Reinforcement Learning with Function Approximation: Value-based Methods

Curse of dimensionality

- Values are governed by nice recursive equations:

$$
V_{k+1}(s) \leftarrow \max _{a \in \mathcal{A}}\left(r_{s s^{\prime}}^{a}+\gamma \sum_{s^{\prime} \in S} p_{s s^{\prime}}^{a} V_{k}\left(s^{\prime}\right)\right), \forall s \in S
$$

- The number of states grows exponentially with the number of state variables (the dimensionality of the problem)
E.g. in Go, there are 10^{170} states
- The action set may also be very large or continuous
E.g. in Go, branching factor is ≈ 100 actions
- The solution may require chaining many steps
E.g. in Go games take ≈ 200 actions

Value function approximation (VFA) replaces the table with a general parameterized form

Target depends on the agent's behavior, and in TD, also on its current estimates!

A natural objective in VFA

 is to minimize the Mean Square Value Error$$
\operatorname{MSVE}(\boldsymbol{\theta}) \doteq \sum_{s \in \mathcal{S}} d(s)\left[v_{\pi}(s)-\hat{v}(s, \boldsymbol{\theta})\right]^{2}
$$

where $d(s)$ is the fraction of time steps spent in state s

True SGD will converge to a local minimum of the error objective
In linear VFA, there is only one minimum: local=global
Monte Carlo will provide samples of the expectation

Gradient Monte Carlo Algorithm for Approximating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated
Input: a differentiable function $\hat{v}: \mathcal{S} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$
Initialize value-function weights $\boldsymbol{\theta}$ as appropriate (e.g., $\boldsymbol{\theta}=\mathbf{0}$) Repeat forever:

Generate an episode $S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, \ldots, R_{T}, S_{T}$ using π For $t=0,1, \ldots, T-1$:

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha\left[G_{t}-\hat{v}\left(S_{t}, \boldsymbol{\theta}\right)\right] \nabla \hat{v}\left(S_{t}, \boldsymbol{\theta}\right)
$$

Stochastic Gradient Descent (SGD) is the idea behind most approximate learning

$$
\begin{aligned}
\text { General SGD: } & \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} \text { Error }_{t}^{2} \\
\text { For VFA: } & \leftarrow \boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}}\left[\text { Target }_{t}-\hat{v}\left(S_{t}, \boldsymbol{\theta}\right)\right]^{2} \\
\text { Chain rule: } & \leftarrow \boldsymbol{\theta}-2 \alpha\left[\text { Target }_{t}-\hat{v}\left(S_{t}, \boldsymbol{\theta}\right)\right] \nabla_{\boldsymbol{\theta}}\left[\text { Target }_{t}-\hat{v}\left(S_{t}, \boldsymbol{\theta}\right)\right] \\
\text { Semi-gradient: } & \leftarrow \boldsymbol{\theta}+\alpha\left[\text { Target }_{t}-\hat{v}\left(S_{t}, \boldsymbol{\theta}\right)\right] \nabla_{\boldsymbol{\theta}} \hat{v}\left(S_{t}, \boldsymbol{\theta}\right) \\
\text { Linear case: } & \leftarrow \boldsymbol{\theta}+\alpha\left[\text { Target }_{t}-\hat{v}\left(S_{t}, \boldsymbol{\theta}\right)\right] \boldsymbol{\phi}\left(S_{t}\right)
\end{aligned}
$$

Action-value form:

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha\left[\text { Target }_{t}-\hat{q}\left(S_{t}, A_{t}, \boldsymbol{\theta}\right)\right] \boldsymbol{\phi}\left(S_{t}, A_{t}\right)
$$

State aggregation is the simplest kind of VFA

- States are partitioned into disjoint subsets (groups)
- One component of $\boldsymbol{\theta}$ is allocated to each group

$$
\begin{aligned}
& \hat{v}(s, \boldsymbol{\theta}) \doteq \theta_{\text {group }(s)} \\
& \nabla_{\boldsymbol{\theta}} \hat{v}(s, \boldsymbol{\theta}) \doteq[0,0, \ldots, 0,1,0,0, \ldots, 0]
\end{aligned}
$$

Recall: $\quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha\left[\right.$ Target $\left._{t}-\hat{v}\left(S_{t}, \boldsymbol{\theta}\right)\right] \nabla_{\boldsymbol{\theta}} \hat{v}\left(S_{t}, \boldsymbol{\theta}\right)$

Example: Random walk with state aggregation

- States are numbered 1 to 1000 start in middle
- At each step, jump to one of the 100 states to the right, or to one of the 100 states to the left
- If the jump goes beyond 1 or 1000, terminates with a reward of -1 or +1 (otherwise $R_{t}=0$)
- States are aggregated into 10 bins (so only 10 values are maintained)

Gradient MC works well on the 1000-state random walk using state aggregation

- 10 groups of 100 states
- after 100,000 episodes
- $\alpha=2 \times 10^{-5}$
- state distribution affects accuracy

Semi-gradient $\mathrm{TD}(0)$ for estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated
Input: a differentiable function $\hat{v}: \mathcal{S}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\hat{v}($ terminal, $\cdot)=0$
Initialize value-function weights $\boldsymbol{\theta}$ arbitrarily (e.g., $\boldsymbol{\theta}=\mathbf{0}$)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose $A \sim \pi(\cdot \mid S)$
Take action A, observe R, S^{\prime}
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha\left[R+\gamma \hat{v}\left(S^{\prime}, \boldsymbol{\theta}\right)-\hat{v}(S, \boldsymbol{\theta})\right] \nabla \hat{v}(S, \boldsymbol{\theta})$
$S \leftarrow S^{\prime}$
until S^{\prime} is terminal

Semi-gradient TD is less accurate than MC

 on the 1000-state random walk using state aggregation- 10 groups of 100 states
- after 100,000 episodes
- $\alpha=2 \times 10^{-5}$

Relative values are still pretty accurate

Tile coding is coarse coding, with rectangular receptive fields, controlled overlap

2D example

- Tiling 1

Four active
tiles/features overlap the point and are used to represent it
$v_{\boldsymbol{\theta}} \doteq \hat{v}(\cdot, \boldsymbol{\theta}) \quad$ as a giant vector $\in \mathbb{R}^{|\mathcal{S}|}$
$\left(B_{\pi} v\right)(s) \doteq \sum_{a \in \mathcal{A}} \pi(s, a)\left[r(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) v\left(s^{\prime}\right)\right]$

TD converges to the TD fixedpoint, $\boldsymbol{\theta}_{T D}$, a biased but interesting answer

TD(0) update:

$$
\begin{aligned}
\boldsymbol{\theta}_{t+1} & \doteq \boldsymbol{\theta}_{t}+\alpha\left(R_{t+1}+\gamma \boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t+1}-\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t} \\
& =\boldsymbol{\theta}_{t}+\alpha\left(R_{t+1} \boldsymbol{\phi}_{t}-\boldsymbol{\phi}_{t}\left(\boldsymbol{\phi}_{t}-\gamma \boldsymbol{\phi}_{t+1}\right)^{\top} \boldsymbol{\theta}_{t}\right)
\end{aligned}
$$

In expectation:

$$
\mathbb{E}\left[\boldsymbol{\theta}_{t+1} \mid \boldsymbol{\theta}_{t}\right]=\boldsymbol{\theta}_{t}+\alpha\left(\mathbf{b}-\mathbf{A} \boldsymbol{\theta}_{t}\right),
$$

where

$$
\mathbf{b} \doteq \mathbb{=}\left[R_{t+1} \boldsymbol{\phi}_{t}\right] \in \mathbb{R}^{n} \quad \text { and } \quad \mathbf{A} \doteq \mathbb{E}\left[\phi_{t}\left(\boldsymbol{\phi}_{t}-\gamma \boldsymbol{\phi}_{t+1}\right)^{\top}\right] \in \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

Recall: Mathematics of n-step TD

- Monte Carlo: $\quad G_{t} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots+\gamma^{T-t-1} R_{T}$
- TD: $\quad G_{t}^{(1)} \doteq R_{t+1}+\gamma V_{t}\left(S_{t+1}\right)$
- Use V_{t} to estimate remaining return
- n-step TD:
- 2 step return: $\quad G_{t}^{(2)} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2} V_{t}\left(S_{t+2}\right)$
- n-step return:

$$
G_{t}^{(n)} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2}+\cdots+\gamma^{n-1} R_{t+n}+\gamma^{n} V_{t}\left(S_{t+n}\right)
$$

with

$$
G_{t}^{(n)} \doteq G_{t} \text { if } t+n \geq T
$$

Bootstrapping greatly speeds learning very much like the tabular case

The λ-return is a compound update target

- The λ-return a target that averages all n-step targets
- each weighted by λ^{n-1}

$$
G_{i}^{\lambda} \doteq(1-\lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_{i}^{[n]}
$$

Eligibility traces (mechanism)

- The forward view was for theory
- The backward view is for mechanism
- New memory vector called eligibility trace

- On each step, decay each component by $\gamma \lambda$ and incremer the trace for the current state by 1
- Accumulating trace
$\mathbf{e}_{0} \doteq \mathbf{0}$,
$\mathbf{e}_{t} \doteq \nabla \hat{v}\left(S_{t}, \boldsymbol{\theta}_{t}\right)+\gamma \lambda \mathbf{e}_{t-1}$

- Replacing trace: trace becomes 1 when state is visited

The Semi-gradient $\operatorname{TD}(\boldsymbol{\lambda})$ algorithm

$$
\begin{aligned}
\boldsymbol{\theta}_{t+1} & \doteq \boldsymbol{\theta}_{t}+\alpha \delta_{t} \mathbf{e}_{t} \\
\delta_{t} & \doteq R_{t+1}+\gamma \hat{v}\left(S_{t+1}, \boldsymbol{\theta}_{t}\right)-\hat{v}\left(S_{t}, \boldsymbol{\theta}_{t}\right) \\
\mathbf{e}_{0} & \doteq \mathbf{0} \\
\mathbf{e}_{t} & \doteq \nabla \hat{v}\left(S_{t}, \boldsymbol{\theta}_{t}\right)+\gamma \lambda \mathbf{e}_{t-1}
\end{aligned}
$$

TD(λ) performs similarly to offline λ-return alg. but slightly worse, particularly at high α

Tabular 19-state random walk task

Can we do better? Can we update online?

Conclusions

- Value-function approximation by stochastic gradient descent enables RL to be applied to arbitrarily large state spaces
- Most algorithms just carry over the Targets from the tabular case
- With bootstrapping (TD), we don't get true gradient descent methods
- this complicates the analysis
- but the linear, on-policy case is still guaranteed convergent
- and learning is still much faster

Value function approximation (VFA) for control

(Semi-)gradient methods carry over to control in the usual on-policy GPI way

- Always learn the action-value function of the current policy
- Always act near-greedily wrt the current action-value estimates
- The learning rule is:

$$
\begin{aligned}
& \boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_{t}+\alpha\left[{ }_{v}^{U}-\hat{q}\left(S_{t}, A_{t}, \boldsymbol{\theta}_{t}\right)\right] \nabla \hat{q}\left(S_{t}, A_{t}, \boldsymbol{\theta}_{t}\right) \\
& \quad \text { update target, e.g., } U_{t}=G_{t}(\mathrm{MC}) \quad U_{t}=R_{t+1}+\gamma \hat{q}\left(S_{t+1}, A_{t+1}, \theta_{t}\right) \text { (Sarsa) }
\end{aligned}
$$

(Expected Sarsa) $\quad U_{t}=R_{t+1}+\gamma \sum_{a} \pi\left(a \mid S_{t+1}\right) \hat{q}\left(S_{t+1}, a, \boldsymbol{\theta}_{t}\right) \quad U_{t}=\sum_{s^{\prime} r} p\left(s^{\prime}, r \mid S_{t}, A_{t}\right)\left[r+\gamma \sum_{a^{\prime}} \pi\left(a^{\prime} \mid s^{\prime}\right) \hat{q}\left(s^{\prime}, a^{\prime}, \boldsymbol{\theta}_{t}\right)\right]$ (DP)

(Semi-)gradient methods carry over to control
 $$
\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_{t}+\alpha\left[U_{t}-\hat{q}\left(S_{t}, A_{t}, \boldsymbol{\theta}_{t}\right)\right] \nabla \hat{q}\left(S_{t}, A_{t}, \boldsymbol{\theta}_{t}\right)
$$

Episodic Semi-gradient Sarsa for Estimating $\hat{q} \approx q_{*}$

Input: a differentiable function $\hat{q}: \mathcal{S} \times \mathcal{A} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$
Initialize value-function weights $\boldsymbol{\theta} \in \mathbb{R}^{n}$ arbitrarily (e.g., $\boldsymbol{\theta}=\mathbf{0}$) Repeat (for each episode):
$S, A \leftarrow$ initial state and action of episode (e.g., ε-greedy)
Repeat (for each step of episode):
Take action A, observe R, S^{\prime}
If S^{\prime} is terminal:
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha[R-\hat{q}(S, A, \boldsymbol{\theta})] \nabla \hat{q}(S, A, \boldsymbol{\theta})$
Go to next episode
Choose A^{\prime} as a function of $\hat{q}\left(S^{\prime}, \cdot, \boldsymbol{\theta}\right)$ (e.g., ε-greedy)
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha\left[R+\gamma \hat{q}\left(S^{\prime}, A^{\prime}, \boldsymbol{\theta}\right)-\hat{q}(S, A, \boldsymbol{\theta})\right] \nabla \hat{q}(S, A, \boldsymbol{\theta})$
$S \leftarrow S^{\prime}$
$A \leftarrow A^{\prime}$

n-step semi-gradient Sarsa is better for $n>1$

$$
\boldsymbol{\theta}_{t+n} \doteq \boldsymbol{\theta}_{t+n-1}+\alpha\left[G_{t}^{(n)}-\hat{q}\left(S_{t}, A_{t}, \boldsymbol{\theta}_{t+n-1}\right)\right] \nabla \hat{q}\left(S_{t}, A_{t}, \boldsymbol{\theta}_{t+n-1}\right), \quad 0 \leq t<T
$$

Conclusions

- Control is straightforward in the on-policy case
- Formal results (bounds) exist for the linear, on-policy case (eg. Gordon, 2000, Perkins \& Precup, 2003 and follow-up work)
- we get chattering near a good solution, not convergence

DQN

- Learns to play video games from raw pixels, simply by playing
- Can learn Q function by Q-learning

$$
\Delta \boldsymbol{w}=\alpha\left(R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a ; \boldsymbol{w}\right)-Q\left(S_{t}, A_{t} ; \boldsymbol{w}\right)\right) \nabla_{\boldsymbol{w}} Q\left(S_{t}, A_{t} ; \boldsymbol{w}\right)
$$

DQN

(Mnih, Kavukcuoglu, Sitver, et al., Nature 2015)

- Learns to play video games from raw pixels, simply by playing
- Can learn Q function by Q-learning

$$
\Delta \boldsymbol{w}=\alpha\left(R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a ; \boldsymbol{w}\right)-Q\left(S_{t}, A_{t} ; \boldsymbol{w}\right)\right) \nabla_{\boldsymbol{w}} Q\left(S_{t}, A_{t} ; \boldsymbol{w}\right)
$$

- Core components of DQN include:
- Target networks (Mnih et al. 2015)

$$
\Delta \boldsymbol{w}=\alpha\left(R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a ; \boldsymbol{w}^{-}\right)-Q\left(S_{t}, A_{t} ; \boldsymbol{w}\right)\right) \nabla_{\boldsymbol{w}} Q\left(S_{t}, A_{t} ; \boldsymbol{w}\right)
$$

- Experience replay (Lin 1992): replay previous tuples (s, a, r, s')

Target Network Intuition

(Slide credit: Vlad Mnih)

- Changing the value of one action will change the value of other actions and similar states.
- The network can end up chasing its

$$
L_{i}\left(\theta_{i}\right)=\mathbb{E}_{s, a, s^{\prime}, r \sim D}(\underbrace{r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime} ; \theta_{i}^{-}\right)}_{\text {target }}-Q\left(s, a ; \theta_{i}\right))^{2}
$$ own tail because of bootstrapping.

DQN

(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

- Many later improvements to DQN
- Double Q-learning (van Hasselt 2010, van Hasselt et al. 2015)
- Prioritized replay (Schaul et al. 2016)
- Dueling networks (Wang et al. 2016)
- Asynchronous learning (Mnih et al. 2016)
- Adaptive normalization of values (van Hasselt et al. 2016)
- Better exploration (Bellemare et al. 2016, Ostrovski et al., 2017, Fortunato, Azar, Piot et al. 2017)
- Distributional losses (Bellemare et al. 2017)
- Multi-step returns (Mnih et al. 2016, Hessel et al. 2017)
- ... many more ...

Prioritized Experience Replay

"Prioritized Experience Replay", Schaul et al. (2016)

- Idea: Replay transitions in proportion to TD error:

$$
\left|r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime} ; \theta^{-}\right)-Q(s, a ; \theta)\right|
$$

- uniform - rank-based - proportional - uniform DQN

Recall: Double DQN

Double Q-learning:

$$
Q_{1}\left(S_{t}, A_{t}\right) \leftarrow Q_{1}\left(S_{t}, A_{t}\right)+\alpha\left[R_{t+1}+\gamma Q_{2}\left(S_{t+1}, \underset{a}{\arg \max } Q_{1}\left(S_{t+1}, a\right)\right)-Q_{1}\left(S_{t}, A_{t}\right)\right]
$$

Double DQN

cf. van Hasselt et al, 2015)

Which DQN improvements matter?

Rainbow model, Hessel et al, 2017)

Off-policy with Function Approximation can be very hard!

- Even linear FA
- Even for prediction (two fixed policies π and μ)
- Even for Dynamic Programming
- The deadly triad: FA, TD, off-policy
- Any two are OK, but not all three
- With all three, we may get instability (elements of $\boldsymbol{\theta}$ may increase to $\pm \infty$)

Baird's counterexample illustrates the instability

What causes the instability?

- It has nothing to do with learning or sampling
- Even dynamic programming suffers from divergence with FA
- It has nothing to do with exploration, greedification, or control
- Even prediction alone can diverge
- It has nothing to do with local minima or complex non-linear approximators
- Even simple linear approximators can produce instability

The deadly triad

- The risk of divergence arises whenever we combine three things:

1. Function approximation

- significantly generalizing from large numbers of examples

2. Bootstrapping

- learning value estimates from other value estimates, as in dynamic programming and temporal-difference learning

3. Off-policy learning

- learning about a policy from data not due to that policy, as in Q-learning, where we learn about the greedy policy from data with a necessarily more exploratory policy

TD(0) can diverge: A simple example

$$
\begin{aligned}
(\theta & \rightarrow 2 \theta \\
\delta & =r+\gamma \theta^{\top} \phi^{\prime}-\theta^{\top} \phi \\
& =0+2 \theta-\theta \\
& =\theta
\end{aligned}
$$

TD update: $\Delta \theta=\alpha \delta \phi$
$=\alpha \theta \quad$ Diverges!
TD fixpoint: $\quad \theta^{*}=0$

Can we do without bootstrapping?

- Bootstrapping is critical to the computational efficiency of DP
- Bootstrapping is critical to the data efficiency of TD methods
- On the other hand, bootstrapping introduces bias, which harms the asymptotic performance of approximate methods
- The degree of bootstrapping can be finely controlled via the λ parameter, from $\lambda=0$ (full bootstrapping) to $\lambda=1$ (no bootstrapping)

4 examples of the effect of bootstrapping

suggest that $\lambda=1$ (no bootstrapping) is a very poor choice

In all cases lower is better

Red points are the cases of no bootstrapping

Failures per 100,000 steps bootstrapping
bootstrapping
We need bootstrapping!

Desiderata:We want a TD algorithm that

- Bootstraps (genuine TD)
- Works with linear function approximation (stable, reliably convergent)
- Is simple, like linear TD - $O(n)$
- Learns fast, like linear TD
- Can learn off-policy
- Learns from online causal trajectories (no repeat sampling from the same state)

4 easy steps to stochastic gradient descent

I. Pick an objective function $J(\theta)$, a parameterized function to be minimized
2. Use calculus to analytically compute the gradient $\nabla_{\theta} J(\theta)$
3. Find a "sample gradient" $\nabla_{\theta} J_{t}(\theta)$ that you can sample on every time step and whose expected value equals the gradient
4. Take small steps in θ proportional to the sample gradient:

$$
\theta \leftarrow \theta-\alpha \nabla_{\theta} J_{t}(\theta)
$$

Conventional TD is not the gradient of anything

TD(0) algorithm:

$$
\begin{aligned}
& \Delta \theta=\alpha \delta \phi \\
& \delta=r+\gamma \theta^{\top} \phi^{\prime}-\theta^{\top} \phi
\end{aligned}
$$

Assume there is a J such that: $\frac{\partial J}{\partial \theta_{i}}=\delta \phi_{i}$
Then look at the second derivative:

Real $2^{\text {nd }}$ derivatives must be symmetric

Gradient descent for TD:
 What should the objective function be?

Mean-Square Value Error

$$
\begin{aligned}
\operatorname{MSE}(\theta) & =\sum_{s} d_{s}\left(V_{\theta}(s)-V(s)\right)^{2} \\
& =\left\|V_{\theta}-V\right\|_{D}^{2} \quad \begin{array}{c}
\text { True value } \\
\text { function }
\end{array}
\end{aligned}
$$

Mean-Square Bellman Error

$$
\operatorname{MSBE}(\theta)=\left\|V_{\theta}-T V_{\theta}\right\|_{D}^{2}
$$

$$
\begin{aligned}
V & =r+\gamma P V \\
& =T V
\end{aligned}
$$

Value function geometry

The space spanned by the feature vectors, weighted by the state visitation distribution

$$
D=\operatorname{diag}(d)
$$

Mean Square Projected Bellman Error (MSPBE)

The Gradient-TD Family of Algorithms

- True gradient-descent algorithms in the Projected Bellman Error
- $\operatorname{GTD}(\lambda)$ and $G Q(\lambda)$, for learning V and Q
- Solve two open problems:
- convergent linear-complexity off-policy TD learning
- convergent non-linear TD
- Extended to control variate, proximal forms by Mahadevan et al.

First relate the geometry to the iid statistics

$\operatorname{MSPBE}(\theta)$

$$
\begin{aligned}
& =\left\|V_{\theta}-\Pi T V_{\theta}\right\|_{D}^{2} \\
& =\left\|\Pi\left(V_{\theta}-T V_{\theta}\right)\right\|_{D}^{2} \\
& =\left(\Pi\left(V_{\theta}-T V_{\theta}\right)\right)^{\top} D\left(\Pi\left(V_{\theta}-T V_{\theta}\right)\right) \quad \Phi^{T} D \Phi=\mathbb{E}\left[\phi \phi^{T}\right] \\
& =\left(V_{\theta}-T V_{\theta}\right)^{\top} \Pi^{\top} D \Pi\left(V_{\theta}-T V_{\theta}\right) \\
& =\left(V_{\theta}-T V_{\theta}\right)^{\top} D^{\top} \Phi\left(\Phi^{\top} D \Phi\right)^{-1} \Phi^{\top} D\left(V_{\theta}-T V_{\theta}\right) \\
& =\left(\Phi^{\top} D\left(T V_{\theta}-V_{\theta}\right)\right)^{\top}\left(\Phi^{\top} D \Phi\right)^{-1} \Phi^{\top} D\left(T V_{\theta}-V_{\theta}\right) \\
& =\mathbb{E}[\delta \phi]^{\top} \mathbb{E}\left[\phi \phi^{\top}\right]^{-1} \mathbb{E}[\delta \phi] .
\end{aligned}
$$

Derivation of the TDC algorithm

$$
\begin{aligned}
\Delta \theta=-\frac{1}{2} \alpha \nabla_{\theta} J(\theta) & =-\frac{1}{2} \alpha \nabla_{\theta}\left\|V_{\theta}-\Pi T V_{\theta}\right\|_{D}^{2} \\
& =-\frac{1}{2} \alpha \nabla_{\theta}\left(\mathbb{E}[\delta \phi] \mathbb{E}\left[\phi \phi^{\top}\right]^{-1} \mathbb{E}[\delta \phi]\right) \\
& =-\alpha\left(\nabla_{\theta} \mathbb{E}[\delta \phi]\right) \mathbb{E}\left[\phi \phi^{\top}\right]^{-1} \mathbb{E}[\delta \phi] \\
& =-\alpha \mathbb{E}\left[\nabla_{\theta}\left[\phi\left(r+\gamma \phi^{\prime^{\top}} \theta-\phi^{\top} \theta\right)\right]\right] \mathbb{E}\left[\phi \phi^{\top}\right]^{-1} \mathbb{E}[\delta \phi] \\
& =-\alpha \mathbb{E}\left[\phi\left(\gamma \phi^{\prime}-\phi\right)^{\top}\right]^{\top} \mathbb{E}\left[\phi \phi^{\top}\right]^{-1} \mathbb{E}[\delta \phi] \\
& =-\alpha\left(\gamma \mathbb{E}\left[\phi^{\prime} \phi^{\top}\right]-\mathbb{E}\left[\phi \phi^{\top}\right]\right) \mathbb{E}\left[\phi \phi^{\top}\right]^{-1} \mathbb{E}[\delta \phi] \\
& =\alpha \mathbb{E}[\delta \phi]-\alpha \gamma \mathbb{E}\left[\phi^{\prime} \phi^{\top}\right] \mathbb{E}\left[\phi \phi^{\top}\right]^{-1} \mathbb{E}[\delta \phi] \\
& \approx \alpha \mathbb{E}[\delta \phi]-\alpha \gamma \mathbb{E}\left[\phi^{\prime} \phi^{\top}\right] w^{\prime} \quad \text { This is the trick! } \\
\text { (sampling) } & \approx \alpha \delta \phi-\alpha \gamma \phi^{\prime} \phi^{\top} w \quad \begin{array}{ll}
& \\
& \\
\text { set of weights }
\end{array}
\end{aligned}
$$

TD with gradient correction (TDC) algorithm aka GTD(0)

- on each transition

- update two parameters TD(0) with gradient

$$
\begin{aligned}
& \left.\theta \leftarrow \theta+\alpha \delta \phi-\alpha \gamma \phi^{\prime}\left(\phi^{\top} w\right)\right) \\
& w \leftarrow w+\beta\left(\delta-\phi^{\top} w\right) \phi \quad \text { estimate of the }
\end{aligned}
$$

- where, as usual

$$
\delta=r+\gamma \theta^{\top} \phi^{\prime}-\theta^{\top} \phi
$$

Convergence theorems

- All algorithms converge w.p. 1 to the TD fix-point:

$$
\mathbb{E}[\delta \phi] \longrightarrow 0
$$

- GTD, GTD-2 converges at one time scale

$$
\alpha=\beta \longrightarrow 0
$$

- TD-C converges in a two-time-scale sense

$$
\alpha, \beta \longrightarrow 0 \quad \frac{\alpha}{\beta} \longrightarrow 0
$$

Off-policy result: Baird's counter-example

Gradient algorithms converge. TD diverges.

Computer Go experiment

- Learn a linear value function (probability of winning) for 9x9 Go from self play
- One million features, each corresponding to a template on a part of the Go board

$$
\left\|\mathbb{E}\left[\Delta \theta_{T D}\right]\right\|
$$ fom

Off-policy RL with FA and TD remains challenging; but there are multiple possible solutions

- Gradient TD, proximal gradient TD, and hybrids
- Emphatic TD
- Higher λ (less TD) on these novel algs!
- Recognizers (less off-policy)
- LSTD (O(n²) methods)

Value-based or policy-based? DQN or A3C?

- This is an application-dependent choice!
- If policy space is simple to parameterize, policy search/AC work very well
- Eg. powerplant control
- If policy space is complicated, value-based is better
- Using a value function can greatly reduce variance

Open questions

- Huge gap between theory and practice!
- Is there a natural way to exploit more stable function approximators? Eg kernels, averages...
- Improve stability of deep RL
- Planning with approximate models
- Exploration, exploration, exploration....

