
Reinforcement Learning with Function 
Approximation: Value-based Methods



Curse of dimensionality
The Curse of Dimensionality

The Game of Go

~10170 unique positions

~200 moves long

~200 branching factor

~10360 complexity

• Values are governed by nice recursive equations:
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• The number of states grows exponentially with the number of state
variables (the dimensionality of the problem)

E.g. in Go, there are 10170 states
• The action set may also be very large or continuous

E.g. in Go, branching factor is ⇡ 100 actions
• The solution may require chaining many steps

E.g. in Go games take ⇡ 200 actions
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Value function approximation (VFA) replaces the table 
with a general parameterized form

St v̂(St,✓)

Targett

✓

Target depends on the agent’s behavior, and in TD, also on its current estimates!



A natural objective in VFA

is to minimize the Mean Square Value Error

where         is the fraction of time steps spent in state d(s) s

MSVE(✓)
.
=

X
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h
v⇡(s)� v̂(s,✓)
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True SGD will converge to a local minimum of the error objective

In linear VFA, there is only one minimum: local=global

Monte Carlo will provide samples of the expectation 



194 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

Gradient Monte Carlo Algorithm for Approximating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S⇥ Rn ! R

Initialize value-function weights ✓ as appropriate (e.g., ✓ = 0)
Repeat forever:

Generate an episode S0, A0, R1, S1, A1, . . . , RT , ST using ⇡
For t = 0, 1, . . . , T � 1:

✓  ✓ + ↵
⇥
Gt � v̂(St,✓)

⇤
rv̂(St,✓)

If Ut is an unbiased estimate, that is, if E[Ut] = v⇡(St), for each t, then ✓t is guar-
anteed to converge to a local optimum under the usual stochastic approximation
conditions (2.7) for decreasing ↵.

For example, suppose the states in the examples are the states generated by in-
teraction (or simulated interaction) with the environment using policy ⇡. Because
the true value of a state is the expected value of the return following it, the Monte
Carlo target Ut

.
= Gt is by definition an unbiased estimate of v⇡(St). With this

choice, the general SGD method (9.7) converges to a locally optimal approximation
to v⇡(St). Thus, the gradient-descent version of Monte Carlo state-value prediction
is guaranteed to find a locally optimal solution. Pseudocode for a complete algorithm
is shown in the box.

One does not obtain the same guarantees if a bootstrapping estimate of v⇡(St)

is used as the target Ut in (9.7). Bootstrapping targets such as n-step returns G(n)
t

or the DP target
P

a,s0,r ⇡(a|St)p(s0, r|St, a)[r + �v̂(s0,✓t)] all depend on the current
value of the weight vector ✓t, which implies that they will be biased and that they
will not produce a true gradient-descent method. One way to look at this is that
the key step from (9.4) to (9.5) relies on the target being independent of ✓t. This
step would not be valid if a bootstrapping estimate was used in place of v⇡(St).
Bootstrapping methods are not in fact instances of true gradient descent (Barnard,
1993). They take into account the e↵ect of changing the weight vector ✓t on the
estimate, but ignore its e↵ect on the target. They include only a part of the gradient
and, accordingly, we call them semi-gradient methods.

Although semi-gradient (bootstrapping) methods do not converge as robustly as
gradient methods, they do converge reliably in important cases such as the linear
case discussed in the next section. Moreover, they o↵er important advantages which
makes them often clearly preferred. One reason for this is that they are typically
significantly faster to learn, as we have seen in Chapters 6 and 7. Another is that they
enable learning to be continual and online, without waiting for the end of an episode.
This enables them to be used on continuing problems and provides computational
advantages. A prototypical semi-gradient method is semi-gradient TD(0), which uses
Ut

.
= Rt+1 + �v̂(St+1,✓) as its target. Complete pseudocode for this method is given

in the box at the top of the next page.



Stochastic Gradient Descent (SGD) is the idea 
behind most approximate learning

✓  ✓ � ↵r✓ Error2t

 ✓ � ↵r✓ [Targett � v̂(St,✓)]
2

 ✓ � 2↵ [Targett � v̂(St,✓)]r✓ [Targett � v̂(St,✓)]

 ✓ + ↵ [Targett � v̂(St,✓)]r✓ v̂(St,✓)

 ✓ + ↵ [Targett � v̂(St,✓)]�(St)

General SGD:
For VFA:

Chain rule:
Semi-gradient:

Linear case:

✓  ✓ + ↵ [Targett � q̂(St, At,✓)]�(St, At)Action-value form:



State aggregation is the simplest kind of VFA

• States are partitioned into disjoint subsets (groups)


• One component of 𝜽 is allocated to each group

v̂(s,✓)
.
= ✓group(s)

r✓ v̂(s,✓)
.
= [0, 0, . . . , 0, 1, 0, 0, . . . , 0]

✓  ✓ + ↵ [Targett � v̂(St,✓)]r✓ v̂(St,✓)Recall:



Example: Random walk with state aggregation

+1-1

state 1 state 500 state 1000

trajectory of 11 jumps

( ( ( ( ( ( ( ( ( (

group 1 group 2 group 3 group 4 group 5 group 6 group 7 group 8 group 9 group 10

• States are numbered 1 to 1000 start in middle


• At each step, jump to one of the 100 states to the right, or to one of the 
100 states to the left


• If the jump goes beyond 1 or 1000, terminates with a reward of -1 or +1 
(otherwise Rt=0)


• States are aggregated into 10 bins (so only 10 values are maintained)



Gradient MC works well  
on the 1000-state random walk using state aggregation
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Figure 9.1: Function approximation by state aggregation on the 1000-state random walk
task, using the gradient Monte Carlo algorithm (page 194).

close to the global minimum of the MSVE (9.1).

Some of the details of the approximate values are best appreciated by reference to
the state distribution d for this task, shown in the lower portion of the figure with
a right-side scale. State 500, in the center, is the first state of every episode, but
it is rarely visited again. On average, about 1.37% of the time steps are spent in
the start state. The states reachable in one step from the start state are the second
most visited, with about 0.17% of the time steps being spent in each of them. From
there d falls o↵ almost linearly, reaching about 0.0147% at the extreme states 1 and
1000. The most visible e↵ect of the distribution is on the leftmost groups, whose
values are clearly shifted higher than the unweighted average of the true values of
states within the group, and on the rightmost groups, whose values are clearly shifted
lower. This is due to the states in these areas having the greatest asymmetry in their
weightings by d. For example, in the leftmost group, state 99 is weighted more
than 3 times more strongly than state 0. Thus the estimate for the group is biased
toward the true value of state 99, which is higher than the true value of state 0.

9.4 Linear Methods

One of the most important special cases of function approximation is that in which
the approximate function, v̂(·,✓), is a linear function of the weight vector, ✓. Corre-
sponding to every state s, there is a real-valued vector of features �(s)

.
= (�1(s), �2(s), . . . , �n(s))>,

with the same number of components as ✓. The features may be constructed from
the states in many di↵erent ways; we cover a few possibilities in the next sections.
However the features are constructed, the approximate state-value function is given

• 10 groups of 100 states

• after 100,000 episodes


• α = 2 x 10-5


• state distribution affects 
accuracy
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Semi-gradient TD(0) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rn ! R such that v̂(terminal,·) = 0

Initialize value-function weights ✓ arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A ⇠ ⇡(·|S)
Take action A, observe R, S0

✓  ✓ + ↵
⇥
R + �v̂(S0,✓)� v̂(S,✓)

⇤
rv̂(S,✓)

S  S0

until S0 is terminal

Example 9.1: State Aggregation on the 1000-state Random Walk State
aggregation is a simple form of generalizing function approximation in which states
are grouped together, with one estimated value (one component of the weight vector
✓) for each group. The value of a state is estimated as its group’s component, and
when the state is updated, that component alone is updated. State aggregation is
a special case of SGD (9.7) in which the gradient, rv̂(St,✓t), is 1 for St’s group’s
component and 0 for the other components.

Consider a 1000-state version of the random walk task (Examples 6.2 and 7.1).
The states are numbered from 1 to 1000, left to right, and all episodes begin near the
center, in state 500. State transitions are from the current state to one of the 100
neighboring states to its left, or to one of the 100 neighboring states to its right, all
with equal probability. Of course, if the current state is near an edge, then there may
be fewer than 100 neighbors on that side of it. In this case, all the probability that
would have gone into those missing neighbors goes into the probability of terminating
on that side (thus, state 1 has a 0.5 chance of terminating on the left, and state 950
has a 0.25 chance of terminating on the right). As usual, termination on the left
produces a reward of �1, and termination on the right produces a reward of +1.
All other transitions have a reward of zero. We use this task as a running example
throughout this section.

Figure 9.1 shows the true value function v⇡ for this task. It is nearly a straight
line, but tilted slightly toward the horizontal and curving further in this direction for
the last 100 states at each end. Also shown is the final approximate value function
learned by the gradient Monte-Carlo algorithm with state aggregation after 100,000
episodes with a step size of ↵ = 2⇥ 10�5. For the state aggregation, the 1000 states
were partitioned into 10 groups of 100 states each (i.e., states 1–100 were one group,
states 101-200 were another, and so on). The staircase e↵ect shown in the figure is
typical of state aggregation; within each group, the approximate value is constant,
and it changes abruptly from one group to the next. These approximate values are



Semi-gradient TD is less accurate than MC  
on the 1000-state random walk using state aggregation
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p(s0, r|St, a)[r + �v̂(s0,✓t)]) with backups according to the on-policy distribution will
also converge to the TD fixpoint. One-step semi-gradient action-value methods,
such as semi-gradient Sarsa(0) covered in the next chapter converge to an analogous
fixpoint and an analogous bound. For episodic tasks, there is a slightly di↵erent but
related bound (see Bertsekas and Tsitsiklis, 1996). There are also a few technical
conditions on the rewards, features, and decrease in the step-size parameter, which
we have omitted here. The full details can be found in the original paper (Tsitsiklis
and Van Roy, 1997).

Critical to the these convergence results is that states are backed up according to
the on-policy distribution. For other backup distributions, bootstrapping methods
using function approximation may actually diverge to infinity. Examples of this and
a discussion of possible solution methods are given in Chapter 11.

Example 9.2: Bootstrapping on the 1000-state Random Walk State aggre-
gation is a special case of linear function approximation, so let’s return to the 1000-
state random walk to illustrate some of the observations made in this chapter. The
left panel of Figure 9.2 shows the final value function learned by the semi-gradient
TD(0) algorithm (page 195) using the same state aggregation as in Example 9.1.
We see that the near-asymptotic TD approximation is indeed farther from the true
values than the Monte Carlo approximation shown in Figure 9.1.

Nevertheless, TD methods retain large potential advantages in learning rate, and
generalize MC methods, as we investigated fully with the multi-step TD methods
of Chapter 7. The right panel of Figure 9.2 shows results with an n-step semi-
gradient TD method using state aggregation and the 1000-state random walk that are
strikingly similar to those we obtained earlier with tabular methods and the 19-state
random walk. To obtain such quantitatively similar results we switched the state
aggregation to 20 groups of 50 states each. The 20 groups are then quantitatively
close to the 19 states of the tabular problem. In particular, the state transitions

↵

Average
RMS error

over 1000 states
and first 10 
episodes
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Figure 9.2: Bootstrapping with state aggregation on the 1000-state random walk task.
Left: Asymptotic values of semi-gradient TD are worse than the asymptotic MC values
in Figure 9.1. Right: Performance of n-step methods with state-aggregation are strikingly
similar to those with tabular representations (cf. Figure 7.2).

• 10 groups of 100 states

• after 100,000 episodes


• α = 2 x 10-5

Relative values are

still pretty accurate



Tile coding is coarse coding, with rectangular 
receptive fields, controlled overlap

9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 209

In tile coding the receptive fields of the features are grouped into partitions of the
input space. Each such partition is called a tiling, and each element of the partition
is called a tile. For example, the simplest tiling of a two-dimensional state space is a
uniform grid such as that shown on the left side of Figure 9.9. The tiles or receptive
field here are squares rather than the circles in Figure 9.6. If just this single tiling
were used, then the state indicated by the white spot would be represented by the
single feature whose tile it falls within; generalization would be complete to all states
within the same tile and nonexistent to states outside it. With just one tiling, we
would not have coarse coding by just a case of state aggregation.

To get the strengths of coarse coding requires overlapping receptive fields, and by
definition the tiles of a partition do not overlap. To get true coarse coding with
tile coding, multiple tilings are used, each o↵set by a fraction of a tile width. A
simple case with four tilings is shown on the right side of Figure 9.9. Every state,
such as that indicated by the white spot, falls in exactly one tile in each of the four
tilings. These four tiles correspond to four features that become active when the
state occurs. Specifically, the feature vector �(s) has one component for each tile in
each tiling. In this example there are 4 ⇥ 4 ⇥ 4 = 64 components, all of which will
be 0 except for the four corresponding to the tiles that s falls within. Figure 9.10
shows the advantage of multiple o↵set tilings (coarse coding) over a single tiling on
the 1000-state random walk example.

An immediate practical advantage of tile coding is that, because it works with
partitions, the overall number of features that are active at one time is the same
for any state. Exactly one feature is present in each tiling, so the total number of
features present is always the same as the number of tilings. This allows the step-
size parameter, ↵, to be set in an easy, intuitive way. For example, choosing ↵ = 1

m
,

where m is the number of tilings, results in exact one-trial learning. If the example
s 7! v is trained on, then whatever the prior estimate, v̂(s,✓t), the new estimate will
be v̂(s,✓t+1) = v. Usually one wishes to change more slowly than this, to allow for
generalization and stochastic variation in target outputs. For example, one might
choose ↵ = 1

10m
, in which case the estimate for the trained state would move one-

Point in 
state space

to be
represented

Tiling 1
Tiling 2

Tiling 3
Tiling 4Continuous 

2D state 
space

Four active
tiles/features 

overlap the point
and are used to 

represent it

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These
tilings are o↵set from one another by a uniform amount in each dimension.

2D example



Geometric intuition

according to a stationary decision making policy ⇡ : S ⇥ A ! [0, 1] where ⇡(s, a) is the
probability that At = a given that St = s, for all t. To solve the MDP is to find an optimal
policy ⇡

⇤, defined as a policy that maximizes the expected �-discounted reward received
from each state:

⇡
⇤ = argmax

⇡
v⇡(s), 8s 2 S,

where

v⇡(s) = E⇡
⇥
Rt+1 + �Rt+2 + �

2
Rt+3 + · · ·

�� St = s
⇤
, 8s 2 S, (1)

where � 2 [0, 1) is known as the discount-rate parameter, and the subscript on the E
indicates that the expectation is conditional on the policy ⇡ being used to select actions.
The function v⇡ is called the state-value function for policy ⇡.

A key subproblem underlying almost all e�cient solution strategies for MDPs is policy

evaluation, the computation or estimation of v⇡ for a given policy ⇡. For example, the
popular DP algorithm known as policy iteration involves computing the value function for
a sequence of policies, each of which is better than the previous, until an optimal policy is
found. In TDL, algorithms such as TD(�) are used to approximate the value function for
the current policy, for example as part of actor–critic methods.

If the state space is finite, then the estimated value function may be represented in a
computer as a large array with one entry for each state and the entries directly updated to
form the estimate. Such tabular methods can handle large state spaces, even continuous
ones, through discretization, state aggregation, and interpolation, but as the dimensionality
of the state space increases, these methods rapidly become computationally infeasible or
ine↵ective. This is the e↵ect which gave rise to the phrase “the curse of dimensionality.”

A more general and flexible approach is to represent the value function by a functional
form of fixed size and fixed structure with many variable parameters or weights. The weights
are then changed to reshape the approximate value function to better match the true value
function. We denote the parameterized value function approximator as

v✓(s) ⇡ v⇡(s), 8s 2 S, (2)

where ✓ 2 Rn, with n ⌧ |S|, is the weight/parameter vector. The approximate value
function can have arbitrary form as long as it is everywhere di↵erentiable with respect to
the weights. For example, it could be a cubic spline, or it could implemented by a multi-
layer neural network where ✓ is the concatenation of all the connection weights. Henceforth
refer to ✓ exclusively as the weights, or weight vector, and reserve the word “parameter”
for things like the discount-rate parameter, �, and step-size parameters.

An important special case is that in which the approximate value function is linear in
the weights and in features of the state:

v✓(s) = ✓
>
�(s), (3)

where the �(s) 2 Rn, 8s 2 S, are feature vectors characterizing each state s, and x
>
y

denotes the inner product of two vectors x and y.

2

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ � B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤
r✓v✓(s) = ~0. (12)

p
VE

p
BE

p
PBE

p
VE

p
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The subspace of all value functions representable as 
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minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
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third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not
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TheothertwogoalsforapproximationarerelatedtotheBellmanequation,whichcan
bewrittencompactlyinvectorformas

v⇡=B⇡v⇡,(7)

whereB⇡:R|S|!R|S|istheBellmanoperatorforpolicy⇡,definedby

(B⇡v)(s)=
X

a2A
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X

s02S
p(s0|s,a)v(s0)

#
,8s2S,8v:S!R.(8)

(Ifthestateandactionspacesarecontinuous,thenthesumsarereplacedbyintegralsand
thefunctionp(·|s,a)istakentobeaprobabilitydensity.)Thetruevaluefunctionv⇡is
theuniquesolutiontotheBellmanequation;theBellmanequationcanbeviewedasan
alternatewayofdefiningv⇡.Foranyvaluefunctionv:S!Rnotequaltov⇡,therewill
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ThediscrepancybetweenthetwosidesoftheBellmanequation,v⇡�B⇡v⇡,isanerror
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secondgoalistominimizetheerrorvector’slengthinthed-metric.Thatis,tominimize
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Notethatifv⇡isnotrepresentable,thenitisnotbepossibletoreducetheBellmanerror
tozero.Foranyv✓,thecorrespondingB⇡v✓willgenerallynotberepresentable;itwilllie
outsidethespaceofrepresentablefunctions,assuggestedbythefigure...

Finally,inourthirdgoalofapproximation,wefirstprojecttheBellmanerrorandthen
minimizeitslength.Thatis,weminimizetheerrornotintheBellmanequation(7)butin
itsprojectedform:

v✓=⇧B⇡v✓,(10)

UnliketheoriginalBellmanequation,formostfunctionapproximators(e.g.,linearones)
theprojectedBellmanequationcanbesolvedexactly.Ifitcan’tbesolvedexactly,youcan
minimizethemean-squaredprojectedBellmanerror:
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Theminimumisachievedattheprojectionfixpoint,atwhich

X

s2S
d(s)

⇥
(B⇡v✓)(s)�v✓(s)

⇤
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2.2 Bellman error

The second goal for approximation is to approximately solve the Bellman equation
:

v⇡ = B⇡v⇡,

(8)

where B⇡ : R|S| ! R|S| is the Bellman operator
for policy ⇡, defined by

(B⇡v)(s) =
X

a2A

⇡(s, a)

"
r(s, a) + �

X

s02S

p(s0 |s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (9)

(If the state and action spaces are continuous, then the sums are replaced by integrals and

the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is

the unique solution to the Bellman equation, and in this sense the Bellman equation can

be viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡, we

can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. That is, we can minimize

the Bellman error : BE(✓) = ||v✓ � B⇡v✓||,
(10)

though we cannot expect to drive it to zero if v⇡ is outside the representable subspace.

Figure 1 shows the geometric relationships; note that the Bellman operator is shown as

taking value functions inside the subspace outside to something that is not representable,

and that the point of minimum BE is in general di↵erent from that of minimum VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann

(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and

Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as

Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman

residual minimization.

2.3 Projecte
d Bellman error

The third goal for approximation is to approximately solve the projected
Bellman equation:

v✓ = ⇧B⇡v✓.

(11)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones) the

projected Bellman equation can be solved exactly. The original TDL methods (Sutton 1988,

Dayan 1992) converge to this solution, as does least-squares TDL (Bradke & Barto 1996,

Boyan 1999). The goal of achieving (11) exactly is common; less common is to consider

approximating it as an objective. The early work on gradient-TD (e.g., Sutton et al. 2009)

appears to be first to have explicitly proposed minimizing the d-weighted norm of the error

in (11), which we here call the projected
Bellman error :

PBE(✓) = ||v✓ � ⇧B⇡v✓||.
(12)

This objective is best understood by looking at the left side of Figure 1. Starting at v✓,

the Bellman operator takes us outside the subspace, and the projection operator takes us

back into it. The distance between where we end up and where we started is the PBE. The

distance is minimal (zero) when the trip up and back leaves us in the same place.

8

�

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation, and in this sense the Bellman equation can
be viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡,
we can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. The error between the
two sides of this equation we define as the Bellman error (BE):

�̄✓
.
= B⇡v✓ � v✓. (15)

The Bellman error objective is to minimize the norm of this vector:

JBE(✓)
.
=

���̄✓

�� , (16)

Note that we cannot expect to drive �̄✓ to zero if v⇡ is outside the representable subspace.
Figure 2 shows the geometric relationships; note that the Bellman operator is shown as
taking value functions inside the subspace outside to something that is not representable,
and that the that minimizes BE is in general di↵erent from that which minimizes VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann
(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and
Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as
Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman
residual minimization.

3.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

v✓ = ⇧B⇡v✓. (17)

Unlike the original Bellman equation, the projected Bellman equation can be solved exactly
for linear function approximators. The original TDL methods (Sutton 1988, Dayan 1992)
converge to this solution, as does least-squares TDL (Bradke & Barto 1996, Boyan 1999).
The goal of achieving (17) exactly is common; less common is to consider approximating
it as an objective. The early work on gradient-TD (e.g., Sutton et al. 2009) appears to be
first to have explicitly proposed minimizing the d-weighted norm of the error in (17), which
we here call the projected Bellman error (PBE) objective:

JPBE(✓)
.
= kv✓ � ⇧B⇡v✓k =

��⇧�̄✓

�� . (18)

This objective is best understood by looking at the left side of Figure 2. Starting at v✓, the
Bellman operator takes us outside the subspace, and the projection operator takes us back
into it. The distance between where we end up and where we started is the PBE.

JPBE = 0 min JBE ✓1 ✓2 ⇧v⇡ (min JVE) ⇧v⇡ ⌘ min JVE

⌘ min kVEk min kBEk ✓1 ✓2 ⇧v⇡ (min JVE) ⇧v⇡ ⌘ min JVE
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(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation, and in this sense the Bellman equation can
be viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡,
we can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. The error between the
two sides of this equation we define as the Bellman error (BE):
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The Bellman error objective is to minimize the norm of this vector:
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Note that we cannot expect to drive �̄✓ to zero if v⇡ is outside the representable subspace.
Figure 2 shows the geometric relationships; note that the Bellman operator is shown as
taking value functions inside the subspace outside to something that is not representable,
and that the that minimizes BE is in general di↵erent from that which minimizes VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann
(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and
Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as
Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman
residual minimization.

3.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

v✓ = ⇧B⇡v✓. (17)

Unlike the original Bellman equation, the projected Bellman equation can be solved exactly
for linear function approximators. The original TDL methods (Sutton 1988, Dayan 1992)
converge to this solution, as does least-squares TDL (Bradke & Barto 1996, Boyan 1999).
The goal of achieving (17) exactly is common; less common is to consider approximating
it as an objective. The early work on gradient-TD (e.g., Sutton et al. 2009) appears to be
first to have explicitly proposed minimizing the d-weighted norm of the error in (17), which
we here call the projected Bellman error (PBE) objective:

JPBE(✓)
.
= kv✓ � ⇧B⇡v✓k =
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�� . (18)

This objective is best understood by looking at the left side of Figure 2. Starting at v✓, the
Bellman operator takes us outside the subspace, and the projection operator takes us back
into it. The distance between where we end up and where we started is the PBE.
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where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s)
.
=

X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R, (14)

which can also be written,

B⇡v = r⇡ + �P⇡v, 8v : S ! R, (15)

where r⇡ 2 R|S| is a vector whose entries give the expected immediate reward from each
state under ⇡, [r⇡]s =

P
a2A ⇡(s, a)r(s, a), and P⇡ 2 R|S| ⇥ R|S| is a state-transition matrix

for policy ⇡, with entries [P⇡]ji =
P

a2A ⇡(i, a)p(j|i, a). The true value function v⇡ is the
unique solution to the Bellman equation, and in this sense the Bellman equation can be
viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡, we
can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. The error between the
two sides of this equation we define as the Bellman error (BE):

�̄✓
.
= B⇡v✓ � v✓. (16)

The Bellman error objective is to minimize the norm of this vector:

JBE(✓)
.
=

���̄✓

�� , (17)

Note that we cannot expect to drive �̄✓ to zero if v⇡ is outside the representable subspace.
Figure 2 shows the geometric relationships; note that the Bellman operator is shown as
taking value functions inside the subspace outside to something that is not representable,
and that the ✓ that minimizes BE is in general di↵erent from that which minimizes VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann
(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and
Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as
Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman
residual minimization.

3.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

v✓ = ⇧(B⇡v✓). (18)

Unlike the original Bellman equation, the projected Bellman equation can be solved exactly
for linear function approximators. The original TDL methods (Sutton 1988, Dayan 1992)
converge to this solution, as does least-squares TDL (Bradke & Barto 1996, Boyan 1999).
The goal of achieving (18) exactly is common; less common is to consider approximating it
as an objective. Early work on gradient-TD (e.g., Sutton et al. 2009) appears to have been
the first to explicitly propose minimizing the d-weighted norm of the error in (18), which
we here call the projected Bellman error (PBE) objective:
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by the inner product between ✓ and �(s):

v̂(s,✓)
.
= ✓>�(s)

.
=

nX

i=1

✓i�i(s). (9.8)

In this case the approximate value function is said to be linear in the weights, or
simply linear. The individual functions �i : S ! R are called basis functions because
they form a linear basis for the set of approximate functions of this form. Construct-
ing n-dimensional feature vectors to represent states is the same as selecting a set of
n basis functions.

It is natural to use SGD updates with linear function approximation. The gradient
of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general SGD update (9.7) reduces to a particularly simple form in the
linear case.

Because it is so simple, the linear SGD case is one of the most favorable for
mathematical analysis. Almost all useful convergence results for learning systems of
all kinds are for linear (or simpler) function approximation methods.

In particular, in the linear case there is only one optimum (or, in degenerate cases,
one set of equally good optima), and thus any method that is guaranteed to converge
to or near a local optimum is automatically guaranteed to converge to or near the
global optimum. For example, the gradient Monte Carlo algorithm presented in the
previous section converges to the global optimum of the MSVE under linear function
approximation if ↵ is reduced over time according to the usual conditions.

The semi-gradient TD(0) algorithm presented in the previous section also con-
verges under linear function approximation, but this does not follow from general
results on SGD; a separate theorem is necessary. The weight vector converged to is
also not the global optimum, but rather a point near the local optimum. It is useful
to consider this important case in more detail, specifically for the continuing case.
The update at each time t is

✓t+1
.
= ✓t + ↵

⇣
Rt+1 + �✓>

t �t+1 � ✓>
t �t

⌘
�t (9.9)

= ✓t + ↵
⇣
Rt+1�t � �t

�
�t � ��t+1

�>
✓t

⌘
,

where here we have used the notational shorthand �t = �(St). Once the system
has reached steady state, for any given ✓t, the expected next weight vector can be
written

E[✓t+1|✓t] = ✓t + ↵(b � A✓t), (9.10)

where

b
.
= E[Rt+1�t] 2 Rn and A

.
= E

h
�t

�
�t � ��t+1

�>
i

2 Rn ⇥ Rn (9.11)

9.4. LINEAR METHODS 197

by the inner product between ✓ and �(s):

v̂(s,✓)
.
= ✓>�(s)

.
=

nX

i=1

✓i�i(s). (9.8)

In this case the approximate value function is said to be linear in the weights, or
simply linear. The individual functions �i : S ! R are called basis functions because
they form a linear basis for the set of approximate functions of this form. Construct-
ing n-dimensional feature vectors to represent states is the same as selecting a set of
n basis functions.

It is natural to use SGD updates with linear function approximation. The gradient
of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general SGD update (9.7) reduces to a particularly simple form in the
linear case.

Because it is so simple, the linear SGD case is one of the most favorable for
mathematical analysis. Almost all useful convergence results for learning systems of
all kinds are for linear (or simpler) function approximation methods.

In particular, in the linear case there is only one optimum (or, in degenerate cases,
one set of equally good optima), and thus any method that is guaranteed to converge
to or near a local optimum is automatically guaranteed to converge to or near the
global optimum. For example, the gradient Monte Carlo algorithm presented in the
previous section converges to the global optimum of the MSVE under linear function
approximation if ↵ is reduced over time according to the usual conditions.

The semi-gradient TD(0) algorithm presented in the previous section also con-
verges under linear function approximation, but this does not follow from general
results on SGD; a separate theorem is necessary. The weight vector converged to is
also not the global optimum, but rather a point near the local optimum. It is useful
to consider this important case in more detail, specifically for the continuing case.
The update at each time t is

✓t+1
.
= ✓t + ↵

⇣
Rt+1 + �✓>

t �t+1 � ✓>
t �t

⌘
�t (9.9)

= ✓t + ↵
⇣
Rt+1�t � �t

�
�t � ��t+1

�>
✓t

⌘
,

where here we have used the notational shorthand �t = �(St). Once the system
has reached steady state, for any given ✓t, the expected next weight vector can be
written

E[✓t+1|✓t] = ✓t + ↵(b � A✓t), (9.10)

where

b
.
= E[Rt+1�t] 2 Rn and A

.
= E

h
�t

�
�t � ��t+1

�>
i

2 Rn ⇥ Rn (9.11)

198 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

From (9.10) it is clear that, if the system converges, it must converge to the weight
vector ✓TD at which

b � A✓TD = 0

) b = A✓TD

) ✓TD

.
= A�1b. (9.12)

This quantity is called the TD fixpoint. In fact linear semi-gradient TD(0) converges
to this point. Some of the theory proving its convergence, and the existence of the
inverse above, is given in the box.

Proof of Convergence of Linear TD(0)

What properties assure convergence of the linear TD(0) algorithm (9.9)? Some
insight can be gained by rewriting (9.10) as

E[✓t+1|✓t] = (I � ↵A)✓t + ↵b. (9.13)

Note that the matrix A multiplies the weight vector ✓t and not b; only A is
important to convergence. To develop intuition, consider the special case in
which A is a diagonal matrix. If any of the diagonal elements are negative,
then the corresponding diagonal element of I � ↵A will be greater than one,
and the corresponding component of ✓t will be amplified, which will lead to
divergence if continued. On the other hand, if the diagonal elements of A
are all positive, then ↵ can be chosen smaller than one over the largest of
them, such that I � ↵A is diagonal with all diagonal elements between 0 and
1. In this case the first term of the update tends to shrink ✓t, and stability
is assured. In general case, ✓t will be reduced toward zero whenever A is
positive definite, meaning y>Ay > 0 for real vector y. Positive definiteness
also ensures that the inverse A�1 exists.

For linear TD(0), in the continuing case with � < 1, the A matrix (9.11)
can be written

A =
X

s

d(s)
X

a

⇡(a|s)
X

r,s0

p(r, s0|s, a)�(s)
�
�(s) � ��(s0)

�>

=
X

s

d(s)
X

s0

p(s0|s)�(s)
�
�(s) � ��(s0)

�>

=
X

s

d(s)�(s)

✓
�(s) � �

X

s0

p(s0|s)�(s0)

◆>

= �>D(I � �P)�,

where d(s) is the stationary distribution under ⇡, p(s0|s) is the probability
of transition from s to s0 under policy ⇡, P is the |S| ⇥ |S| matrix of these
probabilities, D is the |S| ⇥ |S| diagonal matrix with the d(s) on its diagonal,
and � is the |S| ⇥ n matrix with �(s) as its rows. From here it is clear that
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the inner matrix D(I � �P) is key to determining the positive definiteness of
A.

For a key matrix of this type, positive definiteness is assured if all of its
columns sum to a nonnegative number. This was shown by Sutton (1988, p. 27)
based on two previously established theorems. One theorem says that any
matrix M is positive definite if and only if the symmetric matrix S = M+M>

is positive definite (Sutton 1988, appendix). The second theorem says that
any symmetric real matrix S is positive definite if all of its diagonal entries
are positive and greater than the sum of the corresponding o↵-diagonal entries
(Varga 1962, p. 23). For our key matrix, D(I � �P), the diagonal entries are
positive and the o↵-diagonal entries are negative, so all we have to show is
that each row sum plus the corresponding column sum is positive. The row
sums are all positive because P is a stochastic matrix and � < 1. Thus it only
remains to show that the column sums are nonnegative. Note that the row
vector of the column sums of any matrix M can be written as 1>M, where 1 is
the column vector with all components equal to 1. Let d denote the |S|-vector
of the d(s), where d = P>d by virtue of d being the stationary distribution.
The column sums of our key matrix, then, are:

1>D(I � �P) = d>(I � �P)

= d> � �d>P

= d> � �d> (because d is the stationary distribution)

= (1 � �)d,

all components of which are positive. Thus, the key matrix and its A matrix
are positive definite, and on-policy TD(0) is stable. (Additional conditions
and a schedule for reducing ↵ over time are needed to prove convergence with
probability one.)

At the TD fixpoint, it has also been proven (in the continuing case) that the MSVE
is within a bounded expansion of the lowest possible error:

MSVE(✓TD)  1

1 � �
min
✓

MSVE(✓). (9.14)

That is, the asymptotic error of the TD method is no more than 1
1��

times the small-
est possible error, that attained in the limit by the Monte Carlo method. Because
� is often near one, this expansion factor can be quite large, so there is substantial
potential loss in asymptotic performance with the TD method. On the other hand,
recall that the TD methods are often of vastly reduced variance compared to Monte
Carlo methods, and thus faster, as we saw in Chapters 6 and 7. Which method will
be best depends on the nature of the approximation and problem, and on how long
learning contiunues.

A bound analogous to (9.14) applies to other on-policy bootstrapping methods
as well. For example, linear semi-gradient DP (Eq. 9.7 with Ut

.
=

P
a
⇡(a|St)
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More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t

= Gt. Thus, the last n n-step returns of an episode are
always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t
� Vt(St)

i
, (7.2)
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state, which we call the one-step return:
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G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt+1(St+2),

where now �2Vt+1(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 +
· · · + �T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step
return:

G(n)
t

.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nVt+n�1(St+n), n � 1, 0  t < T �n. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t + n � T (if the n-step return extends to or beyond termination), then all the
missing terms are taken as zero and the n-step return defined to be equal to the

ordinary full return (G(n)
t

.
= Gt if t + n � T ).

Note that n-step returns for n > 1 involve future rewards and value functions that
are not available at the time of transition from t to t + 1. No real algorithm can use
the n-step return until after it had seen Rt+n and computed Vt+n�1. The first time
these are available to be used is t+n. The natural algorithm for using n-step returns
is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

h
G(n)

t
� Vt+n�1(St)

i
, 0  t < T, (7.2)

while the values of all other states remain unchanged, Vt+n(s) = Vt+n�1(s), 8s 6= St.
We call this algorithm n-step TD. Note that no changes at all are made during the
first n � 1 steps of each episode. To make up for that, an equal number of addition
updates are made at the end of the episode, after termination and before starting
the next episode. Complete pseudocode is given in the box on the next page.

The n-step return uses the value function Vt+n�1 to correct for the missing rewards
beyond Rt+n. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v⇡ than Vt+n�1 is, in a worst-state sense. That
is, the worst error of the expected n-step return is guaranteed to be less than or
equal to �n times the worst error under Vt+n�1:

max
s

���E⇡

h
G(n)

t

���St =s
i

� v⇡(s)
���  �n max

s

���Vt+n�1(s) � v⇡(s)
���, (7.3)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that all n-step TD methods
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p(s0, r|St, a)[r + �v̂(s0,✓t)]) with backups according to the on-policy distribution will
also converge to the TD fixpoint. One-step semi-gradient action-value methods,
such as semi-gradient Sarsa(0) covered in the next chapter converge to an analogous
fixpoint and an analogous bound. For episodic tasks, there is a slightly di↵erent but
related bound (see Bertsekas and Tsitsiklis, 1996). There are also a few technical
conditions on the rewards, features, and decrease in the step-size parameter, which
we have omitted here. The full details can be found in the original paper (Tsitsiklis
and Van Roy, 1997).

Critical to the these convergence results is that states are backed up according to
the on-policy distribution. For other backup distributions, bootstrapping methods
using function approximation may actually diverge to infinity. Examples of this and
a discussion of possible solution methods are given in Chapter 11.

Example 9.2: Bootstrapping on the 1000-state Random Walk State aggre-
gation is a special case of linear function approximation, so let’s return to the 1000-
state random walk to illustrate some of the observations made in this chapter. The
left panel of Figure 9.2 shows the final value function learned by the semi-gradient
TD(0) algorithm (page 195) using the same state aggregation as in Example 9.1.
We see that the near-asymptotic TD approximation is indeed farther from the true
values than the Monte Carlo approximation shown in Figure 9.1.

Nevertheless, TD methods retain large potential advantages in learning rate, and
generalize MC methods, as we investigated fully with the multi-step TD methods
of Chapter 7. The right panel of Figure 9.2 shows results with an n-step semi-
gradient TD method using state aggregation and the 1000-state random walk that are
strikingly similar to those we obtained earlier with tabular methods and the 19-state
random walk. To obtain such quantitatively similar results we switched the state
aggregation to 20 groups of 50 states each. The 20 groups are then quantitatively
close to the 19 states of the tabular problem. In particular, the state transitions
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Figure 9.2: Bootstrapping with state aggregation on the 1000-state random walk task.
Left: Asymptotic values of semi-gradient TD are worse than the asymptotic MC values
in Figure 9.1. Right: Performance of n-step methods with state-aggregation are strikingly
similar to those with tabular representations (cf. Figure 7.2).
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Figure 7.2: Performance of n-step TD methods as a function of ↵, for various values of n,
on a 19-state random walk task (Example 7.1).

parameter settings). Note that methods with an intermediate value of n worked best.
This illustrates how the generalization of TD and Monte Carlo methods to n-step
methods can potentially perform better than either of the two extreme methods.

Exercise 7.1 Why do you think a larger random walk task (19 states instead of
5) was used in the examples of this chapter? Would a smaller walk have shifted the
advantage to a di↵erent value of n? How about the change in left-side outcome from
0 to �1 made in the larger walk? Do you think that made any di↵erence in the best
value of n?

7.2 n-step Sarsa

How can n-step methods be used not just for prediction, but for control? In this
section we show how n-step methods can be combined with Sarsa in a straightforward
way to produce an on-policy TD control method. The n-step version of Sarsa we
call n-step Sarsa(�), and the original version presented in the previous chapter we
henceforth call one-step Sarsa, or Sarsa(0).

The main idea is to simply switch states for actions (state–action pairs) and then
use an "-greedy policy. The backup diagrams for n-step Sarsa, shown in Figure 7.3
are like those of n-step TD (Figure 7.1), strings of alternating states and actions,
except that the Sarsa ones all start and end with an action rather a state. We redefine
n-step returns in terms of estimated action values:

G(n)
t

.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nQt+n�1(St+n, At+n), n � 1, 0  t < T �n,

(7.4)

19 states tabular
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each weighted by λn-1
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Eligibility traces (mechanism)

The forward view was for theory
The backward view is for mechanism

New memory vector called eligibility trace
On each step, decay each component by γλ and increment 
the trace for the current state by 1
Accumulating trace

Replacing trace: trace becomes 1 when state is visited
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is better to specify a time constant, or half-life. What is the equation relating
� and the half-life, ⌧�, the time by which the weighting sequence will have
fallen to half of its initial value?

7.3 The Backward View of TD(�)

In the previous section we presented the forward or theoretical view of the tab-
ular TD(�) algorithm as a way of mixing backups that parametrically shifts
from a TD method to a Monte Carlo method. In this section we instead define
TD(�) mechanistically, and in the next section we show that this mechanism
correctly implements the forward view. The mechanistic, or backward , view
of TD(�) is useful because it is simple conceptually and computationally. In
particular, the forward view itself is not directly implementable because it is
acausal, using at each step knowledge of what will happen many steps later.
The backward view provides a causal, incremental mechanism for approximat-
ing the forward view and, in the o↵-line case, for achieving it exactly.

In the backward view of TD(�), there is an additional memory variable
associated with each state, its eligibility trace. The eligibility trace for state
s at time t is a random variable denoted Zt(s) 2 R+. On each step, the
eligibility traces for all states decay by ��, and the eligibility trace for the one
state visited on the step is incremented by 1:

Zt(s) =

⇢
��Zt�1(s) if s 6=St;
��Zt�1(s) + 1 if s=St,

(7.5)

for all nonterminal states s, where � is the discount rate and � is the parameter
introduced in the previous section. Henceforth we refer to � as the trace-decay
parameter. This kind of eligibility trace is called an accumulating trace because
it accumulates each time the state is visited, then fades away gradually when
the state is not visited, as illustrated below:

accumulating eligibility trace

times of visits to a state

At any time, the traces record which states have recently been visited,
where “recently” is defined in terms of ��. The traces are said to indicate the
degree to which each state is eligible for undergoing learning changes should
a reinforcing event occur. The reinforcing events we are concerned with are
the moment-by-moment one-step TD errors. For example, the TD error for

et 2 Rn � 0
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12.2 TD(�)

TD(�) is one of the oldest and most widely used algorithms in reinforcement learning.
It was the first algorithm for which a formal relationship was shown between a more
theoretical forward view and a more computational congenial backward view using
eligibility traces. Here we will show empirically that it approximates the o↵-line
�-return algorithm presented in the previous section.

TD(�) improves over the o↵-line �-return algorithm in three ways. First it updates
the weight vector on every step of an episode rather than only at the end, and thus
its estimates may be better sooner. Second, its computations are equally distributed
in time rather that all at the end of the episode. And third, it can be applied to
continuing problems rather than just episodic problems. In this section we present
the semi-gradient version of TD(�) with function approximation.

With function approximation, the eligibility trace is a vector et 2 Rn with the
same number of components as the weight vector ✓t. Whereas the weight vector is a
long-term memory, accumulating over the lifetime of the system, the eligibility trace
is a short-term memory, typically lasting less time than the length of an episode.
Eligibility traces assist in the learning process; their only consequence is that they
a↵ect the weight vector, and then the weight vector determines the estimated value.

In TD(�), the eligibility trace vector is initialized to zero at the beginning of the
episode, is incremented on each time step by the value gradient, and then fades away
by ��:

e0
.
= 0,

et

.
= rv̂(St,✓t) + ��et�1,

(12.5)

where � is the discount rate and � is the parameter introduced in the previous
section. The eligibility trace keeps track of which components of the weight vector
have contributed, positively or negatively, to recent state valuations, where “recent”
is defined in terms ��. The trace is said to indicate the eligibility of each component
of the weight vector for undergoing learning changes should a reinforcing event occur.
The reinforcing events we are concerned with are the moment-by-moment one-step
TD errors. The TD error for state-value prediction is

�t

.
= Rt+1 + �v̂(St+1,✓t) � v̂(St,✓t). (12.6)

In TD(�), the weight vector is updated on each step proportional to the scalar TD
error and the vector eligibility trace:

✓t+1
.
= ✓t + ↵�tet, (12.7)

On the next page, complete pseudocode for TD(�) is given in the box, and a picture
of its operation is suggested by Figure 12.5.

TD(�) is oriented backward in time. At each moment we look at the current TD
error and assign it backward to each prior state according to how much that state
contributed to the current eligibility trace at that time. We might imagine ourselves

same shape as 𝜽
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are changed, but each more temporally distant state is changed less because the
corresponding eligibility trace is smaller, as suggested by the figure. We say that the
earlier states are given less credit for the TD error.

If � = 1, then the credit given to earlier states falls only by � per step. This
turns out to be just the right thing to do to achieve Monte Carlo behavior. For
example, remember that the TD error, �t, includes an undiscounted term of Rt+1.
In passing this back k steps it needs to be discounted, like any reward in a return,
by �k, which is just what the falling eligibility trace achieves. If � = 1 and � = 1,
then the eligibility traces do not decay at all with time. In this case the method
behaves like a Monte Carlo method for an undiscounted, episodic task. If � = 1, the
algorithm is also known as TD(1).

TD(1) is a way of implementing Monte Carlo algorithms that is more general than
those presented earlier and that significantly increases their range of applicability.
Whereas the earlier Monte Carlo methods were limited to episodic tasks, TD(1)
can be applied to discounted continuing tasks as well. Moreover, TD(1) can be
performed incrementally and on-line. One disadvantage of Monte Carlo methods is
that they learn nothing from an episode until it is over. For example, if a Monte
Carlo control method takes an action that produces a very poor reward but does not
end the episode, then the agent’s tendency to repeat the action will be undiminished
during the episode. On-line TD(1), on the other hand, learns in an n-step TD way
from the incomplete ongoing episode, where the n steps are all the way up to the
current step. If something unusually good or bad happens during an episode, control
methods based on TD(1) can learn immediately and alter their behavior on that
same episode.

It is revealing to revisit the 19-state random walk example (Example 7.1) to see
how well TD(�) does in approximating the o↵-line �-return algorithm. The results
for both algorithms are shown in Figure 12.6. For each � value, if ↵ is selected

Off-line λ-return algorithm
(from the previous section)

↵

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975
λ=.99

λ=1

λ=.95

λ=0

λ=.4

λ=.8
λ=.9

λ=.95.975.991
TD(λ)

↵

λ=.8
λ=.9

RMS error
at the end 

of the episode
over the first
10 episodes

Figure 12.6: 19-state Random walk results (Example 7.1): Performance of TD(�) alongside
that of the o↵-line �-return algorithm. The two algorithms performed virtually identically
at low (less than optimal) ↵ values, but TD(�) was worse at high ↵ values.Can we do better? Can we update online?

Tabular 19-state random walk task



Conclusions

• Value-function approximation by stochastic gradient descent 
enables RL to be applied to arbitrarily large state spaces


• Most algorithms just carry over the Targets from the tabular case


• With bootstrapping (TD), we don’t get true gradient descent 
methods


• this complicates the analysis


• but the linear, on-policy case is still guaranteed convergent


• and learning is still much faster



Value function approximation (VFA) for control

St ✓ q̂(St, At,✓)

Ut

At



(Semi-)gradient methods carry over to control  

update target, e.g., Ut = Gt Ut = Rt+1 + �q̂(St+1, At+1,✓t)(MC) (Sarsa)

Ut = Rt+1 + �
X

a

⇡(a|St+1)q̂(St+1, a,✓t)(Expected Sarsa) (DP)
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action-value prediction is

✓t+1
.
= ✓t + ↵

h
Ut � q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.1)

For example, the update for the one-step Sarsa method is

✓t+1
.
= ✓t + ↵

h
Rt+1 + �q̂(St+1, At+1, ✓t)� q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.2)

We call this method episodic semi-gradient one-step Sarsa. For a constant policy,
this method converges in the same way that TD(0) does, with the same kind of error
bound (9.14).

To form control methods, we need to couple such action-value prediction methods
with techniques for policy improvement and action selection. Suitable techniques
applicable to continuous actions, or to actions from large discrete sets, are a topic of
ongoing research with as yet no clear resolution. On the other hand, if the action set
is discrete and not too large, then we can use the techniques already developed in
previous chapters. That is, for each possible action a available in the current state St,
we can compute q̂(St, a, ✓t) and then find the greedy action A⇤

t = argmaxa q̂(St, a, ✓t).
Policy improvement is then done (in the on-policy case treated in this chapter) by
changing the estimation policy to a soft approximation of the greedy policy such as
the "-greedy policy. Actions are selected according to this same policy. Pseudocode
for the complete algorithm is given in the box.

Example 10.1: Mountain–Car Task Consider the task of driving an underpow-
ered car up a steep mountain road, as suggested by the diagram in the upper left
of Figure 10.1. The di�culty is that gravity is stronger than the car’s engine, and
even at full throttle the car cannot accelerate up the steep slope. The only solution
is to first move away from the goal and up the opposite slope on the left. Then, by

Episodic Semi-gradient Sarsa for Estimating q̂ ⇡ q⇤

Input: a di↵erentiable function q̂ : S⇥A⇥ Rn ! R

Initialize value-function weights ✓ 2 Rn arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

S, A initial state and action of episode (e.g., "-greedy)
Repeat (for each step of episode):

Take action A, observe R, S0

If S0 is terminal:
✓  ✓ + ↵

⇥
R� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

Go to next episode
Choose A0 as a function of q̂(S0, ·, ✓) (e.g., "-greedy)
✓  ✓ + ↵

⇥
R + �q̂(S0, A0, ✓)� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

S  S0

A A0

• Always learn the action-value function of the current policy 


• Always act near-greedily wrt the current action-value estimates


• The learning rule is:

in the usual on-policy GPI way

Ut =
X

s0,r

p(s0, r|St, At)
h
r + �

X

a0

⇡(a0|s0)q̂(s0, a0,✓t)
i
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Episodic Semi-gradient Sarsa for Estimating q̂ ⇡ q⇤

Input: a di↵erentiable function q̂ : S⇥A⇥ Rn ! R

Initialize value-function weights ✓ 2 Rn arbitrarily (e.g., ✓ = 0)
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⇤
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A A0
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action-value prediction is
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.
= ✓t + ↵

h
Ut � q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.1)
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.
= ✓t + ↵

h
Rt+1 + �q̂(St+1, At+1, ✓t)� q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.2)
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n-step semi-gradient Sarsa is better for n>1
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Figure 10.3: One-step vs multi-step performance of semi-gradient Sarsa on the Mountain
Car task. Good step sizes were used: ↵ = 0.5/8 for n = 1 and ↵ = 0.3/8 for n = 8.

with G(n)
t

.
= Gt if t + n � T , as usual. The n-step update equation is

✓t+n

.
= ✓t+n�1+↵

h
G(n)

t
� q̂(St, At, ✓t+n�1)

i
rq̂(St, At, ✓t+n�1), 0  t < T. (10.4)

Complete pseudocode is given on the next page.

As we have seen before, performance is best if an intermediate level of bootstrap-
ping is used, corresponding to an n larger than 1. Figure 10.3 shows how this
algorithm tends to learn faster and obtain a better asymptotic performance at n=8
than at n = 1 on the Mountain Car task. Figure 10.4 shows the results of a more
detailed study of the e↵ect of the parameters ↵ and n on the rate of learning on this
task.

Exercise 10.2 Give pseudocode for semi-gradient one-step Expected Sarsa for con-
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Figure 10.4: E↵ect of the ↵ and n on early performance of n-step semi-gradient Sarsa and
tile-coding function approximation on the Mountain Car task. As usual, an intermediate
level of bootstrapping (n = 4) performed best. These results are for selected ↵ values, on a
log scale, and then connected by straight lines. The standard errors ranged from 0.5 (less
than the line width) for n = 1 to about 4 for n = 16 (why these results are more variable),
so the main e↵ects are all statistically significant.
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Conclusions

• Control is straightforward in the on-policy case


• Formal results (bounds) exist for the linear, on-policy case (eg. 
Gordon, 2000, Perkins & Precup, 2003 and follow-up work)


• we get chattering near a good solution, not convergence













Recall: Double DQN
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and � = 1).
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Figure 6.8: Comparison of Q-learning and Double Q-learning on a simple episodic MDP
(shown inset). Q-learning initially learns to take the left action much more often than the right
action, and always takes it significantly more often than the 5% minimum probability enforced
by "-greedy action selection with " = 0.1. In contrast, Double Q-learning is essentially
una↵ected by maximization bias. These data are averaged over 10,000 runs. The initial
action-value estimates were zero. Any ties in "-greedy action selection were broken randomly.

Are there algorithms that avoid maximization bias? To start, consider a bandit
case in which we have noisy estimates of the value of each of many actions, obtained
as sample averages of the rewards received on all the plays with each action. As we
discussed above, there will be a positive maximization bias if we use the maximum
of the estimates as an estimate of the maximum of the true values. One way to view
the problem is that it is due to using the same samples (plays) both to determine
the maximizing action and to estimate its value. Suppose we divided the plays in
two sets and used them to learn two independent estimates, call them Q1(a) and
Q2(a), each an estimate of the true value q(a), for all a 2 A. We could then use
one estimate, say Q1, to determine the maximizing action A⇤ = argmaxa Q1(a), and
the other, Q2, to provide the estimate of its value, Q2(A⇤) = Q2(argmaxa Q1(a)).
This estimate will then be unbiased in the sense that E[Q2(A⇤)] = q(A⇤). We can
also repeat the process with the role of the two estimates reversed to yield a second
unbiased estimate Q1(argmaxa Q2(a)). This is the idea of doubled learning. Note
that although we learn two estimates, only one estimate is updated on each play;
doubled learning doubles the memory requirements, but is no increase at all in the
amount of computation per step.

The idea of doubled learning extends naturally to algorithms for full MDPs. For
example, the doubled learning algorithm analogous to Q-learning, called Double Q-
learning, divides the time steps in two, perhaps by flipping a coin on each step. If
the coin comes up heads, the update is

Q1(St, At) Q1(St, At)+↵
h
Rt+1 +�Q2

�
St+1, argmax

a

Q1(St+1, a)
�
�Q1(St, At)

i
.



Double DQN

cf. van Hasselt et al, 2015)



Which DQN improvements matter?

Rainbow model, Hessel et al, 2017)



Off-policy with Function Approximation can be very hard!

• Even linear FA


• Even for prediction (two fixed policies π and 𝜇)


• Even for Dynamic Programming


• The deadly triad: FA, TD, off-policy


• Any two are OK, but not all three


• With all three, we may get instability 
(elements of 𝜽 may increase to ±∞)



Baird’s counterexample illustrates the instability
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Figure 11.2: Demonstration of instability on Baird’s counterexample. The step size was
↵ = 0.001, and the initial weights were ✓ = (1, 1, 1, 1, 1, 1, 10, 1)>.

In this case, there is no randomness and no asynchrony. Each state is updated exactly
once per sweep as in a classical DP backup. The method is entirely conventional
except in its use of semi-gradient function approximation. Yet still the system is
unstable, as is also shown in Figure 11.2. The same instability can occurs if semi-
gradient Q-learning is used (11.3)...

If we alter just the distribution of DP backups in Baird’s counterexample, from
the uniform distribution to the on-policy distribution (which generally requires asyn-
chronous updating), then convergence is guaranteed to a solution with error bounded
by (9.14). This example is striking because the TD and DP methods used are ar-
guably the simplest and best-understood bootstrapping methods, and the linear,
semi-descent method used is arguably the simplest and best-understood kind of
function approximation. The example shows that even the simplest combination
of bootstrapping and function approximation can be unstable if the backups are not
done according to the on-policy distribution.

There are also counterexamples similar to Baird’s showing divergence for Q-learning.
This is cause for concern because otherwise Q-learning has the best convergence
guarantees of all control methods. Considerable e↵ort has gone into trying to find
a remedy to this problem or to obtain some weaker, but still workable, guarantee.
For example, it may be possible to guarantee convergence of Q-learning as long as
the behavior policy (the policy used to select actions) is su�ciently close to the esti-
mation policy (the policy used in GPI), for example, when it is the "-greedy policy.
To the best of our knowledge, Q-learning has never been found to diverge in this
case, but there has been no theoretical analysis. In the rest of this section we present
several other ideas that have been explored.

Suppose that instead of taking just a step toward the expected one-step return on
each iteration, as in Baird’s counterexample, we actually change the value function
all the way to the best, least-squares approximation. Would this solve the instability
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gradient Q-learning is used (11.3)...

If we alter just the distribution of DP backups in Baird’s counterexample, from
the uniform distribution to the on-policy distribution (which generally requires asyn-
chronous updating), then convergence is guaranteed to a solution with error bounded
by (9.14). This example is striking because the TD and DP methods used are ar-
guably the simplest and best-understood bootstrapping methods, and the linear,
semi-descent method used is arguably the simplest and best-understood kind of
function approximation. The example shows that even the simplest combination
of bootstrapping and function approximation can be unstable if the backups are not
done according to the on-policy distribution.

There are also counterexamples similar to Baird’s showing divergence for Q-learning.
This is cause for concern because otherwise Q-learning has the best convergence
guarantees of all control methods. Considerable e↵ort has gone into trying to find
a remedy to this problem or to obtain some weaker, but still workable, guarantee.
For example, it may be possible to guarantee convergence of Q-learning as long as
the behavior policy (the policy used to select actions) is su�ciently close to the esti-
mation policy (the policy used in GPI), for example, when it is the "-greedy policy.
To the best of our knowledge, Q-learning has never been found to diverge in this
case, but there has been no theoretical analysis. In the rest of this section we present
several other ideas that have been explored.

Suppose that instead of taking just a step toward the expected one-step return on
each iteration, as in Baird’s counterexample, we actually change the value function
all the way to the best, least-squares approximation. Would this solve the instability
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Figure 11.1: Baird’s counterexample. The approximate state-value function for this Markov
process is of the form shown by the linear expressions inside each state. The solid action
usually results in the seventh state, and the dashed action usually results in one of the other
six states, each with equal probability. The episode terminates on all transitions with 1%
probability, much like a � = 0.99 discount rate. The reward is always zero.

state, ending the episode. (This is similar to a discount rate of 99%.) The behavior
policy µ takes the two actions with probabilities 6/7 and 1/7, so that the next-state
distribution under it is uniform (the same for all nonterminal states), which is also
the starting distribution for each episode. The target policy ⇡ always takes the solid
action, and so the on-policy distribution is concentrated in the seventh state. The
reward is zero on all transitions.

Consider estimating the state-value under the linear parameterization indicated
by the expression shown in each state circle. For example, the estimated value of
the first state is 2✓1 + ✓8, where the subscript corresponds to the component of the
overall weight vector ✓; this corresponds to a feature vector for the first state being
�(1) = (2, 0, 0, 0, 0, 0, 0, 1)>. The reward is zero on all transitions, so the true value
function is v⇡(s) = 0, for all s, which can be exactly approximated if ✓ = 0. In fact,
there are many solutions, as there are more components to the weight vector (8) than
there are nonterminal states (7). Moreover, the set of feature vectors, {�(s) : s 2 S},
corresponding to this function is a linearly independent set. In all ways, this task
seems a favorable case for linear function approximation.

If we apply semi-gradient TD(0) to this problem (11.2), then the weights diverge
to infinity, as shown in Figure 11.2. The instability occurs for any positive step size,
no matter how small. In fact, it even occurs if we do a DP-style expected backup
instead of a learning backup. That is, if the weight vector, ✓k, is updated in sweeps
through the state space, performing a synchronous, semi-gradient backup at every
state, s, using the DP (full backup) target:

✓k+1
.
= ✓k + ↵

X

s

h
E[Rt+1 + �v̂k(St+1) | St =s] � v̂k(s)

i
rv̂k(s).
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under semi-gradient
off-policy TD(0)
(similar for DP)



What causes the instability?

• It has nothing to do with learning or sampling


• Even dynamic programming suffers from divergence with FA


• It has nothing to do with exploration, greedification, or control


• Even prediction alone can diverge


• It has nothing to do with local minima 
 or complex non-linear approximators


• Even simple linear approximators can produce instability 



The deadly triad
• The risk of divergence arises whenever we combine three things:


1. Function approximation


• significantly generalizing from large numbers of examples


2. Bootstrapping


• learning value estimates from other value estimates,  
as in dynamic programming and temporal-difference learning


3. Off-policy learning


• learning about a policy from data not due to that policy,  
as in Q-learning, where we learn about the greedy policy from 
data with a necessarily more exploratory policy

Any 2 Ok



TD(0) can diverge: A simple example

TD update:

TD fixpoint:

� 2�
r=1

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

= 0 + 2⇤ � ⇤

= ⇤

�⇤ = �⇥⌅

= �⇤

�� = 0

Diverges!



Can we do without bootstrapping?

• Bootstrapping is critical to the computational efficiency of DP

• Bootstrapping is critical to the data efficiency of TD methods

• On the other hand, bootstrapping introduces bias, which 

harms the asymptotic performance of approximate methods

• The degree of bootstrapping can be finely controlled via the λ 

parameter, from λ=0 (full bootstrapping) to λ=1 (no 
bootstrapping)



4 examples of the effect of bootstrapping  
suggest that λ=1 (no bootstrapping) is a very poor choice

Pure
bootstrapping

No
bootstrapping

In all cases 
lower is better

Red points are the cases 
of no bootstrapping

We need bootstrapping!



Desiderata: We want a TD algorithm that

• Bootstraps (genuine TD)

• Works with linear function approximation 
(stable, reliably convergent)

• Is simple, like linear TD — O(n)

• Learns fast, like linear TD

• Can learn off-policy

• Learns from online causal trajectories  
(no repeat sampling from the same state)



⇥ ⇥ ⇥ � �⇤�Jt(⇥)

1. Pick an objective function       ,  
a parameterized function to be minimized

2. Use calculus to analytically compute the gradient 

3. Find a “sample gradient”               that you can sample on 
every time step and whose expected value equals the gradient

4. Take small steps in    proportional to the sample gradient:

4 easy steps to stochastic gradient descent

J(�)

��J(�)

�

⇥ ⇥ ⇥ � �⇤�Jt(⇥)



⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

Conventional TD is not the gradient of anything

�⇤ = �⇥⌅

⇧2J

⇧⇤j⇧⇤i
=

⇧(⇥⌅i)
⇧⇤j

= (�⌅�
j � ⌅j)⌅i

⇧2J

⇧⇤i⇧⇤j
=

⇧(⇥⌅j)
⇧⇤i

= (�⌅�
i � ⌅i)⌅j

⌅J

⌅⇥i
= �⇤iAssume there is a J such that:

Then look at the second derivative:

⇥2J

⇥�j⇥�i
�= ⇥2J

⇥�i⇥�j

TD(0) algorithm:

}
Real 2nd derivatives must be symmetric

Contradiction!

Etienne Barnard 1993



Gradient descent for TD: 
What should the objective function be?

V = r + �PV

= TV

Mean-Square
Value Error

MSE(�) =
�

s

ds (V�(s)� V (s))2

= ⇥ V� � V ⇥2
D

Mean-Square
Bellman Error MSBE(�) = ⇥ V� � TV� ⇥2

D

True value 
function



Value function geometry

T

V
θ

Π

TV
θ

ΠTV
θ

Φ, D

R
M
S
B
E

RMSPB
E

The space spanned by the feature vectors,  
weighted by the state visitation distribution

Bellman Operator T 
takes value function 
outside the space

Π projects back  
into it

D = diag(d)

V� = �TV�

Is the TD fix-point

Mean Square Projected Bellman Error (MSPBE)



The Gradient-TD Family of Algorithms

• True gradient-descent algorithms in the Projected Bellman Error


• GTD(λ) and GQ(λ), for learning V and Q


• Solve two open problems:


• convergent linear-complexity off-policy TD learning


• convergent non-linear TD


• Extended to control variate, proximal forms by Mahadevan et al.



First relate the geometry to the iid statistics
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�T D(TV� � V�) = E[�⇥]

�T D� = E[��T ]

Fast Gradient-Descent Methods for Temporal-Difference Learning with Linear Function Approximation
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Figure 1. Geometric relationships between (the square root of) the
two Bellman-error objective functions.

point. That is, we use as our objective function the mean-
square projected Bellman error:

MSPBE(⇤) = ⇥ V� ��TV� ⇥2
D . (5)

Figure 1 shows the relationship between this and the
MSBE objective function geometrically.

Further insight can be gained by considering the episodic
examples in Figure 2. In the system on the left, trajectories
start in state A and then either terminate immediately with
a reward of zero, or transition to state B with a reward of
zero and then terminate with a reward of 1. The two choices
occur each with 50% probability, and � = 1, so the right
values for states A and B are clearly 0.5 and 1 respectively
(these values minimize both MSBE and MSPBE). Dayan
(1992) used this example to show that a naive gradient-
descent approach (based on gradient descent in the mean-
squared TD error, E

�
⇥2

⇥
) works poorly in that it ends up as-

signing values of 1/3 and 2/3 to A and B even in the tabular
case. The example also illustrates the need for two inde-
pendent samples in the residual-gradient algorithm (Baird
1995) as, with a single example, that algorithm finds the
1/3, 2/3 solution. With two samples, residual gradient cor-
rectly finds the 0.5, 1 solution. However, consider now the
example in the right panel. Here function approximation is
in play, in that we have two states, A1 and A2, that share the
same feature representation; they look the same and must
be given the same approximate value. Trajectories start in
each of the two A states with 50% probability; one leads de-
terministically to B and 1, while the other leads determinis-
tically to 0. From the observed feature vectors, this exam-
ple looks like the previous, except that here taking multiple
samples is no help as the system is deterministic and they
will all be the same. Because of this, the residual-gradient
algorithm will find the 1/3, 2/3 solution here. However,
the problem is not with the algorithm, but with the objec-
tive. The 1/3, 2/3 solution is in fact the minimum-MSBE
solution on this problem; only the MSPBE criterion puts
the minimum at 0.5, 1 on this problem. The MSBE ob-
jective causes function approximation resources to be ex-
pended trying to reduce the Bellman error associated with

A

B

1 0

50%50%

100%

A1 A2

B

1 0

100%

100%

100%

Figure 2. The A-split (left) and split-A (right) examples.

A1 and A2, whereas the MSPBE objective takes into ac-
count that their approximated values will ultimately be pro-
jected onto the same point.

Finally, we close this discussion of objective functions by
giving the function used to derive the original GTD algo-
rithm. This objective function does not seem to have a
ready geometric interpretation. Here we call it the norm
of the expected TD update:

NEU(⇤) = E[⇥⌅]⇤ E[⇥⌅] . (6)

4. Derivation of the new algorithms
In this section we derive two new algorithms as stochastic
gradient descent in the projected Bellman error objective
(5). We first establish some relationships between the rele-
vant expectations and vector-matrix quantities:

E
�
⌅⌅⇤

⇥
=

⇧

s

ds⌅s⌅
⇤
s = ⇥⇤D⇥,

E[⇥⌅] =
⇧

s

ds⌅s

⇤
Rs + �

⇧

s�

Pss�V�(s⇥)� V�(s)

⌅

= ⇥⇤D(TV� � V�),

and note that

�⇤D� = (⇥(⇥⇤D⇥)�1⇥⇤D)⇤D(⇥(⇥⇤D⇥)�1⇥⇤D)
= D⇤⇥(⇥⇤D⇥)�1⇥⇤D⇥(⇥⇤D⇥)�1⇥⇤D

= D⇤⇥(⇥⇤D⇥)�1⇥⇤D.

Using these relationships, the projected objective can be
written in terms of expectations as

MSPBE(⇤)
= ⇥ V� ��TV� ⇥2

D

= ⇥ �(V� � TV�) ⇥2
D

= (�(V� � TV�))⇤D(�(V� � TV�))
= (V� � TV�)⇤�⇤D�(V� � TV�)
= (V� � TV�)⇤D⇤⇥(⇥⇤D⇥)�1⇥⇤D(V� � TV�)
= (⇥⇤D(TV� � V�))⇤(⇥⇤D⇥)�1⇥⇤D(TV� � V�)

= E[⇥⌅]⇤ E
�
⌅⌅⇤

⇥�1 E[⇥⌅] .

Fast gradient-descent methods for temporal-difference learning with linear function approximation

2. Linear value-function approximation
We consider a prototypical case of temporal-difference
learning, that of learning a linear approximation to the
state-value function for a given policy and Markov deci-
sion process (MDP) from sample transitions. We take both
the MDP and the policy to be stationary, so their combina-
tion determines the stochastic dynamics of a Markov chain.
The state of the chain at each time t is a random variable,
denoted st ⇧ {1, 2, ..., N}, and the state-transition proba-
bilities are given by a matrix P . On each transition from
st to st+1, there is also a reward, rt+1, whose distribution
depends on both states. We seek to learn the parameter
⌅ ⇧ ⌃n of an approximate value function V� : S ⌅ ⌃ such
that

V�(s) = ⌅⇧⌃s ⇥ V (s) = E

� ⌅⇤

t=0

⇥trt+1 | s0 = s

⇥
, (1)

where ⌃s ⇧ ⌃n is a feature vector characterizing state s,
and ⇥ ⇧ [0, 1) is a constant called the discount rate.

In this paper we consider one-step temporal-difference
learning (corresponding to ⇧ = 0 in TD(⇧)), in which
there is one independent update to ⌅ for each state tran-
sition and associated reward. There are several settings
corresponding to how the state transitions are generated.
In the on-policy setting, for example, the state transitions
come directly from the continuing evolution of the Markov
chain. We assume that the Markov chain is ergodic and
uni-chain, so there exists a limiting distribution d such that
ds = limt⇥⌅ P(st = s).1 In the on-policy case, d is linked
to the transition probabilities (in particular, we know that
P⇧d = d) and this linkage is critical to the convergence
of algorithms such as conventional TD. In this paper, we
consider a general setting (introduced in Sutton, Szepesvári
& Maei 2009) in which the first state of each transition is
chosen i.i.d. according to an arbitrary distribution d that
may be unrelated to P (this corresponds to off-policy learn-
ing). This setting defines a probability over independent
triples of state, next state, and reward random variables,
denoted (sk, s⇤k, rk), with associated feature-vector random
variables ⌃k = ⌃sk and ⌃⇤k = ⌃s0

k
. From these we can de-

fine, for example, the temporal-difference error,

⇤k = rk + ⇥⌅⇧k ⌃⇤k � ⌅⇧k ⌃k,

used in the conventional linear TD algorithm (Sutton
1988):

⌅k+1 ⇤ ⌅k + �k⇤k⌃k, (2)

where �k is a sequence of positive step-size parameters.
1Our results apply also to the episodic case if ds is taken to be

the proportion of time steps in state s. In this case, the sum in (1)
is only over a finite number of time steps, the rows of P may sum
to less than 1, and � may be equal to 1 (as long as (�P )� = 0).

3. Objective functions
An objective function is some function of the modifiable
parameter ⌅ that we seek to minimize by updating ⌅. In
gradient descent, the updates to ⌅ are proportional to the
gradient or sample gradient of the objective function with
respect to ⌅. The first question then, is what to use for the
objective function? For example, one natural choice might
be the mean squared error (MSE) between the approximate
value function V� and the true value function V , averaged
over the state space according to how often each state oc-
curs. The MSE objective function is

MSE(⌅) =
⇤

s

ds (V�(s)� V (s))2

def= ↵ V� � V ↵2D .

In the second equation, V� and V are viewed as vectors with
one element for each state, and the norm ↵ v ↵2D = v⇧Dv
is weighted by the matrix D that has the ds on its diagonal.

In temporal-difference methods, the idea is instead to use
an objective function representing how closely the approx-
imate value function satisfies the Bellman equation. The
true value function V satisfies the Bellman equation ex-
actly:

V = R + ⇥PV
def= TV,

where R is the vector with components E{rt+1 | st = s}
and T is known as the Bellman operator. A seemingly nat-
ural measure of how closely the approximation V� satisfies
the Bellman equation is the mean-square Bellman error:

MSBE(⌅) = ↵ V� � TV� ↵2D . (3)

This is the objective function used by the most important
prior effort to develop gradient-descent algorithms, that by
Baird (1995, 1999). However, most temporal-difference al-
gorithms, including TD, LSTD, and GTD, do not converge
to the minimum of the MSBE. To understand this, note that
the Bellman operator follows the underlying state dynam-
ics of the Markov chain, irrespective of the structure of the
function approximator. As a result, TV� will typically not
be representable as V� for any ⌅. Consider the projection
operator � which takes any value function v and projects it
to the nearest value function representable by the function
approximator:

�v = V� where ⌅ = arg min
�
↵ V� � v ↵2D .

In a linear architecture, in which V� = ⇥⌅ (where ⇥ is the
matrix whose rows are the ⌃s), the projection operator is
linear and independent of ⌅:

� = ⇥(⇥⇧D⇥)�1⇥⇧D

matrix of the feature vectors for all states



Derivation of the TDC algorithm
s

r�⇥s�

� ��

This is the trick!
            is a second 

set of weights
w � ⇥n

�⌅ = �1

2
�r�J(⌅) = �1

2
�r� k V� �⇥TV� k2D

= �1

2
�r�

⇣
E [⇤⇧]E

⇥
⇧⇧>⇤�1 E [⇤⇧]

⌘

= �� (r�E [⇤⇧])E
⇥
⇧⇧>⇤�1 E [⇤⇧]

= ��E
⇥
r�[⇧
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⇤
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⇥
⇧⇧>⇤�1 E [⇤⇧]
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�
⇥E

⇥
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⇥
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⇥
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= �E [⇤⇧]� �⇥E
⇥
⇧0⇧>⇤E

⇥
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⇥
⇧0⇧>⇤w

(sampling) ⇡ �⇤⇧� �⇥⇧0⇧>w



• on each transition

• update two parameters

• where, as usual

TD with gradient correction (TDC) algorithm

⌅ ⇥ ⌅ + �⇤⇧� �⇥⇧�
�
⇧⇥w

⇥

w ⇥ w + �(⇥ � ⇤�w)⇤

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

s
r�⇥s�

� ��

TD(0) with gradient
correction

estimate of the 
TD error (  ) for
the current state   

�
�

aka GTD(0)



Convergence theorems

• All algorithms converge w.p.1 to the TD fix-point:


• GTD, GTD-2 converges at one time scale


• TD-C converges in a two-time-scale sense

�,⇥ �⇥ 0
�

⇥
�⇥ 0

� = ⇥ �⇥ 0

E[�⇥] �⇥ 0



Off-policy result: Baird’s counter-example
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Computer Go experiment

• Learn a linear value 
function (probability of 
winning) for 9x9 Go 
from self play

• One million features, 
each corresponding to a 
template on a part of 
the Go board
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Off-policy RL with FA and TD remains challenging;
but there are multiple possible solutions

• Gradient TD, proximal gradient TD, and hybrids


• Emphatic TD


• Higher λ (less TD)


• Recognizers (less off-policy)


• LSTD (O(n2) methods)

More work needed 

on these novel algs!



Value-based or policy-based? DQN or A3C?

• This is an application-dependent choice!

• If policy space is simple to parameterize, policy search/AC work very well

• Eg. powerplant control

• If policy space is complicated, value-based is better 

• Using a value function can greatly reduce variance



Open questions

• Huge gap between theory and practice!


• Is there a natural way to exploit more stable function 
approximators? Eg kernels, averages…


• Improve stability of deep RL


• Planning with approximate models


• Exploration, exploration, exploration….


