sk)p(Sk+1|Sk, Ak)Q
T�1
k=t

µ(Ak|Sk)p(Sk+1|Sk, Ak)
=

T�1Y

k=t

⇡(Ak|Sk)

µ(Ak|Sk)
. (5.3)

Note that although the trajectory probabilities depend on the MDP’s transition
probabilities, which are generally unknown, all the transition probabilities cancel.
The importance sampling ratio ends up depending only on the two policies and not
at all on the MDP.

Now we are ready to give a Monte Carlo algorithm that uses a batch of observed
episodes following policy µ to estimate v⇡(s). It is convenient here to number time
steps in a way that increases across episode boundaries. That is, if the first episode
of the batch ends in a terminal state at time 100, then the next episode begins at
time t = 101. This enables us to use time-step numbers to refer to particular steps in
particular episodes. In particular, we can define the set of all time steps in which state
s is visited, denoted T(s). This is for an every-visit method; for a first-visit method,
T(s) would only include time steps that were first visits to s within their episodes.
Also, let T (t) denote the first time of termination following time t, and Gt denote the
return after t up through T (t). Then {Gt}t2T(s) are the returns that pertain to state

s, and {⇢T (t)
t

}t2T(s) are the corresponding importance-sampling ratios. To estimate
v⇡(s), we simply scale the returns by the ratios and average the results:

V (s)
.
=

P
t2T(s) ⇢T (t)

t
Gt

|T(s)| . (5.4)

for every s,a at which b(a|s) > 0

Importance Sampling in General

5

Importance sampling

• Suppose we want to estimate the expected value of a function f

depending on a random variable X drawn according to the target

probability distribution P (X).

• If we had N samples xi drawn from P (X), we could estimate the
expectation using the empirical mean:

EP [f] ⇡
1

N

NX

i=1

f(xi)

• But instead, we have only samples drawn according to a di↵erent proposal
or sampling distribution Q(X).

• How can we do the estimation?

COMP-652 and ECSE-608, February 16, 2016 11

Regular Importance Sampling

6

Unnormalized importance sampling

• We do a simple trick:

EP [f] =
X

x

f(x)P (X = x)

=
X

x

f(x)Q(X = x)
P (X = x)

Q(X = x)
= EQ

f
P

Q

�

• Only requirement: if P (x) > 0 then Q(x) > 0
• So for an estimator, we should average each sample of the function,

f(xi) weighted by the ratio of its probability under the target and the
sampling distribution:

Ep[f] ⇡
1

N

NX

i=1

f(xi)
P (xi)

Q(xi)

COMP-652 and ECSE-608, February 16, 2016 12

Normalized Importance Sampling

❐ Regular importance sampling is an unbiased and consistent
estimator, but it can have high variance

❐ Variance depends on closeness of P and Q
❐ Instead, we can treat P/Q ratios as weights and do a

weighted sum (instead of using N in the denominator)
❐ This is called Normalized or Weighted IS
❐ The estimator is biased but consistent and tends to have

lower variance

7

Applying IS to Policy Evaluation

❐ Function for which we want the expectation is the return
❐ Target distribution P is the distribution of trajectories under

target policy π
❐ Proposal distribution Q is distribution of trajectories under

behavior policy b
❐ Note that P and Q can be very different depending on the

horizon!
❐ But there is structure in P and Q that we can exploit

8

❐ Probability of the rest of the trajectory, after St, under π:

❐ In importance sampling, each return is weighted by the
relative probability of the trajectory under the two policies

❐ This is called the importance sampling ratio
❐ All importance sampling ratios have expected value 1

Importance Sampling Ratio

9

114 CHAPTER 5. MONTE CARLO METHODS

that ⇡(a|s) > 0 implies µ(a|s) > 0. This is called the assumption of coverage. It
follows from coverage that µ must be stochastic in states where it is not identical
to ⇡. The target policy ⇡, on the other hand, may be deterministic, and, in fact,
this is a case of particular interest in control problems. In control, the target policy
is typically the deterministic greedy policy with respect to the current action-value
function estimate. This policy becomes a deterministic optimal policy while the
behavior policy remains stochastic and more exploratory, for example, an "-greedy
policy. In this section, however, we consider the prediction problem, in which ⇡ is
unchanging and given.

Almost all o↵-policy methods utilize importance sampling, a general technique for
estimating expected values under one distribution given samples from another. We
apply importance sampling to o↵-policy learning by weighting returns according to
the relative probability of their trajectories occurring under the target and behavior
policies, called the importance-sampling ratio. Given a starting state St, the prob-
ability of the subsequent state–action trajectory, At, St+1, At+1, . . . , ST , occurring
under any policy ⇡ is

Pr{At, St+1, At+1, . . . , ST | St, At:T�1 ⇠ ⇡}
= ⇡(At|St)p(St+1|St, At)⇡(At+1|St+1) · · · p(ST |ST�1, AT�1)

=
T�1Y

k=t

⇡(Ak|Sk)p(Sk+1|Sk, Ak),

where p here is the state-transition probability function defined by (3.10). Thus,
the relative probability of the trajectory under the target and behavior policies (the
importance-sampling ratio) is

⇢T

t =

Q
T�1
k=t

⇡(Ak|Sk)p(Sk+1|Sk, Ak)Q
T�1
k=t

µ(Ak|Sk)p(Sk+1|Sk, Ak)
=

T�1Y

k=t

⇡(Ak|Sk)

µ(Ak|Sk)
. (5.3)

Although the trajectory probabilities depend on the MDP’s transition probabilities,
which are generally unknown, they appear identically in both the numerator and
denominator, and thus cancel. The importance sampling ratio ends up depending
only on the two policies and the sequence, not on the MDP.

Now we are ready to give a Monte Carlo algorithm that uses a batch of observed
episodes following policy µ to estimate v⇡(s). It is convenient here to number time
steps in a way that increases across episode boundaries. That is, if the first episode
of the batch ends in a terminal state at time 100, then the next episode begins at
time t = 101. This enables us to use time-step numbers to refer to particular steps in
particular episodes. In particular, we can define the set of all time steps in which state
s is visited, denoted T(s). This is for an every-visit method; for a first-visit method,
T(s) would only include time steps that were first visits to s within their episodes.
Also, let T (t) denote the first time of termination following time t, and Gt denote the
return after t up through T (t). Then {Gt}t2T(s) are the returns that pertain to state

s, and {⇢T (t)
t

}t2T(s) are the corresponding importance-sampling ratios. To estimate

5.5. OFF-POLICY PREDICTION VIA IMPORTANCE SAMPLING 85

Throughout the rest of this book we consider both on-policy and o↵-policy methods. On-policy
methods are generally simpler and are considered first. O↵-policy methods require additional concepts
and notation, and because the data is due to a di↵erent policy, o↵-policy methods are often of greater
variance and are slower to converge. On the other hand, o↵-policy methods are more powerful and
general. They include on-policy methods as the special case in which the target and behavior policies
are the same. O↵-policy methods also have a variety of additional uses in applications. For example,
they can often be applied to learn from data generated by a conventional non-learning controller, or
from a human expert. O↵-policy learning is also seen by some as key to learning multi-step predictive
models of the world’s dynamics (Sutton, 2009, Sutton et al., 2011).

In this section we begin the study of o↵-policy methods by considering the prediction problem, in
which both target and behavior policies are fixed. That is, suppose we wish to estimate v⇡ or q⇡, but
all we have are episodes following another policy b, where b 6= ⇡. In this case, ⇡ is the target policy, b
is the behavior policy, and both policies are considered fixed and given.

In order to use episodes from b to estimate values for ⇡, we require that every action taken under
⇡ is also taken, at least occasionally, under b. That is, we require that ⇡(a|s) > 0 implies b(a|s) >
0. This is called the assumption of coverage. It follows from coverage that b must be stochastic in
states where it is not identical to ⇡. The target policy ⇡, on the other hand, may be deterministic,
and, in fact, this is a case of particular interest in control problems. In control, the target policy is
typically the deterministic greedy policy with respect to the current action-value function estimate.
This policy becomes a deterministic optimal policy while the behavior policy remains stochastic and
more exploratory, for example, an "-greedy policy. In this section, however, we consider the prediction
problem, in which ⇡ is unchanging and given.

Almost all o↵-policy methods utilize importance sampling, a general technique for estimating expected
values under one distribution given samples from another. We apply importance sampling to o↵-policy
learning by weighting returns according to the relative probability of their trajectories occurring under
the target and behavior policies, called the importance-sampling ratio. Given a starting state St, the
probability of the subsequent state–action trajectory, At, St+1, At+1, . . . , ST , occurring under any policy
⇡ is

Pr{At, St+1, At+1, . . . , ST | St, At:T�1 ⇠ ⇡}
= ⇡(At|St)p(St+1 |St, At)⇡(At+1|St+1) · · · p(ST |ST�1, AT�1)

=
T�1Y

k=t

⇡(Ak|Sk)p(Sk+1 |Sk, Ak),

where p here is the state-transition probability function defined by (3.3). Thus, the relative probability
of the trajectory under the target and behavior policies (the importance-sampling ratio) is

⇢t:T�1 =

QT�1
k=t ⇡(Ak|Sk)p(Sk+1 |Sk, Ak)

QT�1
k=t b(Ak|Sk)p(Sk+1 |Sk, Ak)

=
T�1Y

k=t

⇡(Ak|Sk)

b(Ak|Sk)
. (5.3)

Although the trajectory probabilities depend on the MDP’s transition probabilities, which are generally
unknown, they appear identically in both the numerator and denominator, and thus cancel. The
importance sampling ratio ends up depending only on the two policies and the sequence, not on the
MDP.

Now we are ready to give a Monte Carlo algorithm that uses a batch of observed episodes following
policy b to estimate v⇡(s). It is convenient here to number time steps in a way that increases across
episode boundaries. That is, if the first episode of the batch ends in a terminal state at time 100, then
the next episode begins at time t = 101. This enables us to use time-step numbers to refer to particular
steps in particular episodes. In particular, we can define the set of all time steps in which state s

.

5.9. *PER-REWARD IMPORTANCE SAMPLING 93

Now we need to scale the flat partial returns by an importance sampling ratio that is similarly
truncated. As Ḡt:h only involves rewards up to a horizon h, we only need the ratio of the probabilities
up to h. We define an ordinary importance-sampling estimator, analogous to (5.4), as

V (s)
.
=

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1Ḡt:h + �T (t)�t�1⇢t:T (t)�1Ḡt:T (t)

⌘

|T(s)| , (5.8)

and a weighted importance-sampling estimator, analogous to (5.5), as

V (s)
.
=

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1Ḡt:h + �T (t)�t�1⇢t:T (t)�1Ḡt:T (t)

⌘

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1 + �T (t)�t�1⇢t:T (t)�1

⌘ . (5.9)

We call these two estimators discounting-aware importance sampling estimators. They take into account
the discount rate but have no e↵ect (are the same as the o↵-policy estimators from Section 5.5) if � = 1.

5.9 *Per-reward Importance Sampling

There is one more way in which the structure of the return as a sum of rewards can be taken into account
in o↵-policy importance sampling, a way that may be able to reduce variance even in the absence of
discounting (that is, even if � = 1). In the o↵-policy estimators (5.4) and (5.5), each term of the sum
in the numerator is itself a sum:

⇢t:T�1Gt = ⇢t:T�1

�
Rt+1 + �Rt+2 + · · · + �T�t�1RT

�

= ⇢t:T�1Rt+1 + �⇢t:T�1Rt+2 + · · · + �T�t�1⇢t:T�1RT . (5.10)

The o↵-policy estimators rely on the expected values of these terms; let us see if we can write them
in a simpler way. Note that each sub-term of (5.10) is a product of a random reward and a random
importance-sampling ratio. For example, the first sub-term can be written, using (5.3), as

⇢t:T�1Rt+1 =
⇡(At|St)

b(At|St)

⇡(At+1|St+1)

b(At+1|St+1)

⇡(At+2|St+2)

b(At+2|St+2)
· · · ⇡(AT�1|ST�1)

b(AT�1|ST�1)
Rt+1.

Now notice that, of all these factors, only the first and the last (the reward) are correlated; all the other
ratios are independent random variables whose expected value is one:

E

⇡(Ak|Sk)

b(Ak|Sk)

�
=

X

a

b(a|Sk)
⇡(a|Sk)

b(a|Sk)
=

X

a

⇡(a|Sk) = 1.

Thus, because the expectation of the product of independent random variables is the product of their
expectations, all the ratios except the first drop out in expectation, leaving just

E[⇢t:T�1Rt+1] = E[⇢t:tRt+1] .

If we repeat this analysis for the kth term of (5.10), we get

E[⇢t:T�1Rt+k] = E[⇢t:t+k�1Rt+k] .

It follows then that the expectation of our original term (5.10) can be written

E[⇢t:T�1Gt] = E
h
G̃t

i
,

.

Importance Sampling

❐ New notation: time steps increase across episode boundaries:
! . . . s ▨ ▨ . . . s ▨ . . .
! t = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

❐ Ordinary importance sampling forms estimate

❐ Whereas weighted importance sampling forms estimate

10

T(s) = {4, 20} T (4) = 9 T (20) = 25
set of start times next termination times

86 CHAPTER 5. MONTE CARLO METHODS

is visited, denoted T(s). This is for an every-visit method; for a first-visit method, T(s) would only
include time steps that were first visits to s within their episodes. Also, let T (t) denote the first time
of termination following time t, and Gt denote the return after t up through T (t). Then {Gt}t2T(s) are
the returns that pertain to state s, and

�
⇢t:T (t)�1

t2T(s)

are the corresponding importance-sampling

ratios. To estimate v⇡(s), we simply scale the returns by the ratios and average the results:

V (s)
.
=

P
t2T(s) ⇢t:T (t)�1Gt

|T(s)| . (5.4)

When importance sampling is done as a simple average in this way it is called ordinary importance
sampling.

An important alternative is weighted importance sampling, which uses a weighted average, defined as

V (s)
.
=

P
t2T(s) ⇢t:T (t)�1GtP

t2T(s) ⇢t:T (t)�1
, (5.5)

or zero if the denominator is zero. To understand these two varieties of importance sampling, consider
their estimates after observing a single return. In the weighted-average estimate, the ratio ⇢t:T (t)�1

for the single return cancels in the numerator and denominator, so that the estimate is equal to the
observed return independent of the ratio (assuming the ratio is nonzero). Given that this return was the
only one observed, this is a reasonable estimate, but its expectation is vb(s) rather than v⇡(s), and in
this statistical sense it is biased. In contrast, the simple average (5.4) is always v⇡(s) in expectation (it
is unbiased), but it can be extreme. Suppose the ratio were ten, indicating that the trajectory observed
is ten times as likely under the target policy as under the behavior policy. In this case the ordinary
importance-sampling estimate would be ten times the observed return. That is, it would be quite far
from the observed return even though the episode’s trajectory is considered very representative of the
target policy.

Formally, the di↵erence between the two kinds of importance sampling is expressed in their biases and
variances. The ordinary importance-sampling estimator is unbiased whereas the weighted importance-
sampling estimator is biased (the bias converges asymptotically to zero). On the other hand, the
variance of the ordinary importance-sampling estimator is in general unbounded because the variance
of the ratios can be unbounded, whereas in the weighted estimator the largest weight on any single
return is one. In fact, assuming bounded returns, the variance of the weighted importance-sampling
estimator converges to zero even if the variance of the ratios themselves is infinite (Precup, Sutton,
and Dasgupta 2001). In practice, the weighted estimator usually has dramatically lower variance and
is strongly preferred. Nevertheless, we will not totally abandon ordinary importance sampling as it
is easier to extend to the approximate methods using function approximation that we explore in the
second part of this book.

A complete every-visit MC algorithm for o↵-policy policy evaluation using weighted importance
sampling is given in the next section on page 90.

Example 5.4: O↵-policy Estimation of a Blackjack State Value
We applied both ordinary and weighted importance-sampling methods to estimate the value of a single
blackjack state from o↵-policy data. Recall that one of the advantages of Monte Carlo methods is that
they can be used to evaluate a single state without forming estimates for any other states. In this
example, we evaluated the state in which the dealer is showing a deuce, the sum of the player’s cards is
13, and the player has a usable ace (that is, the player holds an ace and a deuce, or equivalently three
aces). The data was generated by starting in this state then choosing to hit or stick at random with
equal probability (the behavior policy). The target policy was to stick only on a sum of 20 or 21, as
in Example 5.1. The value of this state under the target policy is approximately �0.27726 (this was
determined by separately generating one-hundred million episodes using the target policy and averaging

86 CHAPTER 5. MONTE CARLO METHODS

is visited, denoted T(s). This is for an every-visit method; for a first-visit method, T(s) would only
include time steps that were first visits to s within their episodes. Also, let T (t) denote the first time
of termination following time t, and Gt denote the return after t up through T (t). Then {Gt}t2T(s) are
the returns that pertain to state s, and

�
⇢t:T (t)�1

t2T(s)

are the corresponding importance-sampling

ratios. To estimate v⇡(s), we simply scale the returns by the ratios and average the results:

V (s)
.
=

P
t2T(s) ⇢t:T (t)�1Gt

|T(s)| . (5.4)

When importance sampling is done as a simple average in this way it is called ordinary importance
sampling.

An important alternative is weighted importance sampling, which uses a weighted average, defined as

V (s)
.
=

P
t2T(s) ⇢t:T (t)�1GtP

t2T(s) ⇢t:T (t)�1
, (5.5)

or zero if the denominator is zero. To understand these two varieties of importance sampling, consider
their estimates after observing a single return. In the weighted-average estimate, the ratio ⇢t:T (t)�1

for the single return cancels in the numerator and denominator, so that the estimate is equal to the
observed return independent of the ratio (assuming the ratio is nonzero). Given that this return was the
only one observed, this is a reasonable estimate, but its expectation is vb(s) rather than v⇡(s), and in
this statistical sense it is biased. In contrast, the simple average (5.4) is always v⇡(s) in expectation (it
is unbiased), but it can be extreme. Suppose the ratio were ten, indicating that the trajectory observed
is ten times as likely under the target policy as under the behavior policy. In this case the ordinary
importance-sampling estimate would be ten times the observed return. That is, it would be quite far
from the observed return even though the episode’s trajectory is considered very representative of the
target policy.

Formally, the di↵erence between the two kinds of importance sampling is expressed in their biases and
variances. The ordinary importance-sampling estimator is unbiased whereas the weighted importance-
sampling estimator is biased (the bias converges asymptotically to zero). On the other hand, the
variance of the ordinary importance-sampling estimator is in general unbounded because the variance
of the ratios can be unbounded, whereas in the weighted estimator the largest weight on any single
return is one. In fact, assuming bounded returns, the variance of the weighted importance-sampling
estimator converges to zero even if the variance of the ratios themselves is infinite (Precup, Sutton,
and Dasgupta 2001). In practice, the weighted estimator usually has dramatically lower variance and
is strongly preferred. Nevertheless, we will not totally abandon ordinary importance sampling as it
is easier to extend to the approximate methods using function approximation that we explore in the
second part of this book.

A complete every-visit MC algorithm for o↵-policy policy evaluation using weighted importance
sampling is given in the next section on page 90.

Example 5.4: O↵-policy Estimation of a Blackjack State Value
We applied both ordinary and weighted importance-sampling methods to estimate the value of a single
blackjack state from o↵-policy data. Recall that one of the advantages of Monte Carlo methods is that
they can be used to evaluate a single state without forming estimates for any other states. In this
example, we evaluated the state in which the dealer is showing a deuce, the sum of the player’s cards is
13, and the player has a usable ace (that is, the player holds an ace and a deuce, or equivalently three
aces). The data was generated by starting in this state then choosing to hit or stick at random with
equal probability (the behavior policy). The target policy was to stick only on a sum of 20 or 21, as
in Example 5.1. The value of this state under the target policy is approximately �0.27726 (this was
determined by separately generating one-hundred million episodes using the target policy and averaging

Example of infinite variance
under ordinary importance sampling

11

v⇡(s) =

1

100,000 1,000,000 10,000,000 100,000,000

2

0.1

0.9

R = +1

s

⇡(left|s) = 1

µ(left|s) = 1

2

left right
R = 0

R = 0

v⇡(s)

Monte-Carlo
estimate of
 with
ordinary

importance
sampling
(ten runs)

Episodes (log scale)
1 10 100 1000 10,000

0

0.1

0.9

R = +1

s

⇡(left|s) = 1

µ(left|s) = 1

2

left
right
R = 0

R = 0

1

𝜸 = 1

Trajectory G0

s, left, 0, s, left, 0, s, left, 0, s, right, 0, ▨ 0

s, left, 0, s, left, 0, s, left, 0, s, left, +1, ▨ 1

⇢0:T�1

OIS:

WIS:

0
16

b(left|s) = 1

2

⇡(right|s)
b(right|s) = 0

⇡(left|s)
b(left|s) = 2

86 CHAPTER 5. MONTE CARLO METHODS

is visited, denoted T(s). This is for an every-visit method; for a first-visit method, T(s) would only
include time steps that were first visits to s within their episodes. Also, let T (t) denote the first time
of termination following time t, and Gt denote the return after t up through T (t). Then {Gt}t2T(s) are
the returns that pertain to state s, and

�
⇢t:T (t)�1

t2T(s)

are the corresponding importance-sampling

ratios. To estimate v⇡(s), we simply scale the returns by the ratios and average the results:

V (s)
.
=

P
t2T(s) ⇢t:T (t)�1Gt

|T(s)| . (5.4)

When importance sampling is done as a simple average in this way it is called ordinary importance
sampling.

An important alternative is weighted importance sampling, which uses a weighted average, defined as

V (s)
.
=

P
t2T(s) ⇢t:T (t)�1GtP

t2T(s) ⇢t:T (t)�1
, (5.5)

or zero if the denominator is zero. To understand these two varieties of importance sampling, consider
their estimates after observing a single return. In the weighted-average estimate, the ratio ⇢t:T (t)�1

for the single return cancels in the numerator and denominator, so that the estimate is equal to the
observed return independent of the ratio (assuming the ratio is nonzero). Given that this return was the
only one observed, this is a reasonable estimate, but its expectation is vb(s) rather than v⇡(s), and in
this statistical sense it is biased. In contrast, the simple average (5.4) is always v⇡(s) in expectation (it
is unbiased), but it can be extreme. Suppose the ratio were ten, indicating that the trajectory observed
is ten times as likely under the target policy as under the behavior policy. In this case the ordinary
importance-sampling estimate would be ten times the observed return. That is, it would be quite far
from the observed return even though the episode’s trajectory is considered very representative of the
target policy.

Formally, the di↵erence between the two kinds of importance sampling is expressed in their biases and
variances. The ordinary importance-sampling estimator is unbiased whereas the weighted importance-
sampling estimator is biased (the bias converges asymptotically to zero). On the other hand, the
variance of the ordinary importance-sampling estimator is in general unbounded because the variance
of the ratios can be unbounded, whereas in the weighted estimator the largest weight on any single
return is one. In fact, assuming bounded returns, the variance of the weighted importance-sampling
estimator converges to zero even if the variance of the ratios themselves is infinite (Precup, Sutton,
and Dasgupta 2001). In practice, the weighted estimator usually has dramatically lower variance and
is strongly preferred. Nevertheless, we will not totally abandon ordinary importance sampling as it
is easier to extend to the approximate methods using function approximation that we explore in the
second part of this book.

A complete every-visit MC algorithm for o↵-policy policy evaluation using weighted importance
sampling is given in the next section on page 90.

Example 5.4: O↵-policy Estimation of a Blackjack State Value
We applied both ordinary and weighted importance-sampling methods to estimate the value of a single
blackjack state from o↵-policy data. Recall that one of the advantages of Monte Carlo methods is that
they can be used to evaluate a single state without forming estimates for any other states. In this
example, we evaluated the state in which the dealer is showing a deuce, the sum of the player’s cards is
13, and the player has a usable ace (that is, the player holds an ace and a deuce, or equivalently three
aces). The data was generated by starting in this state then choosing to hit or stick at random with
equal probability (the behavior policy). The target policy was to stick only on a sum of 20 or 21, as
in Example 5.1. The value of this state under the target policy is approximately �0.27726 (this was
determined by separately generating one-hundred million episodes using the target policy and averaging

86 CHAPTER 5. MONTE CARLO METHODS

is visited, denoted T(s). This is for an every-visit method; for a first-visit method, T(s) would only
include time steps that were first visits to s within their episodes. Also, let T (t) denote the first time
of termination following time t, and Gt denote the return after t up through T (t). Then {Gt}t2T(s) are
the returns that pertain to state s, and

�
⇢t:T (t)�1

t2T(s)

are the corresponding importance-sampling

ratios. To estimate v⇡(s), we simply scale the returns by the ratios and average the results:

V (s)
.
=

P
t2T(s) ⇢t:T (t)�1Gt

|T(s)| . (5.4)

When importance sampling is done as a simple average in this way it is called ordinary importance
sampling.

An important alternative is weighted importance sampling, which uses a weighted average, defined as

V (s)
.
=

P
t2T(s) ⇢t:T (t)�1GtP

t2T(s) ⇢t:T (t)�1
, (5.5)

or zero if the denominator is zero. To understand these two varieties of importance sampling, consider
their estimates after observing a single return. In the weighted-average estimate, the ratio ⇢t:T (t)�1

for the single return cancels in the numerator and denominator, so that the estimate is equal to the
observed return independent of the ratio (assuming the ratio is nonzero). Given that this return was the
only one observed, this is a reasonable estimate, but its expectation is vb(s) rather than v⇡(s), and in
this statistical sense it is biased. In contrast, the simple average (5.4) is always v⇡(s) in expectation (it
is unbiased), but it can be extreme. Suppose the ratio were ten, indicating that the trajectory observed
is ten times as likely under the target policy as under the behavior policy. In this case the ordinary
importance-sampling estimate would be ten times the observed return. That is, it would be quite far
from the observed return even though the episode’s trajectory is considered very representative of the
target policy.

Formally, the di↵erence between the two kinds of importance sampling is expressed in their biases and
variances. The ordinary importance-sampling estimator is unbiased whereas the weighted importance-
sampling estimator is biased (the bias converges asymptotically to zero). On the other hand, the
variance of the ordinary importance-sampling estimator is in general unbounded because the variance
of the ratios can be unbounded, whereas in the weighted estimator the largest weight on any single
return is one. In fact, assuming bounded returns, the variance of the weighted importance-sampling
estimator converges to zero even if the variance of the ratios themselves is infinite (Precup, Sutton,
and Dasgupta 2001). In practice, the weighted estimator usually has dramatically lower variance and
is strongly preferred. Nevertheless, we will not totally abandon ordinary importance sampling as it
is easier to extend to the approximate methods using function approximation that we explore in the
second part of this book.

A complete every-visit MC algorithm for o↵-policy policy evaluation using weighted importance
sampling is given in the next section on page 90.

Example 5.4: O↵-policy Estimation of a Blackjack State Value
We applied both ordinary and weighted importance-sampling methods to estimate the value of a single
blackjack state from o↵-policy data. Recall that one of the advantages of Monte Carlo methods is that
they can be used to evaluate a single state without forming estimates for any other states. In this
example, we evaluated the state in which the dealer is showing a deuce, the sum of the player’s cards is
13, and the player has a usable ace (that is, the player holds an ace and a deuce, or equivalently three
aces). The data was generated by starting in this state then choosing to hit or stick at random with
equal probability (the behavior policy). The target policy was to stick only on a sum of 20 or 21, as
in Example 5.1. The value of this state under the target policy is approximately �0.27726 (this was
determined by separately generating one-hundred million episodes using the target policy and averaging

Example: Off-policy Estimation
of the value of a single Blackjack State

❐ State is player-sum 13, dealer-showing 2, useable ace
❐ Target policy is stick only on 20 or 21
❐ Behavior policy is equiprobable
❐ True value ≈ −0.27726

12

114 CHAPTER 5. MONTE CARLO METHODS

Ordinary
importance
sampling

Weighted importance sampling

Episodes (log scale)
0 10 100 1000 10,000

Mean
square
error

(average over
100 runs)

0

2

4

Figure 5.7: Weighted importance sampling produces lower error estimates of the value of a
single blackjack state from o↵-policy episodes (see Example 5.4).

of number of episodes. The weighted importance-sampling method has much lower
overall error in this example, as is typical in practice.

Example 5.5: Infinite Variance
The estimates of ordinary importance sampling will typically have infinite variance,
and thus unsatisfactory convergence properties, whenever the scaled returns have
infinite variance—and this can easily happen in o↵-policy learning when trajecto-
ries contain loops. A simple example is shown inset in Figure 5.8. There is only
one nonterminal state s and two actions, end and back. The end action causes a
deterministic transition to termination, whereas the back action transitions, with
probability 0.9, back to s or, with probability 0.1, on to termination. The rewards
are +1 on the latter transition and otherwise zero. Consider the target policy that
always selects back. All episodes under this policy consist of some number (possibly
zero) of transitions back to s followed by termination with a reward and return of
+1. Thus the value of s under the target policy is 1. Suppose we are estimating this
value from o↵-policy data using the behavior policy that selects end and back with
equal probability.

The lower part of Figure 5.8 shows ten independent runs of the first-visit MC
algorithm using ordinary importance sampling. Even after millions of episodes,
the estimates fail to converge to the correct value of 1. In contrast, the weighted
importance-sampling algorithm would give an estimate of exactly 1 everafter the
first episode that was consistent with the target policy (i.e., that ended with the
back action). This is clear because that algorithm produces a weighted average of
the returns consistent with the target policy, all of which would be exactly 1.

We can verify that the variance of the importance-sampling-scaled returns is infi-
nite in this example by a simple calculation. The variance of any random variable

Discounting-aware Importance Sampling (motivation)

❐ So far we have weighted returns without taking into
account that they are a discounted sum

❐ This can’t be the best one can do!
❐ For example, suppose 𝜸 = 0

! Then G0 will be weighted by

! But it really need only be weighted by

! Which would have much smaller variance

13

⇢0:T�1 =
⇡(A0|S0)

b(A0|S0)

⇡(A1|S1)

b(A1|S1)
· · · ⇡(AT�1|ST�1)

b(AT�1|ST�1)

⇢0:1 =
⇡(A0|S0)

b(A0|S0)

Discounting-aware Importance Sampling

14

❐ Define the flat partial return:

❐ Then

❐ Ordinary discounting-aware IS:

❐ Weighted discounting-aware IS:

5.9. *PER-REWARD IMPORTANCE SAMPLING 117

two steps. The partial returns here are called flat partial returns :

Ḡt:h
.
= Rt+1 + Rt+2 + · · · + Rh, 0 t < h T,

where “flat” denotes the absence of discounting, and “partial” denotes that these
returns do not extend all the way to termination but instead stop at h, called the
horizon (and T is the time of termination of the episode). The conventional full
return Gt can be viewed as a sum of flat partial returns as suggested above as
follows:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT

= (1 � �)Rt+1

+ (1 � �)� (Rt+1 + Rt+2)

+ (1 � �)�2 (Rt+1 + Rt+2 + Rt+3)

...

+ (1 � �)�T�t�2 (Rt+1 + Rt+2 + · · · + RT�1)

+ �T�t�1 (Rt+1 + Rt+2 + · · · + RT)

= (1 � �)
T�1X

h=t+1

�h�t�1Ḡt:h + �T�t�1Ḡt:T .

Now we need to scale the flat partial returns by an importance sampling ratio that
is similarly truncated. As Ḡt:h only involves rewards up to a horizon h, we only need
the ratio of the probabilities up to h. We define an ordinary importance-sampling
estimator, analogous to (5.4), as

V (s)
.
=

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1Ḡt:h + �T (t)�t�1⇢t:T (t)�1Ḡt:T (t)

⌘

|T(s)| ,

(5.8)

and a weighted importance-sampling estimator, analogous to (5.5), as

V (s)
.
=

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1Ḡt:h + �T (t)�t�1⇢t:T (t)�1Ḡt:T (t)

⌘

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1 + �T (t)�t�1⇢t:T (t)�1

⌘ .

(5.9)

We call these two estimators discounting-aware importance sampling estimators.
They take into account the discount rate but have no e↵ect (are the same as the
o↵-policy estimators from Section 5.5) if � = 1.

5.9 *Per-reward Importance Sampling

There is one more way in which the structure of the return as a sum of rewards can
be taken into account in o↵-policy importance sampling, a way that may be able to

Gt = (1� �)
T�1X

h=t+1

�h�t�1Ḡt:h + �T�t�1Ḡt:T

5.9. *PER-REWARD IMPORTANCE SAMPLING 117

two steps. The partial returns here are called flat partial returns :

Ḡt:h
.
= Rt+1 + Rt+2 + · · · + Rh, 0 t < h T,

where “flat” denotes the absence of discounting, and “partial” denotes that these
returns do not extend all the way to termination but instead stop at h, called the
horizon (and T is the time of termination of the episode). The conventional full
return Gt can be viewed as a sum of flat partial returns as suggested above as
follows:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT

= (1 � �)Rt+1

+ (1 � �)� (Rt+1 + Rt+2)

+ (1 � �)�2 (Rt+1 + Rt+2 + Rt+3)

...

+ (1 � �)�T�t�2 (Rt+1 + Rt+2 + · · · + RT�1)

+ �T�t�1 (Rt+1 + Rt+2 + · · · + RT)

= (1 � �)
T�1X

h=t+1

�h�t�1Ḡt:h + �T�t�1Ḡt:T .

Now we need to scale the flat partial returns by an importance sampling ratio that
is similarly truncated. As Ḡt:h only involves rewards up to a horizon h, we only need
the ratio of the probabilities up to h. We define an ordinary importance-sampling
estimator, analogous to (5.4), as

V (s)
.
=

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1Ḡt:h + �T (t)�t�1⇢t:T (t)�1Ḡt:T (t)

⌘

|T(s)| ,

(5.8)

and a weighted importance-sampling estimator, analogous to (5.5), as

V (s)
.
=

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1Ḡt:h + �T (t)�t�1⇢t:T (t)�1Ḡt:T (t)

⌘

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1 + �T (t)�t�1⇢t:T (t)�1

⌘ .

(5.9)

We call these two estimators discounting-aware importance sampling estimators.
They take into account the discount rate but have no e↵ect (are the same as the
o↵-policy estimators from Section 5.5) if � = 1.

5.9 *Per-reward Importance Sampling

There is one more way in which the structure of the return as a sum of rewards can
be taken into account in o↵-policy importance sampling, a way that may be able to

5.9. *PER-REWARD IMPORTANCE SAMPLING 117

two steps. The partial returns here are called flat partial returns :

Ḡt:h
.
= Rt+1 + Rt+2 + · · · + Rh, 0 t < h T,

where “flat” denotes the absence of discounting, and “partial” denotes that these
returns do not extend all the way to termination but instead stop at h, called the
horizon (and T is the time of termination of the episode). The conventional full
return Gt can be viewed as a sum of flat partial returns as suggested above as
follows:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT

= (1 � �)Rt+1

+ (1 � �)� (Rt+1 + Rt+2)

+ (1 � �)�2 (Rt+1 + Rt+2 + Rt+3)

...

+ (1 � �)�T�t�2 (Rt+1 + Rt+2 + · · · + RT�1)

+ �T�t�1 (Rt+1 + Rt+2 + · · · + RT)

= (1 � �)
T�1X

h=t+1

�h�t�1Ḡt:h + �T�t�1Ḡt:T .

Now we need to scale the flat partial returns by an importance sampling ratio that
is similarly truncated. As Ḡt:h only involves rewards up to a horizon h, we only need
the ratio of the probabilities up to h. We define an ordinary importance-sampling
estimator, analogous to (5.4), as

V (s)
.
=

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1Ḡt:h + �T (t)�t�1⇢t:T (t)�1Ḡt:T (t)

⌘

|T(s)| ,

(5.8)

and a weighted importance-sampling estimator, analogous to (5.5), as

V (s)
.
=

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1Ḡt:h + �T (t)�t�1⇢t:T (t)�1Ḡt:T (t)

⌘

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1 + �T (t)�t�1⇢t:T (t)�1

⌘ .

(5.9)

We call these two estimators discounting-aware importance sampling estimators.
They take into account the discount rate but have no e↵ect (are the same as the
o↵-policy estimators from Section 5.5) if � = 1.

5.9 *Per-reward Importance Sampling

There is one more way in which the structure of the return as a sum of rewards can
be taken into account in o↵-policy importance sampling, a way that may be able to

Per-reward Importance Sampling

❐ Another way of reducing variance, even if 𝜸 = 1
❐ Uses the fact that the return is a sum of rewards

❐ where

15

⇢Tt Rt+k =
⇡(At|St)

µ(At|St)

⇡(At+1|St+1)

µ(At+1|St+1)
· · · ⇡(At+k|St+k)

µ(At+k|St+k)
· · · ⇡(AT�1|ST�1)

µ(AT�1|ST�1)
Rt+k

⇢Tt Gt = ⇢Tt Rt+1 + �⇢Tt Rt+2 + · · ·+ �k�1⇢Tt Rt+k + · · ·+ �T�t�1⇢Tt RT

❐ Another way of reducing variance, even if 𝜸 = 1
❐ Uses the fact that the return is a sum of rewards

❐ where

❐ Per-reward ordinary IS:

Per-reward Importance Sampling

16

⇢t:T�1Rt+k =
⇡(At|St)

b(At|St)

⇡(At+1|St+1)

b(At+1|St+1)
· · · ⇡(At+k|St+k)

b(At+k|St+k)
· · · ⇡(AT�1|ST�1)

b(AT�1|ST�1)
Rt+k.

| {z }
G̃t

∴

⇢t:T�1Gt = ⇢t:T�1Rt+1 + · · ·+ �k�1⇢t:T�1Rt+k + · · ·+ �T�t�1⇢t:T�1RT

∴

118 CHAPTER 5. MONTE CARLO METHODS

reduce variance even in the absence of discounting (that is, even if � = 1). In the
o↵-policy estimators (5.4) and (5.5), each term of the sum in the numerator is itself
a sum:

⇢t:T�1Gt = ⇢t:T�1
�
Rt+1 + �Rt+2 + · · · + �T�t�1RT

�

= ⇢t:T�1Rt+1 + �⇢t:T�1Rt+2 + · · · + �T�t�1⇢t:T�1RT . (5.10)

The o↵-policy estimators rely on the expected values of these terms; let us see if we
can write them in a simpler way. Note that each sub-term of (5.10) is a product of
a random reward and a random importance-sampling ratio. For example, the first
sub-term can be written, using (5.3), as

⇢t:T�1Rt+1 =
⇡(At|St)

b(At|St)

⇡(At+1|St+1)

b(At+1|St+1)

⇡(At+2|St+2)

b(At+2|St+2)
· · · ⇡(AT�1|ST�1)

b(AT�1|ST�1)
Rt+1.

Now notice that, of all these factors, only the first and the last (the reward) are
correlated; all the other ratios are independent random variables whose expected
value is one:

E

⇡(Ak|Sk)

b(Ak|Sk)

�
.
=

X

a

b(a|Sk)
⇡(a|Sk)

b(a|Sk)
=

X

a

⇡(a|Sk) = 1. (5.11)

Thus, because the expectation of the product of independent random variables is the
product of their expectations, all the ratios except the first drop out in expectation,
leaving just

E[⇢t:T�1Rt+1] = E[⇢t:tRt+1] .

If we repeat this analysis for the kth term of (5.10), we get

E[⇢t:T�1Rt+k] = E[⇢t:t+k�1Rt+k] .

It follows then that the expectation of our original term (5.10) can be written

E[⇢t:T�1Gt] = E
h
G̃t

i
,

where

G̃t = ⇢t:tRt+1 + �⇢t:t+1Rt+2 + �2⇢t:t+2Rt+3 + · · · + �T�t�1⇢t:T�1RT .

We call this idea per-reward importance sampling. It follows immediately that there
is an alternate importance-sampling estimator, with the same unbiased expectation
as the ordinary-importance-sampling estimator (5.4), using G̃t:

V (s)
.
=

P
t2T(s) G̃t

|T(s)| , (5.12)

which we might expect to sometimes be of lower variance.

Is there a per-reward version of weighted importance sampling? This is less clear.
So far, all the estimators that have been proposed for this that we know of are not
consistent (that is, they do not converge to the true value with infinite data).

⇤Exercise 5.9 Modify the algorithm for o↵-policy Monte Carlo control (page 115)
to use the idea of the truncated weighted-average estimator (5.9). Note that you will
first need to convert this equation to action values. ⇤

E[⇢t:T�1Gt] = E
⇥
⇢t:tRt+1 + · · ·+ �k�1⇢t:t+k�1Rt+k + · · ·+ �T�t�1⇢t:T�1RT

⇤

118 CHAPTER 5. MONTE CARLO METHODS

reduce variance even in the absence of discounting (that is, even if � = 1). In the
o↵-policy estimators (5.4) and (5.5), each term of the sum in the numerator is itself
a sum:

⇢t:T�1Gt = ⇢t:T�1
�
Rt+1 + �Rt+2 + · · · + �T�t�1RT

�

= ⇢t:T�1Rt+1 + �⇢t:T�1Rt+2 + · · · + �T�t�1⇢t:T�1RT . (5.10)

The o↵-policy estimators rely on the expected values of these terms; let us see if we
can write them in a simpler way. Note that each sub-term of (5.10) is a product of
a random reward and a random importance-sampling ratio. For example, the first
sub-term can be written, using (5.3), as

⇢t:T�1Rt+1 =
⇡(At|St)

b(At|St)

⇡(At+1|St+1)

b(At+1|St+1)

⇡(At+2|St+2)

b(At+2|St+2)
· · · ⇡(AT�1|ST�1)

b(AT�1|ST�1)
Rt+1.

Now notice that, of all these factors, only the first and the last (the reward) are
correlated; all the other ratios are independent random variables whose expected
value is one:

E

⇡(Ak|Sk)

b(Ak|Sk)

�
.
=

X

a

b(a|Sk)
⇡(a|Sk)

b(a|Sk)
=

X

a

⇡(a|Sk) = 1. (5.11)

Thus, because the expectation of the product of independent random variables is the
product of their expectations, all the ratios except the first drop out in expectation,
leaving just

E[⇢t:T�1Rt+1] = E[⇢t:tRt+1] .

If we repeat this analysis for the kth term of (5.10), we get

E[⇢t:T�1Rt+k] = E[⇢t:t+k�1Rt+k] .

It follows then that the expectation of our original term (5.10) can be written

E[⇢t:T�1Gt] = E
h
G̃t

i
,

where

G̃t = ⇢t:tRt+1 + �⇢t:t+1Rt+2 + �2⇢t:t+2Rt+3 + · · · + �T�t�1⇢t:T�1RT .

We call this idea per-reward importance sampling. It follows immediately that there
is an alternate importance-sampling estimator, with the same unbiased expectation
as the ordinary-importance-sampling estimator (5.4), using G̃t:

V (s)
.
=

P
t2T(s) G̃t

|T(s)| , (5.12)

which we might expect to sometimes be of lower variance.

Is there a per-reward version of weighted importance sampling? This is less clear.
So far, all the estimators that have been proposed for this that we know of are not
consistent (that is, they do not converge to the true value with infinite data).

⇤Exercise 5.9 Modify the algorithm for o↵-policy Monte Carlo control (page 115)
to use the idea of the truncated weighted-average estimator (5.9). Note that you will
first need to convert this equation to action values. ⇤

Implementation

❐ Importance sampling ratios fold into the eligibility trace
❐ Multiply at each step by an extra factor
❐ But on long trajectories traces will get cut a lot!

17

5HPL�0XQRV�*RRJOH�'HHS0LQG

,PSRUWDQFH�VDPSOLQJ

8QELDVHG�HVWLPDWH�RI�
/DUJH��SRVVLEO\�LQILQLWH��YDULDQFH 1RW�HIILFLHQW��
>3UHFXS��6XWWRQ��6LQJK������@��>0DKPRRG��<X��:KLWH��6XWWRQ������@�����

Recognizers

18

Some intuition

• Recognizer makes a target policy that aligns with the behavior

• Goal: Make o↵-policy learning e�cient

ICML ECA workshop 2018 13

Alternative: Recognizers

• Instead of fixing a policy for a GVF, consider a recognizer ⇢ : S ⇥ A !
[0, 1]

• Target policy is obtained by composing the behavior policy with the
recognizer:

⇡(s, a) =
b(s, a)⇢(s, a)P
a0 b(s, a0)⇢(s, a0)

ICML ECA workshop 2018 12

Recognizer Properties

19

Some theory

• Suppose we have a behavior policy b and we only consider target policies
that choose action from a subset a1, ...ak

• Then, the policy that minimizes the variance of one-step importance

sampling updates corresponds to the binary recognizer that is 1 for
a1, . . . ak and 0 otherwise:

arg min
⇡

Eb

"✓
⇡(ai)

b(ai)

◆2
#

• Recognizing more actions leads to lower variance
• Recognizer folds in the eligibility trace in place of the importance sampling
ratio

• The behavior policy does NOT need to be known (the normalization can
be estimated empirically) - connection to imitation learning
Cf. Precup et al, NIPS 2005

ICML ECA workshop 2018 14

Tree Backup

20

5HPL�0XQRV�*RRJOH�'HHS0LQG

7UHH�EDFNXS�7%�Ȝ��DOJRULWKP
>3UHFXS��6XWWRQ��6LQJK������@

����5HZHLJKW�WKH�WUDFHV�E\�WKH�SURGXFW�RI�WDUJHW�SUREDELOLWLHV
� ���

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 21

Q-Learning: Off-Policy TD Control

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 145

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0

Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R, S0

Q(S,A) Q(S,A) + ↵[R+ �maxaQ(S0, a)�Q(S,A)]
S S0

;

until S is terminal

Figure 6.12: Q-learning: An o↵-policy TD control algorithm.

(Figure 3.7). Can you guess now what the diagram is? If so, please do make
a guess before turning to the answer in Figure 6.14.

Reward
per

epsiode

!100

!75

!50

!25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = !100

T h e C l i f f

r = !1 safe path

optimal path

Figure 6.13: The cli↵-walking task. The results are from a single run, but
smoothed.

Example 6.6: Cli↵ Walking This gridworld example compares Sarsa
and Q-learning, highlighting the di↵erence between on-policy (Sarsa) and o↵-
policy (Q-learning) methods. Consider the gridworld shown in the upper part
of Figure 6.13. This is a standard undiscounted, episodic task, with start and
goal states, and the usual actions causing movement up, down, right, and left.
Reward is �1 on all transitions except those into the the region marked “The

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 139

6.5 Q-learning: O↵-Policy TD Control

One of the most important breakthroughs in reinforcement learning was the devel-
opment of an o↵-policy TD control algorithm known as Q-learning (Watkins, 1989).
Its simplest form, one-step Q-learning , is defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a
Q(St+1, a)�Q(St, At)

i
. (6.6)

In this case, the learned action-value function, Q, directly approximates q⇤, the op-
timal action-value function, independent of the policy being followed. This dramat-
ically simplifies the analysis of the algorithm and enabled early convergence proofs.
The policy still has an e↵ect in that it determines which state–action pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to find optimal behavior in the general case
must require it. Under this assumption and a variant of the usual stochastic approx-
imation conditions on the sequence of step-size parameters, Q has been shown to
converge with probability 1 to q⇤. The Q-learning algorithm is shown in procedural
form in Figure 6.10.

What is the backup diagram for Q-learning? The rule (6.6) updates a state–action
pair, so the top node, the root of the backup, must be a small, filled action node.
The backup is also from action nodes, maximizing over all those actions possible in
the next state. Thus the bottom nodes of the backup diagram should be all these
action nodes. Finally, remember that we indicate taking the maximum of these “next
action” nodes with an arc across them (Figure 3.7). Can you guess now what the
diagram is? If so, please do make a guess before turning to the answer in Figure 6.12.

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ✏-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S S0;
until S is terminal

Figure 6.10: Q-learning: An o↵-policy TD control algorithm.

One-step Q-learning:

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 143

Reward
per

epsiode

!100

!75

!50

!25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = !100

T h e C l i f f

r = !1 safe path

optimal path

R

R

Sum of
rewards
during

episode

Figure 6.5: The cli↵-walking task. The results are from a single run, but smoothed by
averaging the reward sums from 10 successive episodes.

The lower part of Figure 6.5 shows the performance of the Sarsa and Q-learning
methods with "-greedy action selection, " = 0.1. After an initial transient, Q-learning
learns values for the optimal policy, that which travels right along the edge of the
cli↵. Unfortunately, this results in its occasionally falling o↵ the cli↵ because of
the "-greedy action selection. Sarsa, on the other hand, takes the action selection
into account and learns the longer but safer path through the upper part of the
grid. Although Q-learning actually learns the values of the optimal policy, its on-
line performance is worse than that of Sarsa, which learns the roundabout policy.
Of course, if " were gradually reduced, then both methods would asymptotically
converge to the optimal policy.

Exercise 6.9 Why is Q-learning considered an o↵-policy control method?

Q-learning Expected Sarsa

Figure 6.6: The backup diagrams for Q-learning and expected Sarsa.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

Cliffwalking

ε−greedy, ε = 0.1

R

R

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Expected Sarsa

23

Instead of the sample value-of-next-state, use the expectation!

Expected Sarsa’s performs better than Sarsa (but costs more)

6.6. EXPECTED SARSA 141

Q-learning Expected Sarsa

Figure 6.12: The backup diagrams for Q-learning and expected Sarsa.

6.6 Expected Sarsa

Consider the learning algorithm that is just like Q-learning except that instead of
the maximum over next state–action pairs it uses the expected value, taking into
account how likely each action is under the current policy. That is, consider the
algorithm with the update rule

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �E[Q(St+1, At+1) | St+1]�Q(St, At)

i

 Q(St, At) + ↵
h
Rt+1 + �

X

a

⇡(a|St+1)Q(St+1, a)�Q(St, At)
i
, (6.7)

but that otherwise follows the schema of Q-learning (as in Figure 6.10). Given the
next state, St+1, this algorithm moves deterministically in the same direction as
Sarsa moves in expectation, and accordingly it is called expected Sarsa. Its backup
diagram is shown in Figure 6.12.

Expected Sarsa is more complex computationally than Sarsa but, in return, it
eliminates the variance due to the random selection of At+1. Given the same amount
of experience we might expect it to perform slightly better than Sarsa, and indeed it
generally does. Figure 6.13 shows summary results on the cli↵-walking task with Ex-
pected Sarsa compared to Sarsa and Q-learning. As an on-policy method, Expected
Sarsa retains the significant advantage of Sarsa over Q-learning on this problem. In
addition, Expected Sarsa shows a significant improvement over Sarsa over a wide
range of values for the step-size parameter ↵. In cli↵ walking the state transitions
are all deterministic and all randomness comes from the policy. In such cases, Ex-
pected Sarsa can safely set ↵ = 1 without su↵ering any degradation of asymptotic
performance, whereas Sarsa can only perform well in the long run at a small value
of ↵, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cli↵ walking results we have taken Expected Sarsa to be an on-policy
algorithm, but in general we can use a policy di↵erent from the target policy ⇡ to
generate behavior, in which case Expected Sarsa becomes an o↵-policy algorithm.
For example, suppose ⇡ is the greedy policy while behavior is more exploratory;
then Expected Sarsa is exactly Q-learning. In this sense Expected Sarsa subsumes
and generalizes Q-learning while reliably improving over Sarsa. Except for the small
additional computational cost, Expected Sarsa may completely dominate both of the
other more-well-known TD control algorithms.

6.6. EXPECTED SARSA 141

Q-learning Expected Sarsa

Figure 6.12: The backup diagrams for Q-learning and expected Sarsa.

6.6 Expected Sarsa

Consider the learning algorithm that is just like Q-learning except that instead of
the maximum over next state–action pairs it uses the expected value, taking into
account how likely each action is under the current policy. That is, consider the
algorithm with the update rule

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �E[Q(St+1, At+1) | St+1]�Q(St, At)

i

 Q(St, At) + ↵
h
Rt+1 + �

X

a

⇡(a|St+1)Q(St+1, a)�Q(St, At)
i
, (6.7)

but that otherwise follows the schema of Q-learning (as in Figure 6.10). Given the
next state, St+1, this algorithm moves deterministically in the same direction as
Sarsa moves in expectation, and accordingly it is called expected Sarsa. Its backup
diagram is shown in Figure 6.12.

Expected Sarsa is more complex computationally than Sarsa but, in return, it
eliminates the variance due to the random selection of At+1. Given the same amount
of experience we might expect it to perform slightly better than Sarsa, and indeed it
generally does. Figure 6.13 shows summary results on the cli↵-walking task with Ex-
pected Sarsa compared to Sarsa and Q-learning. As an on-policy method, Expected
Sarsa retains the significant advantage of Sarsa over Q-learning on this problem. In
addition, Expected Sarsa shows a significant improvement over Sarsa over a wide
range of values for the step-size parameter ↵. In cli↵ walking the state transitions
are all deterministic and all randomness comes from the policy. In such cases, Ex-
pected Sarsa can safely set ↵ = 1 without su↵ering any degradation of asymptotic
performance, whereas Sarsa can only perform well in the long run at a small value
of ↵, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cli↵ walking results we have taken Expected Sarsa to be an on-policy
algorithm, but in general we can use a policy di↵erent from the target policy ⇡ to
generate behavior, in which case Expected Sarsa becomes an o↵-policy algorithm.
For example, suppose ⇡ is the greedy policy while behavior is more exploratory;
then Expected Sarsa is exactly Q-learning. In this sense Expected Sarsa subsumes
and generalizes Q-learning while reliably improving over Sarsa. Except for the small
additional computational cost, Expected Sarsa may completely dominate both of the
other more-well-known TD control algorithms.

a

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Performance on the Cliff-walking Task

24

142 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

We then present results on two versions of the windy
grid world problem, one with a deterministic environment
and one with a stochastic environment. We do so in order
to evaluate the influence of environment stochasticity on
the performance difference between Expected Sarsa and
Sarsa and confirm the first part of Hypothesis 2. We then
present results for different amounts of policy stochasticity
to confirm the second part of Hypothesis 2. For completeness,
we also show the performance of Q-learning on this problem.
Finally, we present results in other domains verifying the
advantages of Expected Sarsa in a broader setting. All results
presented below are averaged over numerous independent
trials such that the standard error becomes negligible.

A. Cliff Walking

We begin by testing Hypothesis 1 using the cliff walking
task, an undiscounted, episodic navigation task in which the
agent has to find its way from start to goal in a deterministic
grid world. Along the edge of the grid world is a cliff (see
Figure 1). The agent can take any of four movement actions:
up, down, left and right, each of which moves the agent one
square in the corresponding direction. Each step results in a
reward of -1, except when the agent steps into the cliff area,
which results in a reward of -100 and an immediate return
to the start state. The episode ends upon reaching the goal
state.

S G

Fig. 1. The cliff walking task. The agent has to move from the start [S]
to the goal [G], while avoiding stepping into the cliff (grey area).

We evaluated the performance over the first n episodes as
a function of the learning rate ↵ using an ✏-greedy policy
with ✏ = 0.1. Figure 2 shows the result for n = 100 and
n = 100, 000. We averaged the results over 50,000 runs and
10 runs, respectively.

Discussion. Expected Sarsa outperforms Q-learning and
Sarsa for all learning rate values, confirming Hypothesis 1
and providing some evidence for Hypothesis 2. The optimal
↵ value of Expected Sarsa for n = 100 is 1, while for
Sarsa it is lower, as expected for a deterministic problem.
That the optimal value of Q-learning is also lower than 1 is
surprising, since Q-learning also has no stochasticity in its
updates in a deterministic environment. Our explanation is
that Q-learning first learns policies that are sub-optimal in
the greedy sense, i.e. walking towards the goal with a detour
further from the cliff. Q-learning iteratively optimizes these
early policies, resulting in a path more closely along the cliff.
However, although this path is better in the off-line sense, in
terms of on-line performance it is worse. A large value of
↵ ensures the goal is reached quickly, but a value somewhat
lower than 1 ensures that the agent does not try to walk right

on the edge of the cliff immediately, resulting in a slightly
better on-line performance.

For n = 100, 000, the average return is equal for all
↵ values in case of Expected Sarsa and Q-learning. This
indicates that the algorithms have converged long before the
end of the run for all ↵ values, since we do not see any
effect of the initial learning phase. For Sarsa the performance
comes close to the performance of Expected Sarsa only for
↵ = 0.1, while for large ↵, the performance for n = 100, 000
even drops below the performance for n = 100. The reason
is that for large values of ↵ the Q values of Sarsa diverge.
Although the policy is still improved over the initial random
policy during the early stages of learning, divergence causes
the policy to get worse in the long run.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−160

−140

−120

−100

−80

−60

−40

−20

0

alpha

av
er

ag
e

re
tu

rn

n = 100, Sarsa
n = 100, Q−learning
n = 100, Expected Sarsa
n = 1E5, Sarsa
n = 1E5, Q−learning
n = 1E5, Expected Sarsa

Fig. 2. Average return on the cliff walking task over the first n episodes
for n = 100 and n = 100, 000 using an ✏-greedy policy with ✏ = 0.1. The
big dots indicate the maximal values.

B. Windy Grid World
We turn to the windy grid world task to further test Hy-

pothesis 2. The windy grid world task is another navigation
task, where the agent has to find its way from start to goal.
The grid has a height of 7 and a width of 10 squares. There
is a wind blowing in the ’up’ direction in the middle part of
the grid, with a strength of 1 or 2 depending on the column.
Figure 3 shows the grid world with a number below each
column indicating the wind strength. Again, the agent can
choose between four movement actions: up, down, left and
right, each resulting in a reward of -1. The result of an action
is a movement of 1 square in the corresponding direction plus
an additional movement in the ’up’ direction, corresponding
with the wind strength. For example, when the agent is in
the square right of the goal and takes a ’left’ action, it ends
up in the square just above the goal.

1) Deterministic Environment: We first consider a de-
terministic environment. As in the cliff walking task, we
use an ✏-greedy policy with ✏ = 0.1. Figure 4 shows the
performance as a function of the learning rate ↵ over the
first n episodes for n = 100 and n = 100, 000. For n = 100

Expected Sarsa

SarsaQ-learning

Asymptotic Performance

Interim Performance
(after 100 episodes)

Q-learning
Reward

per
episode

↵
10.1 0.2 0.4 0.6 0.80.3 0.5 0.7 0.9

0

-40

-80

-120

Figure 6.13: Interim and asymptotic performance of TD control methods on the cli↵-walking
task as a function of ↵. All algorithms used an "-greedy policy with " = 0.1. “Asymptotic”
performance is an average over 100,000 episodes. These data are averages of over 50,000 and
10 runs for the interim and asymptotic cases respectively. The solid circles mark the best
interim performance of each method. Adapted from van Seijen et al. (2009).

6.7 Maximization Bias and Double Learning

All the control algorithms that we have discussed so far involve maximization in the
construction of their target policies. For example, in Q-learning the target policy is
the greedy policy given the current action values, which is defined with a max, and in
Sarsa the policy is often "-greedy, which also involves a maximization operation. In
these algorithms, a maximum over estimated values is used implicitly as an estimate
of the maximum value, which can lead to a significant positive bias. To see why,
consider a single state s where there are many actions a whose true values, q(s, a),
are all zero but whose estimated values, Q(s, a), are uncertain and thus distributed
some above and some below zero. The maximum of the true values is zero, but the
maximum of the estimates is positive, a positive bias. We call this maximization
bias.

Maximization bias can be a problem for our control algorithms. A simple example
in which it harms performance is the MDP shown inset in Figure 6.14. The MDP
has two non-terminal states A and B. Episodes always start in A with a choice be-
tween two actions, right and wrong. The right action transitions immediately to the
terminal state with a reward and return of zero. The wrong action transitions to B,
also with a reward of zero, from which there are many possible actions all of which
cause immediate termination with a reward drawn from a normal distribution with
mean �0.1 and variance 1.0. Thus, the expected return for any trajectory starting
with wrong is �0.1, and wrong is indeed the ‘wrong’ action to take in state A. Nev-

van Seijen, van Hasselt, Whiteson, & Wiering 2009

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Off-policy Expected Sarsa

25

Expected Sarsa generalizes to arbitrary behavior policies 𝜇
in which case it includes Q-learning as the special case in which
π is the greedy policy

6.6. EXPECTED SARSA 141

Q-learning Expected Sarsa

Figure 6.12: The backup diagrams for Q-learning and expected Sarsa.

6.6 Expected Sarsa

Consider the learning algorithm that is just like Q-learning except that instead of
the maximum over next state–action pairs it uses the expected value, taking into
account how likely each action is under the current policy. That is, consider the
algorithm with the update rule

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �E[Q(St+1, At+1) | St+1]�Q(St, At)

i

 Q(St, At) + ↵
h
Rt+1 + �

X

a

⇡(a|St+1)Q(St+1, a)�Q(St, At)
i
, (6.7)

but that otherwise follows the schema of Q-learning (as in Figure 6.10). Given the
next state, St+1, this algorithm moves deterministically in the same direction as
Sarsa moves in expectation, and accordingly it is called expected Sarsa. Its backup
diagram is shown in Figure 6.12.

Expected Sarsa is more complex computationally than Sarsa but, in return, it
eliminates the variance due to the random selection of At+1. Given the same amount
of experience we might expect it to perform slightly better than Sarsa, and indeed it
generally does. Figure 6.13 shows summary results on the cli↵-walking task with Ex-
pected Sarsa compared to Sarsa and Q-learning. As an on-policy method, Expected
Sarsa retains the significant advantage of Sarsa over Q-learning on this problem. In
addition, Expected Sarsa shows a significant improvement over Sarsa over a wide
range of values for the step-size parameter ↵. In cli↵ walking the state transitions
are all deterministic and all randomness comes from the policy. In such cases, Ex-
pected Sarsa can safely set ↵ = 1 without su↵ering any degradation of asymptotic
performance, whereas Sarsa can only perform well in the long run at a small value
of ↵, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cli↵ walking results we have taken Expected Sarsa to be an on-policy
algorithm, but in general we can use a policy di↵erent from the target policy ⇡ to
generate behavior, in which case Expected Sarsa becomes an o↵-policy algorithm.
For example, suppose ⇡ is the greedy policy while behavior is more exploratory;
then Expected Sarsa is exactly Q-learning. In this sense Expected Sarsa subsumes
and generalizes Q-learning while reliably improving over Sarsa. Except for the small
additional computational cost, Expected Sarsa may completely dominate both of the
other more-well-known TD control algorithms.

6.6. EXPECTED SARSA 141

Q-learning Expected Sarsa

Figure 6.12: The backup diagrams for Q-learning and expected Sarsa.

6.6 Expected Sarsa

Consider the learning algorithm that is just like Q-learning except that instead of
the maximum over next state–action pairs it uses the expected value, taking into
account how likely each action is under the current policy. That is, consider the
algorithm with the update rule

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �E[Q(St+1, At+1) | St+1]�Q(St, At)

i

 Q(St, At) + ↵
h
Rt+1 + �

X

a

⇡(a|St+1)Q(St+1, a)�Q(St, At)
i
, (6.7)

but that otherwise follows the schema of Q-learning (as in Figure 6.10). Given the
next state, St+1, this algorithm moves deterministically in the same direction as
Sarsa moves in expectation, and accordingly it is called expected Sarsa. Its backup
diagram is shown in Figure 6.12.

Expected Sarsa is more complex computationally than Sarsa but, in return, it
eliminates the variance due to the random selection of At+1. Given the same amount
of experience we might expect it to perform slightly better than Sarsa, and indeed it
generally does. Figure 6.13 shows summary results on the cli↵-walking task with Ex-
pected Sarsa compared to Sarsa and Q-learning. As an on-policy method, Expected
Sarsa retains the significant advantage of Sarsa over Q-learning on this problem. In
addition, Expected Sarsa shows a significant improvement over Sarsa over a wide
range of values for the step-size parameter ↵. In cli↵ walking the state transitions
are all deterministic and all randomness comes from the policy. In such cases, Ex-
pected Sarsa can safely set ↵ = 1 without su↵ering any degradation of asymptotic
performance, whereas Sarsa can only perform well in the long run at a small value
of ↵, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cli↵ walking results we have taken Expected Sarsa to be an on-policy
algorithm, but in general we can use a policy di↵erent from the target policy ⇡ to
generate behavior, in which case Expected Sarsa becomes an o↵-policy algorithm.
For example, suppose ⇡ is the greedy policy while behavior is more exploratory;
then Expected Sarsa is exactly Q-learning. In this sense Expected Sarsa subsumes
and generalizes Q-learning while reliably improving over Sarsa. Except for the small
additional computational cost, Expected Sarsa may completely dominate both of the
other more-well-known TD control algorithms.

aNothing
changes

here

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Q-learning with Eligibility Traces

26

5HPL�0XQRV�*RRJOH�'HHS0LQG

DOJRULWKP
>+DUXW\XQ\DQ��%HOOHPDUH��6WHSOHWRQ��0XQRV������@

� ZRUNV�LI

� PD\�QRW�ZRUN�RWKHUZLVH 1RW�VDIH�

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Blueprint Off-policy Algorithm

27

5HPL�0XQRV�*RRJOH�'HHS0LQG

*HQHUDO�RII�SROLF\�UHWXUQ�EDVHG�DOJRULWKP�

��$OJRULWKP�� 7UDFH�FRHIILFLHQW� ������3UREOHP�

�� ,6 � KLJK�YDULDQFH

������������������ � QRW�VDIH��RII�SROLF\�

������������ � QRW�HIILFLHQW��RQ�SROLF\�

Retrace (Munos et al, 2016)

28

5HPL�0XQRV�*RRJOH�'HHS0LQG

2XU�UHFRPPHQGDWLRQ�

������8VH5HWUDFH�Ȝ��GHILQHG�E\

3URSHUWLHV�
Ɣ /RZ�YDULDQFH�VLQFH��

Ɣ 6DIH��RII�SROLF\���FXW�WKH�WUDFHV�ZKHQ�QHHGHG�

Ɣ (IILFLHQW��RQ�SROLF\���EXW�RQO\�ZKHQ�QHHGHG��1RWH�WKDW

Retrace for Control

29

5HPL�0XQRV�*RRJOH�'HHS0LQG

5HWUDFH�Ȝ��IRU�RSWLPDO�FRQWURO

/HW�����������DQG����������VHTXHQFHV�RI�EHKDYLRU�DQG�WDUJHW�SROLFLHV�DQG��

7KHRUHP��
8QGHU�SUHYLRXV�DVVXPSWLRQV����D�WHFKQLFDO�DVVXPSWLRQ�
$VVXPH����������DUH�³LQFUHDVLQJO\�JUHHG\´�ZUW����������
7KHQ��D�V��

5HPL�0XQRV�*RRJOH�'HHS0LQG

5HPDUNV

Ɣ ,I����������DUH�JUHHG\�SROLFLHV��WKHQ�
ĺ� &RQYHUJHQFH�RI�:DWNLQ¶V�4�Ȝ���WR

�RSHQ�SUREOHP�VLQFH������

Ɣ ³,QFUHDVLQJO\�JUHHG\´�DOORZV�IRU�VPRRWKHU�WUDFHV�WKXV�IDVWHU�FRQYHUJHQFH

Ɣ 7KH�EHKDYLRU�SROLFLHV���������GR�QRW�QHHG�WR�EHFRPH�JUHHG\�ZUW���������
ĺ� QR�*/,(�DVVXPSWLRQ��*UHHG\�LQ�WKH�OLPLW�ZLWK�LQILQLWH�H[SORUDWLRQ�

�ILUVW�UHWXUQ�EDVHG�DOJR�FRQYHUJLQJ�WR�������ZLWKRXW�*/,(�

Retrace in Atari

30

5HPL�0XQRV�*RRJOH�'HHS0LQG

$WDUL������HQYLURQPHQWV��5HWUDFH�YV�'41

*DPHV��
$VWHURLGV��'HIHQGHU��'HPRQ�$WWDFN��+HUR��.UXOO��
5LYHU�5DLG��6SDFH�,QYDGHUV��6WDU�*XQQHU��:L]DUG�RI�:RU��=D[[RQ���

Retrace vs Tree Backup

31

5HPL�0XQRV�*RRJOH�'HHS0LQG

([SHULPHQWV�RQ����$WDUL�JDPHV

V-Trace (Espeholt et al, 2018)
❐ Off-policy, massively parallel actor-critic

❐ In the on-policy case, this is an n-step backup
❐ In the tabular off-policy case, converges to the value of:

32

IMPALA: Importance Weighted Actor-Learner Architectures

rects for this lag to achieve extremely high data throughput
while maintaining data efficiency. Using an actor-learner ar-
chitecture, provides fault tolerance like distributed A3C but
often has lower communication overhead since the actors
send observations rather than parameters/gradients.

With the introduction of very deep model architectures, the
speed of a single GPU is often the limiting factor during
training. IMPALA can be used with distributed set of learn-
ers to train large neural networks efficiently as shown in
Figure 1. Parameters are distributed across the learners and
actors retrieve the parameters from all the learners in par-
allel while only sending observations to a single learner.
IMPALA use synchronised parameter update which is vital
to maintain data efficiency when scaling to many machines
(Chen et al., 2016).

3.1. Efficiency Optimisations

GPUs and many-core CPUs benefit greatly from running
few large, parallelisable operations instead of many small
operations. Since the learner in IMPALA performs updates
on entire batches of trajectories, it is able to parallelise more
of its computations than an online agent like A3C. As an
example, a typical deep RL agent features a convolutional
network followed by a Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997) and a fully connected
output layer after the LSTM. An IMPALA learner applies
the convolutional network to all inputs in parallel by folding
the time dimension into the batch dimension. Similarly, it
also applies the output layer to all time steps in parallel
once all LSTM states are computed. This optimisation
increases the effective batch size to thousands. LSTM-based
agents also obtain significant speedups on the learner by
exploiting the network structure dependencies and operation
fusion (Appleyard et al., 2016).

Finally, we also make use of several off the shelf optimisa-
tions available in TensorFlow (Abadi et al., 2017) such as
preparing the next batch of data for the learner while still per-
forming computation, compiling parts of the computational
graph with XLA (a TensorFlow Just-In-Time compiler) and
optimising the data format to get the maximum performance
from the cuDNN framework (Chetlur et al., 2014).

4. V-trace
Off-policy learning is important in the decoupled distributed
actor-learner architecture because of the lag between when
actions are generated by the actors and when the learner
estimates the gradient. To this end, we introduce a novel off-
policy actor-critic algorithm for the learner, called V-trace.

First, let us introduce some notations. We consider the
problem of discounted infinite-horizon RL in Markov De-
cision Processes (MDP), see (Puterman, 1994; Sutton &

Barto, 1998) where the goal is to find a policy ⇡ that
maximises the expected sum of future discounted rewards:
V ⇡(x)

def
= E⇡

⇥P
t�0 �trt

⇤
, where � 2 [0, 1) is the dis-

count factor, rt = r(xt, at) is the reward at time t, xt is the
state at time t (initialised in x0 = x) and at ⇠ ⇡(·|xt) is the
action generated by following some policy ⇡.

The goal of an off-policy RL algorithm is to use trajectories
generated by some policy µ, called the behaviour policy, to
learn the value function V ⇡ of another policy ⇡ (possibly
different from µ), called the target policy.

4.1. V-trace target

Consider a trajectory (xt, at, rt)
t=s+n
t=s generated by the ac-

tor following some policy µ. We define the n-steps V-trace
target for V (xs), our value approximation at state xs, as:

vs
def
= V (xs) +

Ps+n�1
t=s �t�s

⇣Qt�1
i=s ci

⌘
�tV , (1)

where �tV
def
= ⇢t

�
rt + �V (xt+1) � V (xt)

�
is a temporal

difference for V , and ⇢t
def
= min

�
⇢̄, ⇡(at|xt)

µ(at|xt)

�
and ci

def
=

min
�
c̄, ⇡(ai|xi)

µ(ai|xi)

�
are truncated importance sampling (IS)

weights (we make use of the notation
Qt�1

i=s ci = 1 for
s = t). In addition we assume that the truncation levels are
such that ⇢̄ � c̄.

Notice that in the on-policy case (when ⇡ = µ), and as-
suming that c̄ � 1, then all ci = 1 and ⇢t = 1, thus (1)
rewrites

vs = V (xs) +
Ps+n�1

t=s �t�s
�
rt + �V (xt+1) � V (xt)

�

=
Ps+n�1

t=s �t�srt + �nV (xs+n), (2)

which is the on-policy n-steps Bellman target. Thus in
the on-policy case, V-trace reduces to the on-policy n-steps
Bellman update. This property (which Retrace (Munos et al.,
2016) does not have) allows one to use the same algorithm
for off- and on-policy data.

Notice that the (truncated) IS weights ci and ⇢t play dif-
ferent roles. The weight ⇢t appears in the definition of the
temporal difference �tV and defines the fixed point of this
update rule. In a tabular case, where functions can be per-
fectly represented, the fixed point of this update (i.e., when
V (xs) = vs for all states), characterised by �tV being equal
to zero in expectation (under µ), is the value function V ⇡⇢̄

of some policy ⇡⇢̄, defined by

⇡⇢̄(a|x)
def
=

min
�
⇢̄µ(a|x), ⇡(a|x)

�
P

b2A min
�
⇢̄µ(b|x), ⇡(b|x)

� , (3)

(see the analysis in Appendix A). So when ⇢̄ is infinite
(i.e. no truncation of ⇢t), then this is the value function V ⇡

of the target policy. However if we choose a truncation

IMPALA: Importance Weighted Actor-Learner Architectures

rects for this lag to achieve extremely high data throughput
while maintaining data efficiency. Using an actor-learner ar-
chitecture, provides fault tolerance like distributed A3C but
often has lower communication overhead since the actors
send observations rather than parameters/gradients.

With the introduction of very deep model architectures, the
speed of a single GPU is often the limiting factor during
training. IMPALA can be used with distributed set of learn-
ers to train large neural networks efficiently as shown in
Figure 1. Parameters are distributed across the learners and
actors retrieve the parameters from all the learners in par-
allel while only sending observations to a single learner.
IMPALA use synchronised parameter update which is vital
to maintain data efficiency when scaling to many machines
(Chen et al., 2016).

3.1. Efficiency Optimisations

GPUs and many-core CPUs benefit greatly from running
few large, parallelisable operations instead of many small
operations. Since the learner in IMPALA performs updates
on entire batches of trajectories, it is able to parallelise more
of its computations than an online agent like A3C. As an
example, a typical deep RL agent features a convolutional
network followed by a Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997) and a fully connected
output layer after the LSTM. An IMPALA learner applies
the convolutional network to all inputs in parallel by folding
the time dimension into the batch dimension. Similarly, it
also applies the output layer to all time steps in parallel
once all LSTM states are computed. This optimisation
increases the effective batch size to thousands. LSTM-based
agents also obtain significant speedups on the learner by
exploiting the network structure dependencies and operation
fusion (Appleyard et al., 2016).

Finally, we also make use of several off the shelf optimisa-
tions available in TensorFlow (Abadi et al., 2017) such as
preparing the next batch of data for the learner while still per-
forming computation, compiling parts of the computational
graph with XLA (a TensorFlow Just-In-Time compiler) and
optimising the data format to get the maximum performance
from the cuDNN framework (Chetlur et al., 2014).

4. V-trace
Off-policy learning is important in the decoupled distributed
actor-learner architecture because of the lag between when
actions are generated by the actors and when the learner
estimates the gradient. To this end, we introduce a novel off-
policy actor-critic algorithm for the learner, called V-trace.

First, let us introduce some notations. We consider the
problem of discounted infinite-horizon RL in Markov De-
cision Processes (MDP), see (Puterman, 1994; Sutton &

Barto, 1998) where the goal is to find a policy ⇡ that
maximises the expected sum of future discounted rewards:
V ⇡(x)

def
= E⇡

⇥P
t�0 �trt

⇤
, where � 2 [0, 1) is the dis-

count factor, rt = r(xt, at) is the reward at time t, xt is the
state at time t (initialised in x0 = x) and at ⇠ ⇡(·|xt) is the
action generated by following some policy ⇡.

The goal of an off-policy RL algorithm is to use trajectories
generated by some policy µ, called the behaviour policy, to
learn the value function V ⇡ of another policy ⇡ (possibly
different from µ), called the target policy.

4.1. V-trace target

Consider a trajectory (xt, at, rt)
t=s+n
t=s generated by the ac-

tor following some policy µ. We define the n-steps V-trace
target for V (xs), our value approximation at state xs, as:

vs
def
= V (xs) +

Ps+n�1
t=s �t�s

⇣Qt�1
i=s ci

⌘
�tV , (1)

where �tV
def
= ⇢t

�
rt + �V (xt+1) � V (xt)

�
is a temporal

difference for V , and ⇢t
def
= min

�
⇢̄, ⇡(at|xt)

µ(at|xt)

�
and ci

def
=

min
�
c̄, ⇡(ai|xi)

µ(ai|xi)

�
are truncated importance sampling (IS)

weights (we make use of the notation
Qt�1

i=s ci = 1 for
s = t). In addition we assume that the truncation levels are
such that ⇢̄ � c̄.

Notice that in the on-policy case (when ⇡ = µ), and as-
suming that c̄ � 1, then all ci = 1 and ⇢t = 1, thus (1)
rewrites

vs = V (xs) +
Ps+n�1

t=s �t�s
�
rt + �V (xt+1) � V (xt)

�

=
Ps+n�1

t=s �t�srt + �nV (xs+n), (2)

which is the on-policy n-steps Bellman target. Thus in
the on-policy case, V-trace reduces to the on-policy n-steps
Bellman update. This property (which Retrace (Munos et al.,
2016) does not have) allows one to use the same algorithm
for off- and on-policy data.

Notice that the (truncated) IS weights ci and ⇢t play dif-
ferent roles. The weight ⇢t appears in the definition of the
temporal difference �tV and defines the fixed point of this
update rule. In a tabular case, where functions can be per-
fectly represented, the fixed point of this update (i.e., when
V (xs) = vs for all states), characterised by �tV being equal
to zero in expectation (under µ), is the value function V ⇡⇢̄

of some policy ⇡⇢̄, defined by

⇡⇢̄(a|x)
def
=

min
�
⇢̄µ(a|x), ⇡(a|x)

�
P

b2A min
�
⇢̄µ(b|x), ⇡(b|x)

� , (3)

(see the analysis in Appendix A). So when ⇢̄ is infinite
(i.e. no truncation of ⇢t), then this is the value function V ⇡

of the target policy. However if we choose a truncation

IMPALA: Importance Weighted Actor-Learner Architectures

rects for this lag to achieve extremely high data throughput
while maintaining data efficiency. Using an actor-learner ar-
chitecture, provides fault tolerance like distributed A3C but
often has lower communication overhead since the actors
send observations rather than parameters/gradients.

With the introduction of very deep model architectures, the
speed of a single GPU is often the limiting factor during
training. IMPALA can be used with distributed set of learn-
ers to train large neural networks efficiently as shown in
Figure 1. Parameters are distributed across the learners and
actors retrieve the parameters from all the learners in par-
allel while only sending observations to a single learner.
IMPALA use synchronised parameter update which is vital
to maintain data efficiency when scaling to many machines
(Chen et al., 2016).

3.1. Efficiency Optimisations

GPUs and many-core CPUs benefit greatly from running
few large, parallelisable operations instead of many small
operations. Since the learner in IMPALA performs updates
on entire batches of trajectories, it is able to parallelise more
of its computations than an online agent like A3C. As an
example, a typical deep RL agent features a convolutional
network followed by a Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997) and a fully connected
output layer after the LSTM. An IMPALA learner applies
the convolutional network to all inputs in parallel by folding
the time dimension into the batch dimension. Similarly, it
also applies the output layer to all time steps in parallel
once all LSTM states are computed. This optimisation
increases the effective batch size to thousands. LSTM-based
agents also obtain significant speedups on the learner by
exploiting the network structure dependencies and operation
fusion (Appleyard et al., 2016).

Finally, we also make use of several off the shelf optimisa-
tions available in TensorFlow (Abadi et al., 2017) such as
preparing the next batch of data for the learner while still per-
forming computation, compiling parts of the computational
graph with XLA (a TensorFlow Just-In-Time compiler) and
optimising the data format to get the maximum performance
from the cuDNN framework (Chetlur et al., 2014).

4. V-trace
Off-policy learning is important in the decoupled distributed
actor-learner architecture because of the lag between when
actions are generated by the actors and when the learner
estimates the gradient. To this end, we introduce a novel off-
policy actor-critic algorithm for the learner, called V-trace.

First, let us introduce some notations. We consider the
problem of discounted infinite-horizon RL in Markov De-
cision Processes (MDP), see (Puterman, 1994; Sutton &

Barto, 1998) where the goal is to find a policy ⇡ that
maximises the expected sum of future discounted rewards:
V ⇡(x)

def
= E⇡

⇥P
t�0 �trt

⇤
, where � 2 [0, 1) is the dis-

count factor, rt = r(xt, at) is the reward at time t, xt is the
state at time t (initialised in x0 = x) and at ⇠ ⇡(·|xt) is the
action generated by following some policy ⇡.

The goal of an off-policy RL algorithm is to use trajectories
generated by some policy µ, called the behaviour policy, to
learn the value function V ⇡ of another policy ⇡ (possibly
different from µ), called the target policy.

4.1. V-trace target

Consider a trajectory (xt, at, rt)
t=s+n
t=s generated by the ac-

tor following some policy µ. We define the n-steps V-trace
target for V (xs), our value approximation at state xs, as:

vs
def
= V (xs) +

Ps+n�1
t=s �t�s

⇣Qt�1
i=s ci

⌘
�tV , (1)

where �tV
def
= ⇢t

�
rt + �V (xt+1) � V (xt)

�
is a temporal

difference for V , and ⇢t
def
= min

�
⇢̄, ⇡(at|xt)

µ(at|xt)

�
and ci

def
=

min
�
c̄, ⇡(ai|xi)

µ(ai|xi)

�
are truncated importance sampling (IS)

weights (we make use of the notation
Qt�1

i=s ci = 1 for
s = t). In addition we assume that the truncation levels are
such that ⇢̄ � c̄.

Notice that in the on-policy case (when ⇡ = µ), and as-
suming that c̄ � 1, then all ci = 1 and ⇢t = 1, thus (1)
rewrites

vs = V (xs) +
Ps+n�1

t=s �t�s
�
rt + �V (xt+1) � V (xt)

�

=
Ps+n�1

t=s �t�srt + �nV (xs+n), (2)

which is the on-policy n-steps Bellman target. Thus in
the on-policy case, V-trace reduces to the on-policy n-steps
Bellman update. This property (which Retrace (Munos et al.,
2016) does not have) allows one to use the same algorithm
for off- and on-policy data.

Notice that the (truncated) IS weights ci and ⇢t play dif-
ferent roles. The weight ⇢t appears in the definition of the
temporal difference �tV and defines the fixed point of this
update rule. In a tabular case, where functions can be per-
fectly represented, the fixed point of this update (i.e., when
V (xs) = vs for all states), characterised by �tV being equal
to zero in expectation (under µ), is the value function V ⇡⇢̄

of some policy ⇡⇢̄, defined by

⇡⇢̄(a|x)
def
=

min
�
⇢̄µ(a|x), ⇡(a|x)

�
P

b2A min
�
⇢̄µ(b|x), ⇡(b|x)

� , (3)

(see the analysis in Appendix A). So when ⇢̄ is infinite
(i.e. no truncation of ⇢t), then this is the value function V ⇡

of the target policy. However if we choose a truncation

IMPALA: Importance Weighted Actor-Learner Architectures

rects for this lag to achieve extremely high data throughput
while maintaining data efficiency. Using an actor-learner ar-
chitecture, provides fault tolerance like distributed A3C but
often has lower communication overhead since the actors
send observations rather than parameters/gradients.

With the introduction of very deep model architectures, the
speed of a single GPU is often the limiting factor during
training. IMPALA can be used with distributed set of learn-
ers to train large neural networks efficiently as shown in
Figure 1. Parameters are distributed across the learners and
actors retrieve the parameters from all the learners in par-
allel while only sending observations to a single learner.
IMPALA use synchronised parameter update which is vital
to maintain data efficiency when scaling to many machines
(Chen et al., 2016).

3.1. Efficiency Optimisations

GPUs and many-core CPUs benefit greatly from running
few large, parallelisable operations instead of many small
operations. Since the learner in IMPALA performs updates
on entire batches of trajectories, it is able to parallelise more
of its computations than an online agent like A3C. As an
example, a typical deep RL agent features a convolutional
network followed by a Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997) and a fully connected
output layer after the LSTM. An IMPALA learner applies
the convolutional network to all inputs in parallel by folding
the time dimension into the batch dimension. Similarly, it
also applies the output layer to all time steps in parallel
once all LSTM states are computed. This optimisation
increases the effective batch size to thousands. LSTM-based
agents also obtain significant speedups on the learner by
exploiting the network structure dependencies and operation
fusion (Appleyard et al., 2016).

Finally, we also make use of several off the shelf optimisa-
tions available in TensorFlow (Abadi et al., 2017) such as
preparing the next batch of data for the learner while still per-
forming computation, compiling parts of the computational
graph with XLA (a TensorFlow Just-In-Time compiler) and
optimising the data format to get the maximum performance
from the cuDNN framework (Chetlur et al., 2014).

4. V-trace
Off-policy learning is important in the decoupled distributed
actor-learner architecture because of the lag between when
actions are generated by the actors and when the learner
estimates the gradient. To this end, we introduce a novel off-
policy actor-critic algorithm for the learner, called V-trace.

First, let us introduce some notations. We consider the
problem of discounted infinite-horizon RL in Markov De-
cision Processes (MDP), see (Puterman, 1994; Sutton &

Barto, 1998) where the goal is to find a policy ⇡ that
maximises the expected sum of future discounted rewards:
V ⇡(x)

def
= E⇡

⇥P
t�0 �trt

⇤
, where � 2 [0, 1) is the dis-

count factor, rt = r(xt, at) is the reward at time t, xt is the
state at time t (initialised in x0 = x) and at ⇠ ⇡(·|xt) is the
action generated by following some policy ⇡.

The goal of an off-policy RL algorithm is to use trajectories
generated by some policy µ, called the behaviour policy, to
learn the value function V ⇡ of another policy ⇡ (possibly
different from µ), called the target policy.

4.1. V-trace target

Consider a trajectory (xt, at, rt)
t=s+n
t=s generated by the ac-

tor following some policy µ. We define the n-steps V-trace
target for V (xs), our value approximation at state xs, as:

vs
def
= V (xs) +

Ps+n�1
t=s �t�s

⇣Qt�1
i=s ci

⌘
�tV , (1)

where �tV
def
= ⇢t

�
rt + �V (xt+1) � V (xt)

�
is a temporal

difference for V , and ⇢t
def
= min

�
⇢̄, ⇡(at|xt)

µ(at|xt)

�
and ci

def
=

min
�
c̄, ⇡(ai|xi)

µ(ai|xi)

�
are truncated importance sampling (IS)

weights (we make use of the notation
Qt�1

i=s ci = 1 for
s = t). In addition we assume that the truncation levels are
such that ⇢̄ � c̄.

Notice that in the on-policy case (when ⇡ = µ), and as-
suming that c̄ � 1, then all ci = 1 and ⇢t = 1, thus (1)
rewrites

vs = V (xs) +
Ps+n�1

t=s �t�s
�
rt + �V (xt+1) � V (xt)

�

=
Ps+n�1

t=s �t�srt + �nV (xs+n), (2)

which is the on-policy n-steps Bellman target. Thus in
the on-policy case, V-trace reduces to the on-policy n-steps
Bellman update. This property (which Retrace (Munos et al.,
2016) does not have) allows one to use the same algorithm
for off- and on-policy data.

Notice that the (truncated) IS weights ci and ⇢t play dif-
ferent roles. The weight ⇢t appears in the definition of the
temporal difference �tV and defines the fixed point of this
update rule. In a tabular case, where functions can be per-
fectly represented, the fixed point of this update (i.e., when
V (xs) = vs for all states), characterised by �tV being equal
to zero in expectation (under µ), is the value function V ⇡⇢̄

of some policy ⇡⇢̄, defined by

⇡⇢̄(a|x)
def
=

min
�
⇢̄µ(a|x), ⇡(a|x)

�
P

b2A min
�
⇢̄µ(b|x), ⇡(b|x)

� , (3)

(see the analysis in Appendix A). So when ⇢̄ is infinite
(i.e. no truncation of ⇢t), then this is the value function V ⇡

of the target policy. However if we choose a truncation

V-trace results: DMLab

33

IMPALA: Importance Weighted Actor-Learner Architectures

Figure 5. Performance of best agent in each sweep/population dur-
ing training on the DMLab-30 task-set wrt. data consumed across
all environments. IMPALA with multi-task training is not only
faster, it also converges at higher accuracy with better data effi-
ciency across all 30 tasks. The x-axis is data consumed by one
agent out of a hyperparameter sweep/PBT population of 24 agents,
total data consumed across the whole population/sweep can be
obtained by multiplying with the population/sweep size.

��� ��� ��� ��� ��� ���
(QYLURQPHQW�)UDPHV �H��

�

��

��

��

��

��

��

0
H
D
Q
�&
D
S
S
H
G
�1
R
UP
D
OL]
H
G
�6
FR
UH

� �� �� �� �� ��� ��� ��� ��� ���
:DOO�&ORFN�7LPH��KRXUV�

�

��

��

��

��

��

��

0
H
D
Q
�&
D
S
S
H
G
�1
R
UP
D
OL]
H
G
�6
FR
UH

,03$/$��GHHS��3%7�����*38V

,03$/$��GHHS��3%7

,03$/$��GHHS

,03$/$��VKDOORZ

,03$/$�([SHUWV��GHHS

$�&��GHHS

Figure 6. Performance on DMLab-30 wrt. wall-clock time. All
models used the deep architecture (Figure 3). The high throughput
of IMPALA results in orders of magnitude faster learning.

number of no-op actions (uniformly chosen from [1, 30]) to
combat the determinism of the ALE environment.

As table 4 shows, IMPALA experts provide both better final
performance and data efficiency than their A3C counterparts
in the deep and the shallow configuration. As in our Deep-
Mind Lab experiments, the deep residual network leads
to higher scores than the shallow network, irrespective of
the reinforcement learning algorithm used. Note that the
shallow IMPALA experiment completes training over 200
million frames in less than one hour.

We want to particularly emphasise that IMPALA, deep, multi-
task, a single agent trained on all 57 ALE games at once,
reaches 59.7% median human normalised score. Despite

Human Normalised Return Median Mean
A3C, shallow, experts 54.9% 285.9%
A3C, deep, experts 117.9% 503.6%

Reactor, experts 187% N/A

IMPALA, shallow, experts 93.2% 466.4%
IMPALA, deep, experts 191.8% 957.6%

IMPALA, deep, multi-task 59.7% 176.9%

Table 4. Human normalised scores on Atari-57. Up to 30 no-ops
at the beginning of each episode. For a level-by-level comparison
to ACKTR (Wu et al., 2017) and Reactor see Appendix C.1 .

the high diversity in visual appearance and game mechanics
within the ALE suite, IMPALA multi-task still manages
to stay competitive to A3C, shallow, experts, commonly
used as a baseline in related work. ALE is typically con-
sidered a hard multi-task environment, often accompanied
by negative transfer between tasks (Rusu et al., 2016). To
our knowledge, IMPALA is the first agent to be trained in a
multi-task setting on all 57 games of ALE that is competitive
with a standard expert baseline.

6. Conclusion
We have introduced a new highly scalable distributed agent,
IMPALA, and a new off-policy learning algorithm, V-trace.
With its simple but scalable distributed architecture, IM-
PALA can make efficient use of available compute at small
and large scale. This directly translates to very quick
turnaround for investigating new ideas and opens up un-
explored opportunities.

V-trace is a general off-policy learning algorithm that is
more stable and robust compared to other off-policy correc-
tion methods for actor critic agents. We have demonstrated
that IMPALA achieves better performance compared to
A3C variants in terms of data efficiency, stability and final
performance. We have further evaluated IMPALA on the
new DMLab-30 set and the Atari-57 set. To the best of
our knowledge, IMPALA is the first Deep-RL agent that
has been successfully tested in such large-scale multi-task
settings and it has shown superior performance compared
to A3C based agents (49.4% vs. 23.8% human normalised
score on DMLab-30). Most importantly, our experiments
on DMLab-30 show that, in the multi-task setting, positive
transfer between individual tasks lead IMPALA to achieve
better performance compared to the expert training setting.
We believe that IMPALA provides a simple yet scalable and
robust framework for building better Deep-RL agents and
has the potential to enable research on new challenges.

IMPALA: Importance Weighted Actor-Learner Architectures

Figure 5. Performance of best agent in each sweep/population dur-
ing training on the DMLab-30 task-set wrt. data consumed across
all environments. IMPALA with multi-task training is not only
faster, it also converges at higher accuracy with better data effi-
ciency across all 30 tasks. The x-axis is data consumed by one
agent out of a hyperparameter sweep/PBT population of 24 agents,
total data consumed across the whole population/sweep can be
obtained by multiplying with the population/sweep size.

� �� �� �� �� ��� ��� ��� ��� ���
:DOO�&ORFN�7LPH��KRXUV�

�

��

��

��

��

��

��

0
H
D
Q
�&
D
S
S
H
G
�1
R
UP
D
OL]
H
G
�6
FR
UH

,03$/$��GHHS��3%7�����*38V

,03$/$��GHHS��3%7

,03$/$��GHHS

,03$/$��VKDOORZ

,03$/$�([SHUWV��GHHS

$�&��GHHS

Figure 6. Performance on DMLab-30 wrt. wall-clock time. All
models used the deep architecture (Figure 3). The high throughput
of IMPALA results in orders of magnitude faster learning.

number of no-op actions (uniformly chosen from [1, 30]) to
combat the determinism of the ALE environment.

As table 4 shows, IMPALA experts provide both better final
performance and data efficiency than their A3C counterparts
in the deep and the shallow configuration. As in our Deep-
Mind Lab experiments, the deep residual network leads
to higher scores than the shallow network, irrespective of
the reinforcement learning algorithm used. Note that the
shallow IMPALA experiment completes training over 200
million frames in less than one hour.

We want to particularly emphasise that IMPALA, deep, multi-
task, a single agent trained on all 57 ALE games at once,
reaches 59.7% median human normalised score. Despite

Human Normalised Return Median Mean
A3C, shallow, experts 54.9% 285.9%
A3C, deep, experts 117.9% 503.6%

Reactor, experts 187% N/A

IMPALA, shallow, experts 93.2% 466.4%
IMPALA, deep, experts 191.8% 957.6%

IMPALA, deep, multi-task 59.7% 176.9%

Table 4. Human normalised scores on Atari-57. Up to 30 no-ops
at the beginning of each episode. For a level-by-level comparison
to ACKTR (Wu et al., 2017) and Reactor see Appendix C.1 .

the high diversity in visual appearance and game mechanics
within the ALE suite, IMPALA multi-task still manages
to stay competitive to A3C, shallow, experts, commonly
used as a baseline in related work. ALE is typically con-
sidered a hard multi-task environment, often accompanied
by negative transfer between tasks (Rusu et al., 2016). To
our knowledge, IMPALA is the first agent to be trained in a
multi-task setting on all 57 games of ALE that is competitive
with a standard expert baseline.

6. Conclusion
We have introduced a new highly scalable distributed agent,
IMPALA, and a new off-policy learning algorithm, V-trace.
With its simple but scalable distributed architecture, IM-
PALA can make efficient use of available compute at small
and large scale. This directly translates to very quick
turnaround for investigating new ideas and opens up un-
explored opportunities.

V-trace is a general off-policy learning algorithm that is
more stable and robust compared to other off-policy correc-
tion methods for actor critic agents. We have demonstrated
that IMPALA achieves better performance compared to
A3C variants in terms of data efficiency, stability and final
performance. We have further evaluated IMPALA on the
new DMLab-30 set and the Atari-57 set. To the best of
our knowledge, IMPALA is the first Deep-RL agent that
has been successfully tested in such large-scale multi-task
settings and it has shown superior performance compared
to A3C based agents (49.4% vs. 23.8% human normalised
score on DMLab-30). Most importantly, our experiments
on DMLab-30 show that, in the multi-task setting, positive
transfer between individual tasks lead IMPALA to achieve
better performance compared to the expert training setting.
We believe that IMPALA provides a simple yet scalable and
robust framework for building better Deep-RL agents and
has the potential to enable research on new challenges.

Off-policy is much harder with Function Approximation

❐ Even linear FA
❐ Even for prediction (two fixed policies π and 𝜇)
❐ Even for Dynamic Programming
❐ The deadly triad: FA, TD, off-policy

! Any two are OK, but not all three
! With all three, we may get instability

(elements of 𝜽 may increase to ±∞)

34

Two Off-Policy Learning Problems

❐ The easy problem is that of off-policy targets (future)
! Use importance sampling in the target

❐ The hard problem is that of the distribution of states to
update (present): we are no longer updating according to
the on-policy distribution

35

Baird’s counterexample

36

11.2. BAIRD’S COUNTEREXAMPLE 245

Episodes

✓7

✓8

✓1– ✓6

Components
of the parameter vector

at the end of the episode

Figure 11.2: Demonstration of instability on Baird’s counterexample. The step size was
↵ = 0.001, and the initial weights were ✓ = (1, 1, 1, 1, 1, 1, 10, 1)>.

In this case, there is no randomness and no asynchrony. Each state is updated exactly
once per sweep as in a classical DP backup. The method is entirely conventional
except in its use of semi-gradient function approximation. Yet still the system is
unstable, as is also shown in Figure 11.2. The same instability can occurs if semi-
gradient Q-learning is used (11.3)...

If we alter just the distribution of DP backups in Baird’s counterexample, from
the uniform distribution to the on-policy distribution (which generally requires asyn-
chronous updating), then convergence is guaranteed to a solution with error bounded
by (9.14). This example is striking because the TD and DP methods used are ar-
guably the simplest and best-understood bootstrapping methods, and the linear,
semi-descent method used is arguably the simplest and best-understood kind of
function approximation. The example shows that even the simplest combination
of bootstrapping and function approximation can be unstable if the backups are not
done according to the on-policy distribution.

There are also counterexamples similar to Baird’s showing divergence for Q-learning.
This is cause for concern because otherwise Q-learning has the best convergence
guarantees of all control methods. Considerable e↵ort has gone into trying to find
a remedy to this problem or to obtain some weaker, but still workable, guarantee.
For example, it may be possible to guarantee convergence of Q-learning as long as
the behavior policy (the policy used to select actions) is su�ciently close to the esti-
mation policy (the policy used in GPI), for example, when it is the "-greedy policy.
To the best of our knowledge, Q-learning has never been found to diverge in this
case, but there has been no theoretical analysis. In the rest of this section we present
several other ideas that have been explored.

Suppose that instead of taking just a step toward the expected one-step return on
each iteration, as in Baird’s counterexample, we actually change the value function
all the way to the best, least-squares approximation. Would this solve the instability

11.2. BAIRD’S COUNTEREXAMPLE 245

Episodes

✓7

✓8

✓1– ✓6

Components
of the parameter vector

at the end of the episode

Figure 11.2: Demonstration of instability on Baird’s counterexample. The step size was
↵ = 0.001, and the initial weights were ✓ = (1, 1, 1, 1, 1, 1, 10, 1)>.

In this case, there is no randomness and no asynchrony. Each state is updated exactly
once per sweep as in a classical DP backup. The method is entirely conventional
except in its use of semi-gradient function approximation. Yet still the system is
unstable, as is also shown in Figure 11.2. The same instability can occurs if semi-
gradient Q-learning is used (11.3)...

If we alter just the distribution of DP backups in Baird’s counterexample, from
the uniform distribution to the on-policy distribution (which generally requires asyn-
chronous updating), then convergence is guaranteed to a solution with error bounded
by (9.14). This example is striking because the TD and DP methods used are ar-
guably the simplest and best-understood bootstrapping methods, and the linear,
semi-descent method used is arguably the simplest and best-understood kind of
function approximation. The example shows that even the simplest combination
of bootstrapping and function approximation can be unstable if the backups are not
done according to the on-policy distribution.

There are also counterexamples similar to Baird’s showing divergence for Q-learning.
This is cause for concern because otherwise Q-learning has the best convergence
guarantees of all control methods. Considerable e↵ort has gone into trying to find
a remedy to this problem or to obtain some weaker, but still workable, guarantee.
For example, it may be possible to guarantee convergence of Q-learning as long as
the behavior policy (the policy used to select actions) is su�ciently close to the esti-
mation policy (the policy used in GPI), for example, when it is the "-greedy policy.
To the best of our knowledge, Q-learning has never been found to diverge in this
case, but there has been no theoretical analysis. In the rest of this section we present
several other ideas that have been explored.

Suppose that instead of taking just a step toward the expected one-step return on
each iteration, as in Baird’s counterexample, we actually change the value function
all the way to the best, least-squares approximation. Would this solve the instability

244 CHAPTER 11. OFF-POLICY METHODS WITH APPROXIMATION

2✓2+✓82✓1+✓8 2✓3+✓8 2✓4+✓8 2✓5+✓8 2✓6+✓8

✓7+2✓8

µ(dashed|·) = 6/7

µ(solid|·) = 1/7

⇡(solid|·) = 1

99% 1%

Figure 11.1: Baird’s counterexample. The approximate state-value function for this Markov
process is of the form shown by the linear expressions inside each state. The solid action
usually results in the seventh state, and the dashed action usually results in one of the other
six states, each with equal probability. The episode terminates on all transitions with 1%
probability, much like a � = 0.99 discount rate. The reward is always zero.

state, ending the episode. (This is similar to a discount rate of 99%.) The behavior
policy µ takes the two actions with probabilities 6/7 and 1/7, so that the next-state
distribution under it is uniform (the same for all nonterminal states), which is also
the starting distribution for each episode. The target policy ⇡ always takes the solid
action, and so the on-policy distribution is concentrated in the seventh state. The
reward is zero on all transitions.

Consider estimating the state-value under the linear parameterization indicated
by the expression shown in each state circle. For example, the estimated value of
the first state is 2✓1 + ✓8, where the subscript corresponds to the component of the
overall weight vector ✓; this corresponds to a feature vector for the first state being
�(1) = (2, 0, 0, 0, 0, 0, 0, 1)>. The reward is zero on all transitions, so the true value
function is v⇡(s) = 0, for all s, which can be exactly approximated if ✓ = 0. In fact,
there are many solutions, as there are more components to the weight vector (8) than
there are nonterminal states (7). Moreover, the set of feature vectors, {�(s) : s 2 S},
corresponding to this function is a linearly independent set. In all ways, this task
seems a favorable case for linear function approximation.

If we apply semi-gradient TD(0) to this problem (11.2), then the weights diverge
to infinity, as shown in Figure 11.2. The instability occurs for any positive step size,
no matter how small. In fact, it even occurs if we do a DP-style expected backup
instead of a learning backup. That is, if the weight vector, ✓k, is updated in sweeps
through the state space, performing a synchronous, semi-gradient backup at every
state, s, using the DP (full backup) target:

✓k+1
.
= ✓k + ↵

X

s

h
E[Rt+1 + �v̂k(St+1) | St =s] � v̂k(s)

i
rv̂k(s).

244 CHAPTER 11. OFF-POLICY METHODS WITH APPROXIMATION

2✓2+✓82✓1+✓8 2✓3+✓8 2✓4+✓8 2✓5+✓8 2✓6+✓8

✓7+2✓8

µ(dashed|·) = 6/7

µ(solid|·) = 1/7

⇡(solid|·) = 1

99% 1%

Figure 11.1: Baird’s counterexample. The approximate state-value function for this Markov
process is of the form shown by the linear expressions inside each state. The solid action
usually results in the seventh state, and the dashed action usually results in one of the other
six states, each with equal probability. The episode terminates on all transitions with 1%
probability, much like a � = 0.99 discount rate. The reward is always zero.

state, ending the episode. (This is similar to a discount rate of 99%.) The behavior
policy µ takes the two actions with probabilities 6/7 and 1/7, so that the next-state
distribution under it is uniform (the same for all nonterminal states), which is also
the starting distribution for each episode. The target policy ⇡ always takes the solid
action, and so the on-policy distribution is concentrated in the seventh state. The
reward is zero on all transitions.

Consider estimating the state-value under the linear parameterization indicated
by the expression shown in each state circle. For example, the estimated value of
the first state is 2✓1 + ✓8, where the subscript corresponds to the component of the
overall weight vector ✓; this corresponds to a feature vector for the first state being
�(1) = (2, 0, 0, 0, 0, 0, 0, 1)>. The reward is zero on all transitions, so the true value
function is v⇡(s) = 0, for all s, which can be exactly approximated if ✓ = 0. In fact,
there are many solutions, as there are more components to the weight vector (8) than
there are nonterminal states (7). Moreover, the set of feature vectors, {�(s) : s 2 S},
corresponding to this function is a linearly independent set. In all ways, this task
seems a favorable case for linear function approximation.

If we apply semi-gradient TD(0) to this problem (11.2), then the weights diverge
to infinity, as shown in Figure 11.2. The instability occurs for any positive step size,
no matter how small. In fact, it even occurs if we do a DP-style expected backup
instead of a learning backup. That is, if the weight vector, ✓k, is updated in sweeps
through the state space, performing a synchronous, semi-gradient backup at every
state, s, using the DP (full backup) target:

✓k+1
.
= ✓k + ↵

X

s

h
E[Rt+1 + �v̂k(St+1) | St =s] � v̂k(s)

i
rv̂k(s).

244 CHAPTER 11. OFF-POLICY METHODS WITH APPROXIMATION

2✓2+✓82✓1+✓8 2✓3+✓8 2✓4+✓8 2✓5+✓8 2✓6+✓8

✓7+2✓8

µ(dashed|·) = 6/7

µ(solid|·) = 1/7

⇡(solid|·) = 1

99% 1%

Figure 11.1: Baird’s counterexample. The approximate state-value function for this Markov
process is of the form shown by the linear expressions inside each state. The solid action
usually results in the seventh state, and the dashed action usually results in one of the other
six states, each with equal probability. The episode terminates on all transitions with 1%
probability, much like a � = 0.99 discount rate. The reward is always zero.

state, ending the episode. (This is similar to a discount rate of 99%.) The behavior
policy µ takes the two actions with probabilities 6/7 and 1/7, so that the next-state
distribution under it is uniform (the same for all nonterminal states), which is also
the starting distribution for each episode. The target policy ⇡ always takes the solid
action, and so the on-policy distribution is concentrated in the seventh state. The
reward is zero on all transitions.

Consider estimating the state-value under the linear parameterization indicated
by the expression shown in each state circle. For example, the estimated value of
the first state is 2✓1 + ✓8, where the subscript corresponds to the component of the
overall weight vector ✓; this corresponds to a feature vector for the first state being
�(1) = (2, 0, 0, 0, 0, 0, 0, 1)>. The reward is zero on all transitions, so the true value
function is v⇡(s) = 0, for all s, which can be exactly approximated if ✓ = 0. In fact,
there are many solutions, as there are more components to the weight vector (8) than
there are nonterminal states (7). Moreover, the set of feature vectors, {�(s) : s 2 S},
corresponding to this function is a linearly independent set. In all ways, this task
seems a favorable case for linear function approximation.

If we apply semi-gradient TD(0) to this problem (11.2), then the weights diverge
to infinity, as shown in Figure 11.2. The instability occurs for any positive step size,
no matter how small. In fact, it even occurs if we do a DP-style expected backup
instead of a learning backup. That is, if the weight vector, ✓k, is updated in sweeps
through the state space, performing a synchronous, semi-gradient backup at every
state, s, using the DP (full backup) target:

✓k+1
.
= ✓k + ↵

X

s

h
E[Rt+1 + �v̂k(St+1) | St =s] � v̂k(s)

i
rv̂k(s).

under semi-gradient
off-policy TD(0)
(similar for DP)

TD(0) can diverge: A simple example

37

TD update:

TD fixpoint:

� 2�
r=1

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

= 0 + 2⇤ � ⇤

= ⇤

�⇤ = �⇥⌅

= �⇤

�� = 0

Diverges!

What causes the instability?

❐ It has nothing to do with learning or sampling
! Even dynamic programming suffers from divergence

with FA
❐ It has nothing to do with exploration, greedification, or

control
! Even prediction alone can diverge

❐ It has nothing to do with local minima
 or complex non-linear approximators
! Even simple linear approximators can produce instability

38

The deadly triad

❐ The risk of divergence arises whenever we combine three
things:
❐ Function approximation

❐ significantly generalizing from large numbers of examples
❐ Bootstrapping

❐ learning value estimates from other value estimates,
as in dynamic programming and temporal-difference learning

❐ Off-policy learning
❐ learning about a policy from data not due to that policy,

as in Q-learning, where we learn about the greedy policy from
data with a necessarily more exploratory policy

39

How to survive the deadly triad

❐ Least-squares methods like off-policy LSTD(λ) (Yu 2010,
Mahmood et al. 2015, Bradtke & Barto 1996, Boyan 2000)
computational costs scale with the square of the number of
parameters

❐ True-gradient RL methods (Gradient-TD and proximal-
gradient-TD) (Maei et al, 2011, Mahadevan et al, 2015)

❐ Emphatic-TD methods (Sutton, White & Mahmood 2015,
Yu 2015). These semi-gradient methods attain stability
through an extension of the early on-policy theorems

40

Linear Least-Squares

41

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Linear Least Squares Prediction (2)

At minimum of LS(w), the expected update must be zero

ED [�w] = 0

↵
TX

t=1

x(st)(v
⇡
t � x(st)

>w) = 0

TX

t=1

x(st)v
⇡
t =

TX

t=1

x(st)x(st)
>w

w =

TX

t=1

x(st)x(st)
>

!�1 TX

t=1

x(st)v
⇡
t

For N features, direct solution time is O(N3)

Incremental solution time is O(N2) using Shermann-Morrison

LSTD

42

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Linear Least Squares Prediction Algorithms

We do not know true values v⇡t
In practice, our “training data” must use noisy or biased
samples of v⇡t

LSMC Least Squares Monte-Carlo uses return
v
⇡
t ⇡ Gt

LSTD Least Squares Temporal-Di↵erence uses TD target
v
⇡
t ⇡ Rt+1 + �v̂(St+1,w)

LSTD(�) Least Squares TD(�) uses �-return
v
⇡
t ⇡ G

�
t

In each case solve directly for fixed point of MC / TD / TD(�)

Convergence Properties

43

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Convergence of Linear Least Squares Prediction Algorithms

On/O↵-Policy Algorithm Table Lookup Linear Non-Linear

On-Policy

MC 3 3 3
LSMC 3 3 -
TD 3 3 7

LSTD 3 3 -

O↵-Policy
MC 3 3 3

LSMC 3 3 -
TD 3 7 7

LSTD 3 3 -

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Control

Convergence of Control Algorithms

Algorithm Table Lookup Linear Non-Linear
Monte-Carlo Control 3 (3) 7

Sarsa 3 (3) 7
Q-learning 3 7 7

LSPI 3 (3) -

(3) = chatters around near-optimal value function

Proximal Gradient (Touati et al, 2018)

44

Convergent TREE BACKUP and RETRACE with Function Approximation

Algorithm 1 Gradient Off-policy with eligibility traces

Given: target policy ⇡, behavior policy µ

Initialize ✓0 and !0

for n = 0 . . . do

set e0 = 0
for k = 0 . . . end of episode do

Observe sk, ak, rk, sk+1 according to µ

Update traces

ek = ��(sk, ak)ek�1 + �(sk, ak)
Update parameters

�k = rk + �✓
>
k E⇡�(sk+1, .)� ✓

>
k �(sk, ak)

!k+1 = !k + ⌘k

�
�kek � !

>
k �(sk, ak)�(sk, ak)

�

✓k+1 = ✓k �↵k!
>
k ek (�E⇡�(sk+1, .)� �(sk, ak))

end for

end for

5. Convergence Rate Analysis

In order to characterize the convergence rate of the algorithm
1, we need to introduce some new notations and state new
assumptions.

We denote by kAk , supkxk=1 kAxk the spectral norm
of the matrix A and by c(A) = kAkkA�1k its condition
number. If the eigenvalues of a matrix A are real, we use
�max(A) and �min(A) to denote respectively the largest and
the smallest eigenvalue.

If we set ⌘k = �↵k for a positive constant �, it is possible
to combine the two iterations present in our algorithm as

a single iteration using a parameter vector zk ,
✓

✓k
1p
�
!k

◆

where :
zk+1 = zk � ↵k(Ĝkzk � ĝk)

where:

Ĝk ,
✓

0
p
�Â

>
k

�
p
�Âk �M̂k

◆
ĝk ,

✓
0p
�b̂k

◆

Let G , E
h
Ĝk

i
and g = E [ĝk]. It follows from the propo-

sition 3 that G and g are well defined and more specifically:

G =

✓
0

p
�A

>

�
p
�A �M

◆
g =

✓
0p
�b

◆

Furthermore, let Fk = �(z0, Ĝ0, ĝ0 . . . , zk, Ĝk, ĝk, zk+1)
be the sigma-algebra generated by the variables up to time k.
With these definitions, we can now state our assumptions.
Assumption 2. The matrices A and M are nonsingu-

lar. This implies that the saddle-point problem admits

a unique solution (✓?,!?) = (�A
�1

b, 0) and we define

z
? , (✓?, 1p

�
!
?).

Assumption 3. The features and reward functions are uni-

formly bounded. This implies that the features and rewards

have uniformly bounded second moments. It follows that

there exists a constant � such that:

E[kĜkzk � ĝkk2|Fk�1] �
2(1 + kzkk2)

Before stating our main result, the following key quantities
needs to be defined:

⇢ , �max(A
>
M

�1
A), � , �min(A

>
M

�1
A),

LG ,
���E

h
Ĝ

>
k Ĝk | Fk�1

i ���

The following proposition characterize the convergence in
expectation of kzk � z

?k2 = k✓k � ✓
?k2 + 1

� kwkk2

Proposition 4. Suppose assumptions 2 and 3 holds and if

we choose � = 8⇢
�min(M) and ↵k = 92⇥2�

8�2(k+2)+92⇣ where

⇣ = 2⇥ 92c(M)2⇢2 + 32c(M)LG. Then the mean square

error E
⇥
kzk � z

?k2
⇤

is upper bounded by:

92⇥8c(M)
n (8� + 9⇣)2E

⇥
kz0 � z

?k2
⇤

(82�2k + 92⇣)2
+
8�2(1 + kz?k2)
(82�2k + 92⇣)

o

Sketch of Proof (The full proof is in the appendix). The be-
ginning of our proof relies on Du et al. (2017) which shows
the linear convergence rate of deterministic primal-dual gra-
dient method for policy evaluation. More precisely, we
make use of the spectral properties of matrix G shown in
the appendix of this paper. The rest of the proof follows a
different route exploiting the structure of our problem.

The above proposition 4 shows that the mean square error
E
⇥
kzk � z

?k2
⇤

at iteration k is upper bounded by tow terms.
The first bias term tells that the initial error E

⇥
kz0 � z

?k2
⇤

is forgotten at a rate O(1/k2) and the constant depends
on the condition number of the covariance matrix c(M).
The second variance term shows that noise is rejected at a
rate O(1/k) and the constant depends on the variance of
estimates �

2 and c(M). The overall convergence rate is
O(1/k).

Existing stochastic saddle-point problem results:

Chen et al. (2014) provides a comprehensive review of
stochastic saddle-point problem. When the objective
function is convex-concave, the overall convergence rate is
O(1/

p
k). Although several accelerated techniques could

improve the dependencies on the smoothness constants of
the problem in their convergence rate, the dominant term
that depends on the gradient variance still decays only as
O(1/

p
k).

When the objective function is strongly convex-concave,
Rosasco et al. (2016) and Palaniappan & Bach (2016)
showed that stochastic forward-backward algorithms can
achieve O(1/k) convergence rate. Algorithms in this class

Results

45

Convergent TREE BACKUP and RETRACE with Function Approximation

Paper step-sizes Projection Polyak averaging Convergence rate
Sutton et al. (2009c), Sutton
et al. (2009b)

⌘k = �↵k,� > 0,P
k ↵k = 1,

P
k ↵

2
k < 1

No No ✓k ! ✓
? with probability one

Liu et al. (2015) constant step-size, ↵k = ⌘k Yes Yes MSPBE(✓̄k) 2 O(1/
p
k) with

high probability
Wang et al. (2017) ↵k = ⌘k,

P
k ↵k = 1,

P
k ↵2

kP
k ↵k

< 1
Yes Yes MSPBE(✓̄k) 2 O(

P
k ↵2

kP
k ↵k

) with
high probability

Lakshminarayanan &
Szepesvári (2017)

constant step-size, ↵k = ⌘k No Yes E[k✓̄k � ✓
?k2] 2 O(1/k)

Dalal et al. (2017) ↵k = 1
k1�c , ⌘k = 1

k(2/3)(1�c)

where c 2 (0, 1)
Yes No k✓k � ✓

?k 2 O(k�
1
3+

c
3) with high

probability
Our work ⌘k = �↵k,� > 0,↵k 2 O(1/k) No No E[k✓k � ✓

?k2] 2 O(1/k)

Table 1. Convergence results for gradient-based TD algorithms shown in previous work (Sutton et al., 2009b;c; Liu et al., 2015; Wang
et al., 2017; Lakshminarayanan & Szepesvári, 2017; Dalal et al., 2017). ✓̄k stand for the Polyak-average of iterates: ✓̄k ,

P
k ↵k✓kP
k ↵k

. Our
algorithms achieve O(1/k) without the need for projections or Polyak averaging.

Figure 2. Baird’s counterexample. The combination of linear func-
tion approximation with TB and RETRACE leads to divergence
(left panel) while the proposed gradient extensions GTB and
GRETRACE converge (right panel).

0 50 100
episode

0.50

0.75

1.00

1.25

1.50

RM
SB

PE

TB(�)
Retrace(�)

0 50 100
episode

0.0

0.2

0.4

0.6

RM
SB

PE

GTB(�)
GRetrace(�)

Figure 3. In the 2-states counterexample of section 3 showing that
the gradient-based TB and RETRACE converge while TB and
RETRACE diverge.

Comparison with existing methods: We also compared
GTB(�) and GRETRACE(�) with two recent state-of-the-art
convergent off-policy algorithms for action-value estimation
and function approximation: GQ(�) (Maei, 2011) and AB-
TRACE(�) (Mahmood et al., 2017). As in Mahmood et al.
(2017), we also consider a policy evaluation task in the
Mountain Car domain. In order to better understand the
variance inherent to each method, we designed the target
policy and behavior policy in such a way that the importance
sampling ratios can be as large as 30. We chose to describe
state-action pairs by a 96-dimensional vector of features
derived by tile coding (Sutton & Barto, 1998). We ran

each algorithm over all possible combinations of step-size
values (↵k, ⌘k) 2 [0.001, 0.005, 0.01, 0.05, 0.1]2 for 2000
episodes and reported their normalized mean squared errors
(NMSE):

NMSE(✓) =
k�✓ �Q

⇡k2⌅
kQ⇡k2⌅

where Q
⇡ is estimated by simulating the target policy and

averaging the discounted cumulative rewards overs trajec-
tories. As AB-TRACE(�) and GRETRACE(�) share both
the same operator, we can evaluate them using the empir-
ical MSPBE = 1

2 ||Â✓ + b̂||2
M̂�1 where Â, b̂ and M̂ are

Monte-Carlo estimates obtained by averaging Âk, b̂k and
M̂k defined in proposition 3 over 10000 episodes.
Figure 6 shows that the best empirical MSPBE achieved
by AB-TRACE(�) and GRETRACE(�) are almost identi-
cal across value of �. This result is consistent with the
fact that they both minimize the MSPBE objective func-
tion. However, significant differences can be observed when
computing the 5th percentiles of NMSE (over all possible
combination of step-size values) for different values of �
in Figure 5. When � increases, the NMSE of GQ(�) in-
creases sharply due to increased influence of importance
sampling ratios. This clearly demonstrate the variance is-
sues of GQ(�) in contrast with the other methods based
on the TREE BACKUP and RETRACE returns (that are not
using importance ratios). For intermediate values of �, AB-
TRACE(�) performs better but its performance is matched by
GRETRACE(�) and TB(�) for small and very large values of
�. In fact, AB-TRACE(�) updates the function parameters
✓ as follows:

✓k+1 = ✓k � ↵k (�kek ��k)

where �k , �w
>
k ek(E⇡�(sk+1, .) �

�
P

a (sk, a)µ(a | sk)�(sk, a)) is a gradient correc-
tion term. When the instability is not an issue, the
correction term could be very small and the update of ✓
would be essentially ✓k+1 ⇠ ✓k � ↵k�kek so that ✓k+1

follows the semi-gradient of the mean squared error

Value function geometry

46

T

V
θ

Π

TV
θ

ΠTV
θ

Φ, D

R
M
S
B
E

RMSPB
E

The space spanned by the feature vectors,
weighted by the state visitation distribution

T takes you
outside
the space

Π projects you
back
into it

D = diag(d)

V� = �TV�

Is the TD fix-point

Better objective fn?

Previous work on
gradient methods for TD

minimized this objective fn
(Baird 1995, 1999)

Mean Square Projected Bellman Error (MSPBE)

Gradient-Based TD

❐ Bootstraps (genuine TD)
❐ Works with linear function approximation

(stable, reliably convergent)
❐ Is simple, like linear TD — O(n)
❐ Learns fast, like linear TD
❐ Can learn off-policy
❐ Learns from online causal trajectories

(no repeat sampling from the same state)

47

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

TD is not the gradient of anything

48

�⇤ = �⇥⌅

⇧2J

⇧⇤j⇧⇤i
=

⇧(⇥⌅i)
⇧⇤j

= (�⌅�
j � ⌅j)⌅i

⇧2J

⇧⇤i⇧⇤j
=

⇧(⇥⌅j)
⇧⇤i

= (�⌅�
i � ⌅i)⌅j

⌅J

⌅⇥i
= �⇤i

Assume there is a J such
that:

Then look at the second
derivative:

⇥2J

⇥�j⇥�i
�= ⇥2J

⇥�i⇥�j

TD(0) algorithm:

}
Real 2nd derivatives must be symmetric

Contradiction!

Etienne Barnard 1993

The Gradient-TD Family of Algorithms

❐ True gradient-descent algorithms in the Projected
Bellman Error

❐ GTD(λ) and GQ(λ), for learning V and Q
❐ Solve two open problems:

! convergent linear-complexity off-policy TD learning
! convergent non-linear TD

❐ Extended to control variate, proximal forms by
Mahadevan et al.

49

First relate the geometry to the iid statistics

50

T

V
θ

Π

TV
θ

ΠTV
θ

Φ, D

R
M
S
B
E

RMSPB
E

�T D(TV� � V�) = E[�⇥]

�T D� = E[��T]

Fast Gradient-Descent Methods for Temporal-Difference Learning with Linear Function Approximation

T

V
!

"

TV
!

"TV
!

!, D

R
M
S
B
E

RMSPB
E

Figure 1. Geometric relationships between (the square root of) the
two Bellman-error objective functions.

point. That is, we use as our objective function the mean-
square projected Bellman error:

MSPBE(⇤) = ⇥ V� ��TV� ⇥2
D . (5)

Figure 1 shows the relationship between this and the
MSBE objective function geometrically.

Further insight can be gained by considering the episodic
examples in Figure 2. In the system on the left, trajectories
start in state A and then either terminate immediately with
a reward of zero, or transition to state B with a reward of
zero and then terminate with a reward of 1. The two choices
occur each with 50% probability, and � = 1, so the right
values for states A and B are clearly 0.5 and 1 respectively
(these values minimize both MSBE and MSPBE). Dayan
(1992) used this example to show that a naive gradient-
descent approach (based on gradient descent in the mean-
squared TD error, E

�
⇥2

⇥
) works poorly in that it ends up as-

signing values of 1/3 and 2/3 to A and B even in the tabular
case. The example also illustrates the need for two inde-
pendent samples in the residual-gradient algorithm (Baird
1995) as, with a single example, that algorithm finds the
1/3, 2/3 solution. With two samples, residual gradient cor-
rectly finds the 0.5, 1 solution. However, consider now the
example in the right panel. Here function approximation is
in play, in that we have two states, A1 and A2, that share the
same feature representation; they look the same and must
be given the same approximate value. Trajectories start in
each of the two A states with 50% probability; one leads de-
terministically to B and 1, while the other leads determinis-
tically to 0. From the observed feature vectors, this exam-
ple looks like the previous, except that here taking multiple
samples is no help as the system is deterministic and they
will all be the same. Because of this, the residual-gradient
algorithm will find the 1/3, 2/3 solution here. However,
the problem is not with the algorithm, but with the objec-
tive. The 1/3, 2/3 solution is in fact the minimum-MSBE
solution on this problem; only the MSPBE criterion puts
the minimum at 0.5, 1 on this problem. The MSBE ob-
jective causes function approximation resources to be ex-
pended trying to reduce the Bellman error associated with

A

B

1 0

50%50%

100%

A1 A2

B

1 0

100%

100%

100%

Figure 2. The A-split (left) and split-A (right) examples.

A1 and A2, whereas the MSPBE objective takes into ac-
count that their approximated values will ultimately be pro-
jected onto the same point.

Finally, we close this discussion of objective functions by
giving the function used to derive the original GTD algo-
rithm. This objective function does not seem to have a
ready geometric interpretation. Here we call it the norm
of the expected TD update:

NEU(⇤) = E[⇥⌅]⇤ E[⇥⌅] . (6)

4. Derivation of the new algorithms
In this section we derive two new algorithms as stochastic
gradient descent in the projected Bellman error objective
(5). We first establish some relationships between the rele-
vant expectations and vector-matrix quantities:

E
�
⌅⌅⇤

⇥
=

⇧

s

ds⌅s⌅
⇤
s = ⇥⇤D⇥,

E[⇥⌅] =
⇧

s

ds⌅s

⇤
Rs + �

⇧

s�

Pss�V�(s⇥)� V�(s)

⌅

= ⇥⇤D(TV� � V�),

and note that

�⇤D� = (⇥(⇥⇤D⇥)�1⇥⇤D)⇤D(⇥(⇥⇤D⇥)�1⇥⇤D)
= D⇤⇥(⇥⇤D⇥)�1⇥⇤D⇥(⇥⇤D⇥)�1⇥⇤D

= D⇤⇥(⇥⇤D⇥)�1⇥⇤D.

Using these relationships, the projected objective can be
written in terms of expectations as

MSPBE(⇤)
= ⇥ V� ��TV� ⇥2

D

= ⇥ �(V� � TV�) ⇥2
D

= (�(V� � TV�))⇤D(�(V� � TV�))
= (V� � TV�)⇤�⇤D�(V� � TV�)
= (V� � TV�)⇤D⇤⇥(⇥⇤D⇥)�1⇥⇤D(V� � TV�)
= (⇥⇤D(TV� � V�))⇤(⇥⇤D⇥)�1⇥⇤D(TV� � V�)

= E[⇥⌅]⇤ E
�
⌅⌅⇤

⇥�1 E[⇥⌅] .

Fast gradient-descent methods for temporal-difference learning with linear function approximation

2. Linear value-function approximation
We consider a prototypical case of temporal-difference
learning, that of learning a linear approximation to the
state-value function for a given policy and Markov deci-
sion process (MDP) from sample transitions. We take both
the MDP and the policy to be stationary, so their combina-
tion determines the stochastic dynamics of a Markov chain.
The state of the chain at each time t is a random variable,
denoted st ⇧ {1, 2, ..., N}, and the state-transition proba-
bilities are given by a matrix P . On each transition from
st to st+1, there is also a reward, rt+1, whose distribution
depends on both states. We seek to learn the parameter
⌅ ⇧ ⌃n of an approximate value function V� : S ⌅ ⌃ such
that

V�(s) = ⌅⇧⌃s ⇥ V (s) = E

� ⌅⇤

t=0

⇥trt+1 | s0 = s

⇥
, (1)

where ⌃s ⇧ ⌃n is a feature vector characterizing state s,
and ⇥ ⇧ [0, 1) is a constant called the discount rate.

In this paper we consider one-step temporal-difference
learning (corresponding to ⇧ = 0 in TD(⇧)), in which
there is one independent update to ⌅ for each state tran-
sition and associated reward. There are several settings
corresponding to how the state transitions are generated.
In the on-policy setting, for example, the state transitions
come directly from the continuing evolution of the Markov
chain. We assume that the Markov chain is ergodic and
uni-chain, so there exists a limiting distribution d such that
ds = limt⇥⌅ P(st = s).1 In the on-policy case, d is linked
to the transition probabilities (in particular, we know that
P⇧d = d) and this linkage is critical to the convergence
of algorithms such as conventional TD. In this paper, we
consider a general setting (introduced in Sutton, Szepesvári
& Maei 2009) in which the first state of each transition is
chosen i.i.d. according to an arbitrary distribution d that
may be unrelated to P (this corresponds to off-policy learn-
ing). This setting defines a probability over independent
triples of state, next state, and reward random variables,
denoted (sk, s⇤k, rk), with associated feature-vector random
variables ⌃k = ⌃sk and ⌃⇤k = ⌃s0

k
. From these we can de-

fine, for example, the temporal-difference error,

⇤k = rk + ⇥⌅⇧k ⌃⇤k � ⌅⇧k ⌃k,

used in the conventional linear TD algorithm (Sutton
1988):

⌅k+1 ⇤ ⌅k + �k⇤k⌃k, (2)

where �k is a sequence of positive step-size parameters.
1Our results apply also to the episodic case if ds is taken to be

the proportion of time steps in state s. In this case, the sum in (1)
is only over a finite number of time steps, the rows of P may sum
to less than 1, and � may be equal to 1 (as long as (�P)� = 0).

3. Objective functions
An objective function is some function of the modifiable
parameter ⌅ that we seek to minimize by updating ⌅. In
gradient descent, the updates to ⌅ are proportional to the
gradient or sample gradient of the objective function with
respect to ⌅. The first question then, is what to use for the
objective function? For example, one natural choice might
be the mean squared error (MSE) between the approximate
value function V� and the true value function V , averaged
over the state space according to how often each state oc-
curs. The MSE objective function is

MSE(⌅) =
⇤

s

ds (V�(s)� V (s))2

def= ↵ V� � V ↵2D .

In the second equation, V� and V are viewed as vectors with
one element for each state, and the norm ↵ v ↵2D = v⇧Dv
is weighted by the matrix D that has the ds on its diagonal.

In temporal-difference methods, the idea is instead to use
an objective function representing how closely the approx-
imate value function satisfies the Bellman equation. The
true value function V satisfies the Bellman equation ex-
actly:

V = R + ⇥PV
def= TV,

where R is the vector with components E{rt+1 | st = s}
and T is known as the Bellman operator. A seemingly nat-
ural measure of how closely the approximation V� satisfies
the Bellman equation is the mean-square Bellman error:

MSBE(⌅) = ↵ V� � TV� ↵2D . (3)

This is the objective function used by the most important
prior effort to develop gradient-descent algorithms, that by
Baird (1995, 1999). However, most temporal-difference al-
gorithms, including TD, LSTD, and GTD, do not converge
to the minimum of the MSBE. To understand this, note that
the Bellman operator follows the underlying state dynam-
ics of the Markov chain, irrespective of the structure of the
function approximator. As a result, TV� will typically not
be representable as V� for any ⌅. Consider the projection
operator � which takes any value function v and projects it
to the nearest value function representable by the function
approximator:

�v = V� where ⌅ = arg min
�
↵ V� � v ↵2D .

In a linear architecture, in which V� = ⇥⌅ (where ⇥ is the
matrix whose rows are the ⌃s), the projection operator is
linear and independent of ⌅:

� = ⇥(⇥⇧D⇥)�1⇥⇧D

matrix of the feature vectors for all states

Derivation of the TDC algorithm

51

s
r�⇥s�

� ��

This is the
trick!

 is a
second set of

weights

w � ⇥n

�⌅ = �1

2
�r�J(⌅) = �1

2
�r� k V� �⇥TV� k2D

= �1

2
�r�

⇣
E [⇤⇧]E

⇥
⇧⇧>⇤�1 E [⇤⇧]

⌘

= �� (r�E [⇤⇧])E
⇥
⇧⇧>⇤�1 E [⇤⇧]

= ��E
⇥
r�[⇧

�
r + ⇥⇧0>⌅ � ⇧>⌅

�
]
⇤
E
⇥
⇧⇧>⇤�1 E [⇤⇧]

= ��E
h
⇧ (⇥⇧0 � ⇧)

>
i>

E
⇥
⇧⇧>⇤�1 E [⇤⇧]

= ��
�
⇥E

⇥
⇧0⇧>⇤� E

⇥
⇧⇧>⇤�E

⇥
⇧⇧>⇤�1 E [⇤⇧]

= �E [⇤⇧]� �⇥E
⇥
⇧0⇧>⇤E

⇥
⇧⇧>⇤�1 E [⇤⇧]

⇡ �E [⇤⇧]� �⇥E
⇥
⇧0⇧>⇤w

(sampling) ⇡ �⇤⇧� �⇥⇧0⇧>w

TD with gradient correction (TDC) algorithm

❐ on each transition

❐ update two parameters

❐ where, as usual

52

⌅ ⇥ ⌅ + �⇤⇧� �⇥⇧�
�
⇧⇥w

⇥

w ⇥ w + �(⇥ � ⇤�w)⇤

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

s
r�⇥s�

� ��

TD(0) with gradient
correction

estimate of the
TD error () for
the current state

�
�

aka GTD(0)

Convergence theorems

❐ All algorithms converge w.p.1 to the TD fix-point:

❐ GTD, GTD-2 converges at one time scale

❐ TD-C converges in a two-time-scale sense

53

�,⇥ �⇥ 0
�

⇥
�⇥ 0

� = ⇥ �⇥ 0

E[�⇥] �⇥ 0

Off-policy result: Baird’s counter-example

54

! "! #! $! %! &!! &"! &#! &$! &%! "!!
!

"

#

$

%

&!

'
(
)
*
+
,

)-../0

123

234

123!"

! "!!! #!!! $!!! %!!! &!!!
"!

!"!

"!
!&

"!
!

"!
&

"!
"!

'
(
)(
*
+
,+
)-
.!
/0
1

23++45

!

!

"!

67!

&

Gradient algorithms converge. TD diverges.

A little more theory

55

�⇤ / ⇥⌅ =
�
r + �⇤>⌅0 � ⇤>⌅

�
⌅

= ⇤>(�⌅0 � ⌅)⌅+ r⌅

= ⌅ (�⌅0 � ⌅)
>
⇤ + r⌅

E [�⇤] / �E
h
⌅ (⌅� �⌅0)

>
i
⇤ + E [r⌅]

E [�⇤] / �A⇤ + b
convergent if
A is pos. def.

therefore, at
the TD

fixpoint:
C = E

⇥
��>⇤

covariance
matrix

�1

2
r✓MSPBE = �A>C�1(A� � b)

always pos. def.

A�⇤ = b

�⇤ = A�1b
LSTD computes this directly

❐ Learn a linear value function (probability of winning)
for 9x9 Go from self play

❐ One million features, each corresponding to a template
on a part of the Go board

56

0

0.2

0.4

0.6

0.8

.000001 .000003 .00001 .00003 .0001 .0003 .001

!

RNEU

TD

GTD2

GTD

TDC

GTD2

TDC

Example: Go

Summary

57

per second using thousands of features, with linear-complexity methods we were able to
predict almost ten thousand di↵erent sensory events, whereas with quadratic complexity
methods we could predict only one. It is clear to us that there are already cases where
computational costs are critical and the advantage of linear methods is decisive. As the
power of modern computers increases, we can expect to have more learned parameters and
the advantage to linear-complexity methods can be expected only to increase.

Having explained the choices underlying our approach, we can now outline our main
results, as summarized in the table in Figure 1. The table has seven columns, two corre-
sponding to DP algorithms and five to TDL algorithms. The first column, for example,
corresponds to the classical algorithm TD(�) (and Sarsa(�), the analogous algorithm for
learning state–action values). The last two rows correspond to the new gradient-TD family
of algorithms presented in this article. The rows correspond to five issues or properties
that we would like the algorithms to have. First, as discussed just above, we would like the
algorithms to have linear computational complexity, and most do, with LSTD(�) being one
of the listed exceptions. Another row corresponds to whether the algorithm will work with
general nonlinear function approximators (subject to smoothness conditions, as described
below). We see that TD(�) is linear complexity, but is not guaranteed to converge with
nonlinear function approximation. In fact, counterexamples are known. We will show that
gradient-TD algorithms converge on any MDP, and in particular on these counterexamples.
TD(�) is also not guaranteed to converge under o↵-policy training (third row). Again,
counterexamples are known, and we show that gradient-TD methods converge on them.
Note that according to four of the five properties listed here, TD(�) and approximate DP

A L G O R I T H MA L G O R I T H MA L G O R I T H MA L G O R I T H MA L G O R I T H MA L G O R I T H MA L G O R I T H M

TD(λ),
Sarsa(λ)

Approx.
DP

LSTD(λ),
LSPE(λ)

Fitted-Q
Residual
gradient

GDP GTD(λ),
GQ(λ)

Linear
computation

Nonlinear
convergent

Off-policy
convergent

Model-free,
online

Converges to
PBE = 0

✓ ✓ ✖ ✖ ✓ ✓ ✓
✖ ✖ ✖ ✓ ✓ ✓ ✓
✖ ✖ ✓ ✖ ✓ ✓ ✓
✓ ✖ ✓ ✖ ✓ ✖ ✓
✓ ✓ ✓ ✓ ✖ ✓ ✓

Issues with bootstrapping algorithms
for approximate parametric policy evaluation

I
S

S
U

E

Figure 1: Issues with bootstrapping algorithms for approximate parametric policy evalua-
tion. There are many aspects of each symbol that deserve further remarks and
clarifications, which will go here.

4

Off-Policy with TD and FA is still Challenging

❐ Gradient TD, proximal gradient TD, and hybrids
❐ Emphatic TD (Ask Rupam about this!)
❐ Higher λ (less TD)
❐ Better state rep’ns (less FA)
❐ Recognizers (less off-policy)
❐ LSTD (O(n2) methods)

58

Emphatic temporal-difference learning

❐ Rupam Mahmood, Huizhen (Janey) Yu, Martha
White, Rich Sutton

❐ Reinforcement Learning and Artificial Intelligence Laboratory
❐ Department of Computing Science
❐ University of Alberta
❐ Canada

59

R
A I
L

&

State weightings are important,
powerful, even magical,

❐ They are the difference between convergence and divergence in on-
policy and off-policy TD learning

❐ They are needed to make the problem well-defined
❐ We can change the weighting by emphasizing some steps more than

others in learning

60

Often some time steps are more
important

❐ Early time steps of an episode may be more important
! Because of discounting
! Because the control objective is to maximize the value of

the starting state
❐ In general, function approximation resources are limited

! Not all states can be accurately valued
! The accuracy of different state must be traded off!
! You may want to control the tradeoff

61

Bootstrapping interacts with state
importance

❐ In the Monte Carlo case (λ=1) the values of different states
(or time steps) are estimated independently,
and their importances can be assigned independently

❐ But with bootstrapping (λ<1) each state’s value is
estimated based on the estimated values of later states; if
the state is important, then it becomes important to
accurately value the later states even if they are not
important on their own

62

Two kinds of importance

❐ Intrinsic and derived, primary and secondary
! The one you specify, and the one that follows from it

because of bootstrapping
❐ Our terms: Interest and Emphasis

! Your intrinsic interest in valuing accurately on a time
step

! The total resultant emphasis that you place on each time
step

63

❐Data

❐State distribution

❐Objective to minimize

❐Emphatic TD(0)

64

bt =
tX

k=1

Mk⇢kRk�kAt =
tX

k=0

Mk⇢k�k

�
�k � ��k+1

�>

· · · �(St) At Rt+1 �(St+1) At+1 Rt+2 · · ·
feature function

interest function

dµ(s) = lim
t!1

Pr
⇥
St = s

�� A0:t�1 ⇠ µ
⇤

MSE(✓) =
X

s2S

dµ(s)i(s)
⇣
v⇡(s)� ✓>�(s)

⌘2

target policy

true value
function

transpose
(inner product)

� : S ! <n

behavior policy

parameter vector

i : S ! <+

emphasis

✓t+1 = ✓t + ↵Mt⇢t
�
Rt+1 + �✓>

t �t+1 � ✓>
t �t

�
�t

Mt > 0
importance sampling ratio

⇢t =
⇡(At|St)

µ(At|St)
E[⇢t] = 1

Problem

Solution
�t = �(St)

✓t+1 = A�1
t bt

bt =
tX

k=1

Mk⇢kRk�kAt =
tX

k=0

Mk⇢k�k

�
�k � ��k+1

�>

· · · �(St) At Rt+1 �(St+1) At+1 Rt+2 · · ·

Real-time off-policy prediction learning
with linear function approximation

❐Data

❐State distribution

❐Objective to minimize

❐Emphatic TD(0)

65

feature function

interest function

dµ(s) = lim
t!1

Pr
⇥
St = s

�� A0:t�1 ⇠ µ
⇤

MSE(✓) =
X

s2S

dµ(s)i(s)
⇣
v⇡(s)� ✓>�(s)

⌘2

target policy

true value
function

transpose
(inner product)

� : S ! <n

behavior policy

parameter vector

i : S ! <+

emphasis

✓t+1 = ✓t + ↵Mt⇢t
�
Rt+1 + �✓>

t �t+1 � ✓>
t �t

�
�t

Mt > 0
importance sampling ratio

⇢t =
⇡(At|St)

µ(At|St)
E[⇢t] = 1

Problem

Solution
�t = �(St)

True online GTD(λ) forward view

❐A ‘matrix’ backup diagram

! weights are drawn from both a row and a column

❐Not shown in the diagram is the additional term in black,
which has expected value 0

❐Also not shown is the gradient-TD correction term

66

⇢t =
⇡(At |St)
b(At |St)

Zh
t = G�⇢

t,h =
j+1X

i=t+1

h�1X

j=t

"
i�1Y

m=t

⇢m

!
jY

m=t+1

�m�m(1� �j+1)

!
Ri

+

i�1Y

m=t

⇢m

!
jY

m=t+1

�m�m�j+1(1� �h
j+1)

!
�
Ri + 1{i=j}�

>
i+1✓i

�
#

+
h�1X

j=t

jY

m=t

⇢m

!
j+1Y

m=t

�m�m

!
(1� ⇢j+1)�

>
j+1✓j

A0

R1S1

A1

R2S2

Rh

Ah�1

⇢0

⇢0⇢1

⇢0 . . . ⇢h�1

(1� �1)

�1(1� �1)

�1�1 (1� �2)

�1�1 �2(1� �2)

S0

Sh

�1 · · ·�h�1 �1 · · · �h

�1 · · ·�h�1 �1 · · · �h�1(1� �h)

Emphasis algorithm
(Sutton, Mahmood & White 2015)

❐ Derived from analysis of general bootstrapping
relationships (Sutton, Mahmood, Precup & van Hasselt 2014)

❐ Emphasis is a scalar signal

❐ Defined from a new scalar followon trace

67

Ft � 0, F�1 = 0

Mt � 0

Ft = ⇢t�1�tFt�1 + i(St)

Mt = �t i(St) + (1� �t)Ft

Off-policy implications

❐ The emphasis weighting is stable under off-policy TD(λ)
(like the on-policy weighting) (Sutton, Mahmood & White 2015)

! It is the followon weighting, from the interest weighted behavior
distribution (), under the target policy

❐ Learning is convergent (though not necessarily of finite variance)
under the emphasis weighting
for arbitrary target and behavior policies (with coverage) (Yu 2015)

❐ There are error bounds analogous to those for on-policy TD(λ)
(Munos)

❐ Emphatic TD is the simplest convergent off-policy TD algorithm
(one parameter, one learning rate)

68

dµ(s)i(s)

