Reinforcement Learning with Function
Approximation: Value-based Methods
Eligibility Traces, Control



Recall: Value function approximation (VFA) replaces
the table with a general parameterized form

T@Gtt

Target depends on the agent’s behavior, and in TD, also on its current estimates!



Recall: Stochastic Gradient Descent (SGD)

General SGD:. 0 « 0 — aNp Error;

For VEA; — 0 — aVy [Target, — 9(S, 0)]
Chain rule: «— 0 — 2« [Target; — 0(Sy, 0)| Vg [Targety — v(.S;, 0)]
Semi-gradient: «— 0+ a|Target; — 0(S, 0)] Vov (S, 0)
Linear case: — 0+ o|Target; — 0(S;, 0)] d(S;)

Ditferent RL algorithms provide different targets! But share the
‘semi-gradient” aspect



Recall: Different Targets

@ Monte Carlo: Gt = Rii1 +YRiyo +V°Rpys + -+~ 1Ry

e I'D: Gt = Re1 +4Vi(Seen)
@ Use V; to estimate remaining return

@ n-step 1D:

@ 2 step return: G§2> = Rip1 +YRig2 + 7 Vi(Si2)

@ n-step return: n) . o .
P GE = Rivi +YRipo + 72+ - + 9" "Rign + 7" Vi(Stin)

with G =G ift+n>T



Eligibility traces are

Another way of interpolating between MC and TD methods
A way of implementing compound A-return targets

A basic mechanistic idea — a short-term, fading memory
A new style of algorithm development/analysis

the forward-view < backward-view transtormation

Forward view:
conceptually simple — good for theory, intuition

Backward view:
computationally congenial implementation of the f. view



Recall n-step targets

For example, 1n the episodic case,
with linear function approximation:

2-step target:
GyY = Rey1 + YRiro + 720/ prio
n-step target:

ng) = Ris1+ -+ Rygn + ”YnHtTJrn—1¢t+n

with G =Gy ift+n>T



Any set of update targets can be averaged
to produce new compound update targets

A compound backup
@ For example, halt a 2-step plus halt a 4-step 5 5
1 , 1 A O O
O C
@ Called a compound backup 5 <.
@ Draw each component ®

@ Label with the weights for that component



The A-return is a compound update target

TD(2), -retum

@ The A-return a target that O O
averages all n-step targets ,}) * .
7 . ™~
@ each weighted by Al ,Q 7 Y ¢ oo
g s ®
O ®
~C - (1=2)2 ®
GP = (1 - A) ZA" Gy O
n=| i) W




Relation to TD(0) and MC

The A-return can be rewritten as:

T—t—1
Gy = (1-X ) MG+ TG,
n=1
g ), \ )
Y Y
Until termination After termination

e If A =1, you get the MC target:

T—t—1

Gy = (1-1) Y 1"l + 176 =
n=1

e If A =0, you get the TD(0) target:

T—t—1
Gy = (1-0) Y o0'Gy 0" -t1q,

n=1




The off-line A-return “algorithm”

Wait until the end of the episode (offline)

Then go back over the time steps, updating

0,11 = 0,

G — 0(S;,0;)

Vi(S:,0,), t=0,...



The A-return alg performs similarly to n-step algs
on the 19-state random walk (Tabular)

Off-line A-return algorithm n-step TD methods
(from Chapter 7)
0851, N 2 /s
\// / -
1\ N
05 F WV - R/
RMS error .|
at the end
of the episode o4t
over the first
10 episodes 035f
03 F
n=8 n=2
025 ) ¢ . . L, . n=ét . . |
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
8/ Qo

Intermediate A is best (just like intermediate » is best)
A-return slightly better than n-step



The forward view looks torward from the state being updated
to future states and rewards




The backward view looks back
to the recently visited states (marked by eligibility traces)

@ Shout the TD error backwards

@ The traces fade with temporal distance by yA



Eligibility traces (mechanism)

@ The torward view was for theory

@ The backward view 1s for mechanism
same shape as 0

/

@ New memory vector called eligibility trace e, € R"”

@ On each step, decay each component by yA and incremer
the trace for the current state by 1

@ Accumulating trace

€y = 0, J\I\K accumulating eligibility trace
e; — V”(A}(St,gt) + ’7)\615_1 \K\

| ] | | times of visits to a state

@ Replacing trace: trace becomes 1 when state 1s visited
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The Semi-gradient TD(A) algorithm

0i11 =0+ adie

0t = Rpirq1 +y0(Ste1,0¢) — 0(S5:,60;)

€0 — 07
e = VU(5:,0:) +yAe—q

15



TD(A) performs similarly to offline A-return alg.
but slightly worse, particularly at high o

Tabular 19-state random walk task

Off-line A-return algorithm

0.55 (from the previous section)

05} | A=.975

RMS error ;451
at the end
of the episode o4+
over the first
10 episodes ©3°|

03 F

025 -1 1 1 1 1 J 1 1 1 1 1 J
0 0.2 04 06 08 1 0 0.2 04 06 0.8 1

Can we do better? Can we update online?
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Conclusions

* Value-tunction approximation by stochastic gradient descent
enables RL to be applied to arbitrarily large state spaces

 Most algorithms just carry over the targets from the tabular case

o With bootstrapping (TD), we don'’t get true gradient descent methods
e this complicates the analysis
e pbut the linear, on-policy case Is still guaranteed convergent

» and learning is still much faster



Value function approximation (VFA) tor control

qA<St7 At7 9)




(Semi-)gradient methods carry over to control
N the usual on-policy GPI way

* Always learn the action-value function of the current policy

* Always act near-greedily wrt the current action-value estimates

* [he learning rule Is:

Or11 =60+ a|Up — ¢(St, A, 0:) | VG(St, A, 0y)




(Semi-)gradient methods carry over to control

Or11 =60+ a|Up — ¢(St, A, 0:) | VG(St, A, 0y)

Episodic Semi-gradient Sarsa for Estimating ¢ ~ ¢,

Input: a differentiable function ¢ : & x A x R — R

Initialize value-function weights 8 € R™ arbitrarily (e.g., 8 = 0)
Repeat (for each episode):
S, A < initial state and action of episode (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
If S’ is terminal:
6+ 0+ alR—q(S,A,0)|Vi(S, A,0)
Go to next episode
Choose A’ as a function of ¢(5’, -, 0) (e.g., e-greedy)
0« 0+alR+~4(S",A,0) — (S, A,0)|Vi§(S, A,0)
S <+ 5
A+ A



n-step semi-gradient Sarsa is better for n>1

Orrp, = 0111+« ng) — q(St, A, 00400—1)| VG(St, A, Ot 1n—1), 0t <T

300 n=1

280 |

1000 Mountain Car
Steps per episode 260}
averaged over n=2
first 50 episodes
and 100 runs 240 |
. = /
Mountain Car “°f | 3 =

220 | n:4

Steps per episode

log scale
averaged over 100 runs 200

0 0.5 1' 1.5
Q. x number of tilings (8)

NI W 1 AN

100 |-, |
0 500
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Conclusions

o Control is straightforward in the on-policy case

o Formal results (bounds) exist for the linear, on-policy case (eg.
Gordon, 2000, Perkins & Precup, 2003 and follow-up work)

* we get chattering near a good solution, not convergence



DQN

(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

e |earnsto play video games from raw pixels, simply by playing
e Can learn Q function by Q-learning

Aw = « (Rt—l—l 5 ’Ymélx Q(St+1, a, w) a2 Q(St, Ag; w)) VwQ(Sta At; w)

32 4xA4 filters 1P Y R N A Fully-connected linear
output layer

16 8x8 filters
4x84x84

=

Stack of 4 previous
frames

_ Fully-connected layer
Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units



DQN

(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

e [earnsto play video games from raw pixels, simply by playing
e Can learn Q function by Q-learning

Aw = « (Rt-l—l =t fymg,x Q(St+1, a, w) — Q(St, As; 'w)) VwQ(St, Ag; w)

e Core components of DQN include:
o Target networks (Mnih et al. 2015)

Aw =« (Rt+1 a5 fymc?.x Q(5t+1, a, 'w_) 5 Q(StaAt§ 'w)) va(StaAt; w)

O Experience replay (Lin 1992): replay previous tuples (s, a, r, s)



Target Network Intuition

, ~ (Slide credit: Vlad Mnih)
e Changing the value of one action

Wwill change the value of other

actions and similar states. Li(6:) = Esa,er,rnp [ 7+ maxQ(s, a’30;7) — Q(s, a; 6:)
I A N S £~

e The network can end up chasing its e

own tail because of bootstrapping.

e Somewhat surprising fact - bigger
networks are less prone to this
because they alias less. . 4



DQN

(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

e Many later improvements to DQN

Double Q-learning (van Hasselt 2010, van Hasselt et al. 2015)
Prioritized replay (Schaul et al. 2016)

Dueling networks (Wang et al. 2016)

Asynchronous learning (Mnih et al. 2016)

Adaptive normalization of values (van Hasselt et al. 2016)

Better exploration (Bellemare et al. 2016, Ostrovski et al., 2017, Fortunato, Azar,
Piot et al. 2017)

Distributional losses (Bellemare et al. 2017)
Multi-step returns (Mnih et al. 2016, Hessel et al. 2017)

o ..Mmany more..

B0 © B © HREX & I 0 Jal @,

DI O,



Prioritized Experience Replay

"Prioritized Experience Replay”, Schaul et al. (2016)

e |dea: Replay transitions in proportion to TD error:
r +ymaxQ(s',a’;07) — Q(s, a; 9)|
a/
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Recall: Double DON

100%
TN
.""ll \
75%; | \
| \
O/O | '\\‘\
Wrong 50%|" N
actions “Q-learning
\ Double A
25%t  \Q-learning I
5% f—-————-—"——"———————— —— —— —— —— —— — — — — — — — — —optimal
Ot. . .
1 100 200 300
Episodes

Double Q-learning:
Q1(St, Ar) < Q1(S5t, At) +a [RtJrl +7Q2(St+1, argmax Q1 (Se+1,a)) — Q1 (St, At)]
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Which DQN improvements matter?

DQN

- DDQN

— Prioritized DDQN

- Dueling DDQN / -

200%F __ a3c N
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Off-policy with Function Approximation can be very hard!

e Fven linear FA

e Even for prediction (two fixed policies & and u)

 Even for Dynamic Programming
 The deadly triad: FA, TD, off-policy
* Any two are OK, but not all three

o With all three, we may get instability
(elements of @ may increase to +oo)




Baird’'s counterexample illustrates the instabllity

m(solid|-) = 1

u(dashed|-) = 6/7
u(solid|-) = 1/7

300

200 +

100

Components
of the parameter vector

at the end of the episode s/
under semi-gradient
off-policy TD(0)
(similar for DP)

91_(96 27
-.._‘7_{,;—//_‘,
- 97
0 . 160
Episodes



What causes the instability?

* |t has nothing to do with learning or sampling

 Even dynamic programming suffers from divergence with FA
* |t has nothing to do with exploration, greedification, or control

* Even prediction alone can diverge

* |t has nothing to do with local minima
or complex non-linear approximators

 Even simple linear approximators can produce instability



The deadly triad

* The risk of divergence arises whenever we combine three things:

Any 2 Ok

1. Function approximation

* significantly generalizing from large numbers of examples

2. Bootstrapping

* |earning val

Je estimates from other value estimates,

as in dynamic programming and temporal-difference learning

3. Off-policy learning

* |earning about a policy from data not due to that policy,

as in Q-lear
data with a

Ning, where we learn about the greedy policy from

necessarily more exploratory policy



TD(0) can diverge: A simple example

6 = r+~40'¢ —0'¢

= 0+20—-0

= 0
TD update: A0 = «adop

= af Diverges!
TD fixpoint: g = 0



Can we do without bootstrapping?

* Bootstrapping is critical to the computational efficiency of DP
o Bootstrapping is critical to the data efficiency of TD methods

* On the other hand, bootstrapping introduces bias, which
harms the asymptotic performance of approximate methods

 The degree of bootstrapping can be finely controlled via the A
parameter, from A=0 (full bootstrapping) to A=1 (no
bootstrapping)



4 examples of the effect of bootstrapping

suggest that A=1 (no bootstrapping) is a very poor choice

MOUNTAIN CAR RANDOM WALK
700 : @-0.5
650 ,-' o ]
.‘ o)
600 — accumulatingy accumulating ',' - 0.4
Steps per .., races 1 traces | RMS error
episode '
500 -
450 = replacing 2 ,
traces r et?é%% '29 0.2
400 I I T T T T T T T T T T
0 02 04 06 038 1 0 02 04 06 08 | '
In all cases 2 N Rfed pg)mts are the cases
lower is better O Of NO bootstrapping
v PUDDLE WORLD CART AND POLE T
240 —1 300
. @l ol |
230 - L
220 - T ;' 250
210 - |
Cost per 200~ | Lo 15)6(‘)”3:)805 ;:er
episode 190 - replacing 5 accumulating © | UL SIOpS
- traces o-__ _ 9. 150
180 ~ T --.3 traces* ;
170 T L4 T \‘xo,,/ﬁ’-\é - 100
160 -
150 1 I I | 1 | 1 I 1 | | 1 | 50

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

Pure A No A |
bootstrapping bootstrapping We need bootstrapping!



Desiderata: VWe want a I D algorithm that

® Bootstraps (genuine TD)

® Works with linear function approximation
(stable, reliably convergent)

® |s simple, like linear TD — O(n)
® | earns fast, like linear TD
® Can learn off-policy

® | earns from online causal trajectories
(no repeat sampling from the same state)



4 easy steps to stochastic gradient descent

|. Pick an objective function J(6),
a parameterized function to be minimized

2. Use calculus to analytically compute the gradient Vy.J(0)

3. Find a “sample gradient” Vy.J;(0) that you can sample on
every time step and whose expected value equals the gradient

4. Take small steps in 0 proportional to the sample gradient:

0 — 60— aVyJ,(0)



Conventional TD is not the gradient of anything

TD(0) algorith e
(0) algorithm: S =1 4+~0Td —07 ¢
Assume there is a | such that: 29‘] = ¢,

Then look at the second derivative:

0?4 B O(5¢;) B / o
5’(93.5)92. R (9(9]' — (7¢j - ¢J)§bz 82J # 82J
00.00, 0000
82J _ a(5¢) L / | | ] ( 12 7
86’286’3 o 8(9@] — (Vﬁbz — ¢z)¢g

Real 2nd derivatives must be symmetric
Etienne Barnard 1993



Gradient descent for TD:
What should the objective function be?

Mean-Square MSE(6) Z ds (Vo(s) — V(S))2

Value Error - \
True value

H Vg =V H% function

Mean-Square
Bellman Error

MSBE®) = |[[Vo—TVs |

v

r—+~vPV
= TV



Value function geometry

Bellman Operator I

takes value function
outside the space

I1 projects back

Into It
“\\é—— R\\/\SPBE - - VQ — HTVQ
®,D ~~—— Is the TD fix-point

The space spanned by the feature vectors,
weighted by the state visitation distribution

D = diag(d)

Mean Square Projected Bellman Error (MSPBE)




The Gradient-TD Family of Algorithms

* Jrue gradient-descent algorithms in the Projected Bellman Error
 GTD(A) and GQ(A), for learning V and Q
* Solve two open problems:

* convergent linear-complexity off-policy TD learning

* convergent non-linear 1D

* Extended to control variate, proximal forms by Mahadevan et al.



First relate the geometry to the lid statistics

MSPBE(6) b

_ V@ o HTVQ H% kmatrix of the feature vectors for all sta;es\y e
o H:<I>(<I> D<I>) o'

= || II(Ve —=T'Vp) || ST D(TVy — Vy) = E[56

= (I(Vp —TVp)) DAL(Vp — T'Vy)) 3" Dd = E[po”

= (Vy—TVyp) ' II' DIL(Vy — TVp)

= (Vg—TVy) ' D' ®(®' D®)"'®' D(Vy — TVp)

= (®'D(TVy—Vy))' (& D®)'® ' D(TVy — Vp)

— E[6¢] El[¢e"]  E[5¢)].




Derivation of the TDC algorithm

1

(sampling)

| s— s
—SavVo | Vo —TITV; |3 | l/
| » ¢ @
~5aV, (B[4 E [¢67] " E [6¢])
—a (VeE[§6) E [¢07] E[6¢]

—alE [Vg[o (r+7¢"'0 —¢ 0)]|E[p¢ | E[d¢)

o [0
olE [0

—a :qb (v¢" — ¢)T:
—a(E[¢'¢'] -

T

2 (69" ] " E [5¢)
pg' )E[po' |  E[0¢)

(607 |E [p07] 'E

— avE
5¢] — ayE [¢'d"
adp — ayd' ¢ 'w

w

This is the trick!
w € K" is a second
set of weights



I'D with gradient correction (TDC) algorithm
aka GTD(0)

® on each transition S

® update two parameters with gradient
.~ correction

T
W «— W 6( estimate of the

® where, as usual TD error (9) for
the current state ¢
S=r+~0'¢) —0'¢



Convergence theorems

o All algorithms converge w.p.1 to the TD fix-point:

10| — 0

e GTD, GTD-2 converges at one time scale

a=0—0

 [D-C converges in a two-time-scale sense
@7

o, 3 — 0 > 0
b




Off-policy result: Baird’s counter-example

10
10" »
8 7 )
10 7
2 +/-10
- o T
y ©
o C 5
2 GTD -10 N U |
E 4f | 10 \&
10 1000 2000 3000 4000 5000
GTD—2 Sweeps
27
TDC
0)
0 20 40 60 80 100 120 140 160 180 200
Sweeps

Gradient algorithms converge. TD diverges.



Computer Go experiment

® |Learn a linear value =
function (probability of 06 Fm
winning) for 9x9 Go
from self play o4 |

® One million features, 0o |
each corresponding to a

template on a part of |

the GO boar’d .000001 .000003 .0000f1 .00003 .0001 .0003 .001
X




Off-policy RL with FA and TD remains challenging;
but there are multiple possible solutions

* Gradient TD, proximal gradient TD, and hybrids

« Emphatic TD

* Higher A (less TD) e e e

 Recognizers (less off-policy)

e LSTD (O(n2) methods)



Value-based or policy-based? DQN or ASC?

- This Is an application-dependent choice!

- |f policy space is simple to parameterize, policy search/AC work very well
- Eg. powerplant control

- |f policy space is complicated, value-based is better

- Using a value function can greatly reduce variance



Open questions

 Huge gap between theory and practice!

e |s there a natural way to exploit more stable function
approximators” Eg kernels, averages...

e |mprove stability of deep RL
* Planning with approximate models

o Exploration, exploration, exploration....



