Off-Policy Learning

Project

1 Two environments: one discrete, one continuous

1 Jelly bean world: https://github.com/eaplatanios/jelly-bean-
world

1 We will provide you with a learned feature space instead of
the native 1mage space

1 A Mujoco-based task: https://gym.openai.com/envs/
Hopper-v2/

1 Project is carried out in teams of 2-4 students

1 Deliverables: project report (4-pages NeurIPS style file), 2-
minute video presentation

1 Leaderboard evaluation will be set up by us
]

https://github.com/eaplatanios/jelly-bean-world
https://github.com/eaplatanios/jelly-bean-world
https://gym.openai.com/envs/Hopper-v2/
https://gym.openai.com/envs/Hopper-v2/

Project

1 Measurements: return, variance of return over n runs,
number of steps until a certain performance level 1s reached

1 Challenge: multi-task evaluation (problem changes after a
certain number of episodes)

1 We will provide some baselines (random agent, TA basic
agent)

1 Grading criteria based on performance, creativity of
project, presentation (written and video)

1 Written report MUST include a statement of contributions
that all participants agree with

Off-policy Methods

1 Learn the value of the target policy mt from experience due
to behavior policy b

1 For example, 7 is the greedy policy (and ultimately the
optimal policy) while u 1s exploratory (e.g., e-soft)

1 In general, we only require coverage,i.c., that b generates
behavior that covers, or includes,

m(a|s) > 0 for every s,a at which b(a|s) >0

1 Idea: importance sampling

— Weight each return by the ratio of the probabilities ot
the trajectory under the two policies

Importance Sampling in General

Suppose we want to estimate the expected value of a function f

depending on a random variable X drawn according to the target
probability distribution P(X).

If we had N samples x; drawn from P(X), we could estimate the
expectation using the empirical mean:

1 N

Ep|f] =~ sz(xi)

1=1

But instead, we have only samples drawn according to a different proposal
or sampling distribution Q(X).

How can we do the estimation?

Regular Importance Sampling

e We do a simple trick:

Ep[f] =) f(z)P(X =)

> e - Do = = B | 5]

e Only requirement: if P(z) > 0 then Q(x) > 0

e So for an estimator, we should average each sample of the function,
f(xz;) weighted by the ratio of its probability under the target and the
sampling distribution:

Normalized Importance Sampling

1 Regular importance sampling is an unbiased and consistent
estimator, but it can have high variance

1 Variance depends on closeness of P and Q

1 Instead, we can treat P/Q ratios as weights and do a
welghted sum (1nstead of using N in the denominator)

1 This is called Normalized or Weighted IS

1 The estimator is biased but consistent and tends to have
lower variance

Applying IS to Policy Evaluation

1 Function for which we want the expectation is the return

1 Target distribution P is the distribution of trajectories under
target policy T

1 Proposal distribution Q is distribution of trajectories under
behavior policy b

1 Note that P and Q can be very different depending on the

horizon!

1 But there is structure in P and Q that we can exploit

Importance Sampling Ratio

1 Probability of the rest of the trajectory, after S;, under :
PI’{At, St—l—la At—|—17 SRIR ST | Sta At:T—l ~ 7T}
— W(At|5t) (St41|St, Ag)m(Agy1|Sey1) - - - p(ST|ST-1, AT-1)

H?T A |Sk)P(Sk+1|Sk, Ar),

1 In importance sampling, each return is weighted by the
relative probability of the trajectory under the two policies

._f;tl m(Ag|Sk)p(Sk+1| Sk, Ak) H (A |Sk)
rer b(AR|SK)D(Skt1] Sk, Ar) b(Ay|Sk)

Pt:T—1 = =

1 This is called the importance sampling ratio

1 All importance sampling ratios have expected value 1

Ak|Sk CL|Sk
]E[AHSk] > el sy = Do wlals) =

Importance Sampling

1 New notation: time steps increase across episode boundaries:

. ... Sa9. 2. . .8
.t=1234567891@1112131415161718192@21222324252627
1 1 1 1
T(s) = {4, 20} T(4)=9 T(20) =25
set of start times next termination times

1 Ordinary importance sampling forms estimate

B Ztefy(s) pe.1(t)—1Gt
T ()]

Vi(s)

1 Whereas weighted importance sampling forms estimate

V(s) = Zte‘y(s) pr.r(t)-1Gt
Zteir(s) Pt:T(t)—1

10

Example of infinite variance
under ordinary importance sampling

Monte-Carlo
estimate of
v (s) with

ordinary

importance 1+

sampling
(ten runs)

m(left|s) =1 y=1 m(right|s) m(left|s)
1 b(right|s) b(left|s)
bleft]s) = - v (s) = 1
Trajectory Go |por—1
. | | s, left, 0, s, left, 0, s, left, 0, s, right, 0, 0| o OIS:
s, left, 0, s, left, 0, s, left, 0, s, left, +1, 1 |16
V(s) = Zteﬂ'(s) pr.1(t)-1Gt
T(s)|
WIS:

g = Zte‘r(s) Pt:T(t)—1 Gy
Ztei)’(s) Pt:T(t)—1

1 10 100 1000 10,000 100,000 1,000,000 10,000,000 100,000,000

Episodes (log scale)

11

Example: Off-policy Estimation
of the value of a single Blackjack State

1 State is player-sum 13, dealer-showing 2, useable ace

1 Target policy is stick only on 20 or 21
1 Behavior policy is equiprobable
1 True value = —0.27726

4 -

Mean
sqguare

error

(average over
100 runs)

2L

Weighted importance sampling

0”1----. 1 ‘ — PE— :
0 10 100 1000 10,000

Episodes (log scale)

12

Discounting-aware Importance Sampling (motivation)

1 So far we have weighted returns without taking into
account that they are a discounted sum

1 This can’t be the best one can do!

1 For example, suppose y =0

" Then Gy will be weighted by

Do — w(Ag|So) m(A1]57) m(Ar_1|S7_1)
0:T — b(Ao|So) b(A1]S7) b(Ar_1|S7_1)

= But 1t really need only be weighted by

P0:1 = (Aol
17 B(A0lSo)

= Which would have much smaller variance

13

Discounting-aware Importance Sampling

1 Define the flat partial return:

ét:hiRt+1+Rt+2+---+Rh, 0<t<h<T
1 Then

T—1

Gy =(1—7) Z VLG 4+ AT Gl
h=t-+1

1 Ordinary discounting-aware IS:

D teT(s) ((1 =) Zfitt);l V' 1 G + ’YT(t)_t_lpt:T(t)—lGt:T(t))

Vi) 7))

1 Weighted discounting-aware IS:

D teT(s) (1 =) ZZQH Y o1 G+ VT(t)_t_lpt:T(t)—1G_t:T(t)
S) =

Zteﬂ'(s) ((1 =) 2;7;2;11 Yt o1+ ’YT(t)_t_lpt:T(t)—l)

14

Per-reward Importance Sampling

1 Another way of reducing variance, evenif y = 1
1 Uses the fact that the return is a sum of rewards

pi Ge =p{ Res1 +vpf Riga+ -+ +7" 1o Rexny+---+~" " 'p/ Rr

3 where
pr R = mAdSe) MArs1lSe) 7T(Aii7§1Sit‘ﬂ?k-)ﬂ:\;wfTgér.ﬂ«x}ST’_”i Riik
o i(A]Se) i(Aer1|S41) H (AtjL el Serr) p(Ar—1| ST—1) t+

15

Per-reward Importance Sampling

1 Another way of reducing variance, evenif y = 1

1 Uses the fact that the return is a sum of rewards

prr1Gr = prr 1R + -+ prr i Ryt -+

w(Ae]Sp) T(Ars1lSer1) m(AerlSen) w(Az1fST-1)

Pt =1tk b(A¢|St) b(As41]St41) b(AtJrlﬁ\Sthk) """""" b(Ar—1[ST-1) bk

“Elprr—1Ritrk] = Elprptk—1 Rtk

]E[pt:T—th] =& [pt:th—l—l + T Wk_lpt:tJrk—lRtJrk ot VT_t_lptT—lRT]

_J/

v

G

. ZtGﬂT(s) ét
V)=)]

16

Implementation

1 Importance sampling ratios fold into the eligibility trace

1 Multiply at eac|

1 step by an extra factor

1 But on long traj

ectories traces will get cut a lot!

17

12

Probability Target
density policy with
functions IR O8
Target
policy w/o. ... _. .

recognizer;
Behavior policy i

Recognizers

1.5 Empirical variances
(average of 200 sample variances)

without recognizer

0.7
Action

: Ly ' L
og 10 100 200 300 400 500
Number of sample actions

e Recognizer makes a target policy that aligns with the behavior

e Goal: Make off-policy

learning efficient

e Target policy is obtained by composing the behavior policy with the

recognizer:

___bs.a)p(s.a)
Za’ b(S, CL’),O(S, CL’)

(s, a)

18

Recognizer Properties

Suppose we have a behavior policy b and we only consider target policies
that choose action from a subset a1, ...ax

Then, the policy that minimizes the variance of one-step importance
sampling updates corresponds to the binary recognizer that is 1 for
ai,...ar and O otherwise:

)

Recognizing more actions leads to lower variance

e Recognizer folds in the eligibility trace in place of the importance sampling

ratio
The behavior policy does NOT need to be known (the normalization can
be estimated empirically) - connection to imitation learning

Cf. Precup et al, NIPS 2005

19

Tree Backup

[Precup, Sutton, Singh, 2000]

a
/ AQ(x,a) = 2\ H m(as|xs)od;

’ 1<s<t

Reweight the traces by the product of target probabilities

20

Q-Learning: Off-Policy TD Control

One-step Q-learning: I

Q(St, Ar) = Q(Si, A1) + | Riyy +ymax Q(Siy1,0) — Q(Si, Ay)|

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’

Q(S; A) + Q(S,4) + a|R + ymax, Q(5",a) — Q(S, A)]

S« 5

until S is terminal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 21

Cliffwalking

it safe path

- optimal path

T he

Cliff

e—greedy, € =0.1

Sarsa
-254
Reward _sp- .
per Q-learning
epsiode
-75-
-100 T T T T
0 100 200 300 400
Episodes

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

|
500

22

Expected Sarsa

@ Instead of the sample value-of-next-state, use the expectation!

Q(St, Ar) <+ Q(St, Ar) + «
— Q(St, Ay) + «

¢ o o
(Q-learning

Rer +9E[Q(St1, A1) | Sia] — Q(Sk, Ar)]

:Rt—i—l + 7y Z 7T(CL‘S;§+1)Q(SH—17 CL) _ Q(Sta At)}

¢ o o
Expected Sarsa

@ Expected Sarsa’s performs better than Sarsa (but costs more)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

23

van Seijen, van Hasselt, Whiteson, & Wiering 2009

Performance on the Cliff-walking Task

0
Wﬁw
40+ Asymptotic Performance
——a——O0—8—8 5855 885]
_ Q-learning xx Sarsa
Reward x__x ‘_V..--v----v""V'"‘V""g"'g””g.'.'.'.g.". E’."ﬁ
LV —...g-o-goE R
per -80 | X gV E“.m---":""m Q-learning |
episode XV om
- v o i
x @ Interim Performance
20l 7 (after 100 episodes)]
¥ - i
i

01 02 03 04 05 06 07 08 09 1
@

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 24

Off-policy Expected Sarsa

@ Expected Sarsa generalizes to arbitrary behavior policies u

@ 1n which case 1t includes Q-learning as the special case in which

Q(St, Ar) +— Q(St, Ar) +

< Q(Sta At) + «

Nothing

changes

here

P———

/N

A4

y
® O

(Q-learning

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

7t 1s the greedy policy

Ri1 +1EIQ(Sre, Aren) | Sia] — Q(Si, Ar)

:Rt—i—l + Z m(a|St4+1)Q(St+1,a) — Q(St, At)}

A4

/D\

y
® o o

Expected Sarsa

25

Q-learning with Eligibility Traces
Q™ (M) algorithm

[Harutyunyan, Bellemare, Stepleton, Munos, 2016]

/ AQ(x,a) = (yA)'d;

X

1 —
é works if || — p|l1 < mlt
Ay

, may not work otherwise Not safe!

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 26

ZV H) (¢ +

1<s<t

Blueprint Off-policy Algorithm

e Q(Te41,) — Qm, ar))

0t
Algorithm: Trace coefficient: Problem:
1S o — m(as|Ts) high .
Q7 (\) Cs = A not safe (off-policy)
TB(A) cs = Am(as|zs) not efficient (on-policy)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

27

Retrace (Munos et al, 2016)

Use Retrace(A) defined by c; = A min (1» W(asle))

pas|zs)
Properties:
e Low variance since c; <1
: m(as|Ts)
e Safe (off policy): cut the traces when needed c¢s € |0,
p(aa|s)

e Efficient (on policy): but only when needed. Note that ¢, > Am(as|zs)

Retrace for Control

Let (ux) and (7%) sequences of behavior and target policies and
Tk afs|$s)

1 (as|z))(rt-l-’YEan(fEtH,-)—Qk(a:t,at))

Qk+1(x7 CL) — Qk(wa a)_l'ak Z()"y H min (

t>0 1<s<t

Theorem 2
Under previous assumptions (+ a technical assumption)

Assume (7) are “increasingly greedy” wrt (Qx)

Then, a.s.,
Qr — Q7

e |If (7) are greedy policies, then ¢; = Al{as € arg max Qr(xs,a)}

— Convergence of Watkin’s Q(A) to Q*
(open problem since 1989)

e ‘“Increasingly greedy” allows for smoother traces thus faster convergence

e The behavior policies (4%) do not need to become greedy wrt (Q,)
— no GLIE assumption (Greedy in the limit with infinite exploration)
(first return-based algo converging to ()* without GLIE)

29

2500

2000

1000

500

16000

14000

12000

10000

8000

€000

4000

2000

Retrace in Atari

1 2 3 4
step_vlad

—— DON
— Retrace())

1 2 3 4
step_vlad

Games:

— DON
= Retrace())

50000

40000

30000

20000

10000

1

12000

10000

8000

6000

4000

2000

—— DON
— Retrace())

4
step_vlad

4
step_vlad

6 7
1e
—— DON
— Retrace())
6 7 8
1e7

140000
— DON

— Retrace())
120000

100000

80000

60000

40000

20000

)
-
w

4 5 6 7 8
step_vlad le7

90000
— DON
80000 — Retrace())
70000
60000
50000
40000
30000

20000

10000

0 1 2 3 4 5 6 7 8

step_vlad 1le7

Asteroids, Defender, Demon Attack, Hero, Krull,

River Raid, Space Invaders, Star Gunner, Wizard of Wor, Zaxxon

30000

25000

20000

15000

10000

12000

10000

8000

2000

— DQN
— Retrace(\)

4
step_vlad

4
step_vlad

; 4 8
1le7
—— DON
—— Retrace())
7 8
le7

16000
— DON
14000 = Retrace(\)

12000

10000

0 1 2 3 4 5 6 7 8
step_vlad 1e7

20000
— DON
—— Retrace())

15000
10000

5000

-5000
] 1 2 3 4 5 3 7 8
step_vlad 1e7

30

Retrace vs Tree Backup

Fraction of Games

1
fa(x) = @Hg ! Za,g 2 x}}

1.0

0.8}

0.61

0.4+

0.2

0.0

200M TRAINING FRAMES

Retrace

Tree-backup

(Q-Learning ‘o

1.0 0.8 0.6 0.4 0.2 0.0

Inter-algorithm Score

31

V-Trace (Espeholt et al, 2018)

1 Off-policy, massively parallel actor-critic

Us = Vi(zs) + Zfi?_l vie (Hf;; Ci)atv

5tV déf Pt (’rt -+ "}/V(.CCt_|_1) — V(xt))

pr = min (p, £355)

1 In the on-policy case, this is an n-step backup

1 In the tabular off-policy case, converges to the value of:

o (al) def min (ﬁu(a!x),w(a\a’;))
" ZbeA min (ﬁ,u(b\aj), W(b‘fﬁ)) |

32

Mean Capped Normalized Score

V-trace results: DMLab

[e)]
o
(o))
o

(%21
o
U
o

o

o
N
o

Mean Capped Normalized Score
w
o

30
20 20
10 10

0 0

0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100 120 140 160

Environment Frames 1el0 Wall Clock Time (hOUFS)
—— |IMPALA, deep, PBT - 8 GPUs =—— IMPALA, shallow
IMPALA, deep, PBT IMPALA-Experts, deep

- |MPALA, deep — A3C, deep

180

33

Off-policy is much harder with Function Approximation

1 Even linear FA

1 Even for prediction (two fixed policies sz and p)

1 Even for Dynamic Programming
1 The deadly triad: FA, TD, off-policy
= Any two are OK, but not all three

= With all three, we may get instability
(elements of @ may increase to +x)

34

Two Off-Policy Learning Problems

1 The easy problem is that of off-policy targets (future)
= Use importance sampling in the target

1 The hard problem is that of the distribution of states to
update (present): we are no longer updating according to
the on-policy distribution

35

Baird’s counterexample

m(solid|-) =1
p(dashed|-) = 6/7
u(solid|-) = 1/7

300

200 +

100

Components
of the parameter vector

at the end of the episode s
under semi-gradient

off-policy TD(0)
(similar for DP)

Episodes

100

36

TD(0) can diverge: A simple example

6 = r+~0"¢' —0"¢
= 0+4+20-—-90
= 0

TD update: A9 = ado
= of Diverges!

TD fixpoint: * = 0

37

What causes the instability?

1 It has nothing to do with learning or sampling

= Even dynamic programming suffers from divergence

with FA

1 It has nothing to do with exploration, greedification, or

control

= Even prediction alone can diverge

1 It has nothing to do with loca]

 minima

or complex non-linear approximators

= Even simple linear approximators can produce instability

38

The deadly triad

1 The risk of divergence arises whenever we combine three
things:
7 Function approximation
7 significantly generalizing from large numbers of examples

7 Bootstrapping
7]earning value estimates from other value estimates,
as in dynamic programming and temporal-difference learning
3 Off-policy learning
7 learning about a policy from data not due to that policy,
as in Q-learning, where we learn about the greedy policy from
data with a necessarily more exploratory policy

39

How to survive the deadly triad

1 Least-squares methods like off-policy LSTD(A) (Yu 2010,
Mahmood et al. 2015, Bradtke & Barto 1996, Boyan 2000)
computational costs scale with the square of the number of
parameters

1 True-gradient RL methods (Gradient-TD and proximal-
gradient-TD) (Maei et al, 2011, Mahadevan et al, 2015)

1 Emphatic-TD methods (Sutton, White & Mahmood 2015,
Yu 2015). These semi-gradient methods attain stability
through an extension of the early on-policy theorems

40

Linear Least-Squares

m At minimum of LS5(w), the expected update must be zero

a Y x(se)(vi —x(se) 'w) =0
z:x(st)vgr = Zx(st)x(st)Tw
w = (Z x(st)x(st)T> Zx(st)vf

m For N features, direct solution time is O(N3)

m Incremental solution time is O(N?) using Shermann-Morrison

41

LSTD

m We do not know true values v/

m In practice, our “training data’ must use noisy or biased
samples of v[

LSMC Least Squares Monte-Carlo uses return
v &~ Gy
LSTD Least Squares Temporal-Difference uses TD target
vi = Rep1 +70(Se41, w)
LSTD(A) Least Squares TD(A) uses A-return

T o~ (A

m In each case solve directly for fixed point of MC / TD / TD(\)

42

Convergence Properties

On/Off-Policy Algorithm Table Lookup Linear Non-Linear

MC v v v

. LSMC v v :

On-Policy D / / X

LSTD v v -

. MC v v v

Off-Policy LSMC / /]

D v X X

LSTD v v -

Algorithm Table Lookup Linear Non-Linear

Monte-Carlo Control v (V) X
Sarsa v (V) X
Q-learning v X X
LSPI v (V) :

(v/) = chatters around near-optimal value function

43

Proximal Gradient (Touati et al, 2018)

Given: target policy 7, behavior policy u
Initialize 6y and wq
forn=0... do
seteg = 0
for k=0 ...end of episode do
Observe sg, ag, g, Sg+1 according to u
Update traces
er = ANYK(Sk, ag)ex—1 + O(Sk, ax)
Update parameters
O =1k + 70, Erd(spt1,.) — 0, d(sk,ar)
w41 = Wk + Mk (dker — wp d(Sk, ar)d(sk, ax))

Hk-l—l = 01 — QW €k (’Y]Eﬁqﬁ(sk-klv) — ¢(37€7 ak))
end for

end for

44

Results

_ 0.6
1.50 TB(A) — GTB(\)
| —— Ret —— GRetrace(\)
125 ctrace(A) 0.4
2 i
7 1.00 %
= =02
=075 ‘
0.50{ | | 0.01 - .
0 50 100 0 50 100
episode episode

45

Value function geometry

Previous work on T takes you
gradient methods for TD 7 outside
minimized this objective fa—_ o N TV, the space

(Baird 1995, 1999) ™~

i 11 projects you

HTVQ back
into it

-

VH \“
‘. RMSPBE ~~

®,D = \/Bretter objective fn?

The space spanned by the feature vectors, Vo = 1IT'Vy
weighted by thel%tate visitation distribution|g the TD fx-point

diag(d)

Mean Square Projected Bellman Error (MSPBE)

46

(stable,
1 Is simp.

Gradient-Based TD

1 Bootstraps (genuine TD)

1 Works with linear function approximation

reliably convergent)
e, like linear TD — O(n)

1 Learns

ast, like linear TD

1 Can learn off-policy

1 Learns from online causal trajectories

(no repeat sampling from the same state)

47

TD is not the gradient of anything

TD(0) algorithm:

A0 = add
Assume there is a | such S=r+~0Td —0" ¢
that: o
90 0P
Then look at the second
derivative:
0.7 26.00, U
0*J _ 0(d¢;) _ (v — b:)b. 90;00; ~ 90,00, **(Cl‘/b
=208 — (161 6, N

Real 2nd derivatives must be symmetric

Etienne Barnard 19¢

48

The Gradient-TD Family of Algorithms

1 True gradient-descent algorithms in the Projected
Bellman Error

1 GTD(A) and GQ(A), for learning V and Q
1 Solve two open problems:

= convergent linear-complexity off-policy TD learning

= convergent non-linear TD

1 Extended to control variate, proximal forms by
Mahadevan et al.

49

First relate the geometry to the iid statistics

MSPBE(6) .0
— Vo — IITV, 2 matrix of the feature vectors for all staggs
- | HGV B T‘9/HD2 =3¢ D®)"'®'D
= || IL(V4 0) I 3T D(TVy — V) = E[59
= (I(Ve — TVp)) ' D(IL(Vy — TVy)) 37D = E[¢¢"]

= (Vo —TVy) 'II' DII(Vy — TVy)
= (Vg—TVy)'D'®(@"'D®) "' D(Vy — TVp)
= (®'D(TVy—Vp)) (@' D®)1®"'D(TVy — Vp)

— E[6¢] E[po'] E[54].

50

Derivation of the TDC algorithm

AO = ——aVyJ(0)

(sampling)

Q

. s— g
—§&V9 | Vo —ITVy |5 l l/
: b ¢

—5aVy (E[6E [¢0"] ' E [56)])

—a (VoE[06))E [¢6¢7] E[o¢]

—aE [Vl (r+7¢'T0 — ¢"0)]| E [¢p¢] E[69]
~E[6(¢'~)"] ElpsT] "Els9
~a(E[¢0"] ~E[s9])E[067] E[5¢)

aE(06] - B [$0T]E [007] " Rlogl
alE [6¢] — ayE |¢'¢ }w " trick!
adp — ayg'¢'w weR” isa
second set of
weights

51

T'D with gradient correction (TDC) algorithm

1 on each transition

aka GTD(0)

1 update two parameters s——s'

with gradient
1 where, as usual ~ correction

0 — 0 +Hadd)—(0rd (@ w)
w <« w+ (5 —)¢ estimate of the

D error ¢) for
the current stat@

d=r+~0'¢'—0'¢

52

Convergence theorems

1 All algorithms converge w.p.1 to the TD fix-point:

Eldp] — 0
1 GTD, GTD-2 converges at one time scale

a=0-—70

1 TD-C converges in a two-time-scale sense

o, — 0 2 0

p

53

Off-policy result: Baird’s counter-example

10 ‘
10™ |
8] . 7
_ 10° |
E; J=10% Lol oo b b oo o
" 6* qE) +/—10
m <
o © 5
n & _q0° ¢}]
s GTD \J
s 47 - 10 &
10 1000 2000 3000 4000 5000
GTD-2 Sweeps
27
OO 20 40 60 80 100 120 140 160 180 200

Sweeps

Gradient algorithms converge. TD diverges.

54

A little more theory

A6 = (r+~0T¢ —07¢)¢
= 0'(v¢' —¢)p+1¢
= ¢(v¢ —¢) O+r1¢
E[A0] o« —E|¢(6—79)"|0+Erd

| |
/ / convergent if
E[A0] o — Af + b A
is pos. def.
therefore, at A —
the TD) B P LSTD computes this directly

fixpoint: - -
1 . 0 =B fos

—§V9MSPBE = —A'C™ (A|¢9 —b) covariance

always pos. def. matrix

55

Example: Go

1 Learn a linear value function (probability of winning)
for 9x9 Go from self play

1 One million features, each corresponding to a template
on a part of the Go board

0.8 =

0.6

RNEU
04 +

0.2 7t

0 t t t t t i
.000001 .000003 .00001 .00003 .0001 .0003 .001

X

Summary

ALGORIIHM

TD(\), Approx. LSTD(N), [r... . ~ Residual GTD(N),
Sarsa(\) DP LSPE(A) st gradient G2 GQ(A)

Linear
computation

Nonlinear
convergent

Off-policy
convergent

Model-free,
online

Converges to
PBE=0

Off-Policy with TD and FA is still Challenging

1 Gradient TD, proximal gradient TD, and hybrids
1 Emphatic TD (Ask Rupam about this!)

1 Higher A (Iess TD)

1 Better state rep’ns (less FA)

"1 Recognizers (less off-policy)
1 LSTD (O(n?) methods)

58

Emphatic temporal-difference learning
iy

N
X

7 . Al
1 Ruparin Mahmood, Huizhen (Janey) Yu, Martha
White, Rich Sutton

3 Reinforcement Learning and Atrtificial Intelligence Laboratory
1 Department of Computing Science

 University of Alberta

 Canada

59

State weightings are important,

— powerful,evenimagical, —

1 They are the difference between convergence and divergence in on-
policy and off-policy TD learning

1 They are needed to make the problem well-defined

1 We can change the weighting by emphasizing some steps more than
others in learning

60

Often some time steps are more
1 Early time steps of an episode may be more important

" Because of discounting

= Because the control objective 1s to maximize the value of
the starting state

1 In general, function approximation resources are limited
= Not all states can be accurately valued
= The accuracy of different state must be traded oft!

" You may want to control the tradeoff

61

Bootstrapping interacts with state

_— Importance

1 In the Monte Carlo case (A=1) the values of different states
(or time steps) are estimated independently,
and their importances can be assigned independently

1 But with bootstrapping (A<1) each state’s value is
estimated based on the estimated values of later states; if
the state 1s important, then 1t becomes important to
accurately value the later states even if they are not
important on their own

62

Two Kkinds of importance

1 Intrinsic and derived, primary and secondary

= The one you specity, and the one that follows from it
because of bootstrapping

1 Our terms: Interest and Emphasis

" Your intrinsic interest in valuing accurately on a time
step

= The total resultant emphasis that you place on each time
step

63

A Data

1 State distribution
Problem

A Objective to mlinimize """ jurpon

m EmISBQtEQ H@@J)

¢d:85—R"
feature function

|
- @(St) At Rey1 d(Siv1) Aspr Reyo -

behavior policy

d'u() lim PI‘[St—S‘AOt 1NIL‘L}

t— o0

true value transpose
(inner product)

MSE(6 Zd (s) — 07T (s))2

mterest func‘u@rﬁget policy
i:8— Rt

Or11 =0, + Oé/MtPt (Rig1 + 70, i1 — 6, 1) &y

emphasis jmportance sampling ratio

M; >0 _
py = 7T(Alt’St) Elp,] = 1 ¢t — ¢(St>
p(Ae|St)
Z Miprdn(dn — 1rr1) Z My, pr Ri @r

64

Real-time off-policy prediction learning

/Y i

1 State distribution

I Objective to mjinimize

Solutior

A Emphatic TD(D)

g o [J
L UL NA N ADDIOXNC 1]1

QO) A Tv] P ot R T o
)—hmPr[St—s‘AOt 1~,u}

dy(s

MSE(6 Zd (—07g(s))

0t—|—1

0111 =

t—o0

2

mterest functioh
i:8 = Rt

=0, + oz/]\@pt (Rt+1 + ’}/92_¢t—|—1 — 9;@) oN
N
AN

emphasis - - :
M > 0 importance sampling ratio

_ (A8 gy, br = ¢(5:)
= sy t t
Z Miprdi (b — ybrs1) | Z My, p Ri i,

— At 1bt

65

True online GTD(2) forward view

JA ‘matrix’ backup diagram -
. %
= weights are drawn from both g rOIW 1dla colu o x
(1—71) (\ ® Al
o o . 71§ & N 11|, o 1 1
INot shown in the diagram is [tljf@_aﬂiﬁfﬂ literm 151 black,
which has expected value 0 e '

Ap—1

JAlso not shown is the gradient-TD correctlon tergh lsh i

A1 71 V=1 (1 — Y1)
<H ,Om) (H ’Ym)\m(]- - Vj—l—l)) R
m=t m=t+1

A A e
i—1 J
+ (H pm> (I vmAmyisa(- Aﬂl)) (Ri + 1{f=j}¢iT+19i)]
t

m=t+1

h—1 / j J+1
+ Z (H pm> (H vmkm> (1 = pi1)¢j110; 77 b(AS:)

Jj+1 h-—1

Z0=6h= 2).

i=t+1 j=t

66

Emphasis algorithm

- ASutton, Mahmood & White 2015)

1 Derived from analysis of general bootstrapping

relatiOnShipS (Sutton, Mahmood, Precup & van Hasselt 2014)

1 Emphasis is a scalar signal

M; >0
1 Defined from a new scalar followon trace

Mt —)\t Z(St) —|— (1 —)\t)Ft

Fir = pi_1iFi—1 +i(S)

67

Off-policy implications

1 The emphasis weighting is stable under off-policy TD(1)
(like the on-policy weighting) (Sutton, Mahmood & White 2015)

= It 1s the followon weighting, from the interest weighted behavior
distribution (), under the target policy

J Learning is convergent:(though not necessarily of finite variance)
under the emphasis weighting
for arbitrary target and behavior policies (with coverage) (yu2015)

1 There are error bounds analogous to those for on-policy TD(A)
(Munos)

1 Emphatic TD is the simplest convergent off-policy TD algorithm
(one parameter, one learning rate)

68

