
ADVANCED POLICY
SEARCH METHODS

Herke van Hoof

RECAP: WHAT IS POLICY SEARCH

➤ Objective: find policy with maximum return

➤ Explicitly represent policy, usually parametric

➤ Expected return, e.g.

➤ discounted cumulative reward

➤ average reward

⇡✓(a|s)

J(✓) = ET

"
TX

i=1

�ir(si,ai)

�����✓
#

J(✓) = Es,a [r(s,a)|✓]

parameter value

return

current parameters

parameter  
 update?

2

RECAP: WHAT IS POLICY SEARCH

➤ Objective: find policy with maximum return

➤ Explicitly represent policy, usually parametric

➤ Expected return, e.g.

➤ discounted cumulative reward

➤ average reward

➤ Fix parameters over an episode: use any zero-order optimiser 
(direct policy search)

➤ Many parameters, or high variance: use intermediate steps 
(e.g. policy gradient theorem)

⇡✓(a|s)

J(✓) = ET

"
TX

i=1

�ir(si,ai)

�����✓
#

J(✓) = Es,a [r(s,a)|✓]

3

RECAP: WHY POLICY SEARCH INSTEAD OF POLICY ITERATION?

➤ Policy iteration: fit Q or V, then greedy policy wrt these

➤ Finding max at each step is costly with continuous actions

➤ PS converges to local optimum (approximate PI not always)

➤ Arguably easier to use prior knowledge as initial policy

➤ Staying close to previous policy tends to be more ‘safe’

➤ Knowledge is most reliable in frequently visited states

➤ Do not forget what was previously learned

4

RECAP: WHY POLICY SEARCH INSTEAD OF POLICY ITERATION?

➤ These advantages especially important for physical systems!

➤ Finding max costly with continuous actions

➤ Stable convergence to local optimum

➤ Arguably easier to use prior knowledge as initial policy

➤ Staying close to data

5

RECAP: WHY POLICY SEARCH INSTEAD OF POLICY ITERATION?

➤ These advantages especially important for physical systems!

➤ Finding max costly with continuous actions

➤ Physical systems usually have continuous controls

➤ Stable convergence to local optimum

➤ Usually limited no. of samples, fitting V can be unstable

➤ Arguably easier to use prior knowledge as initial policy

➤ Demonstration or designed policy often available

➤ Staying close to data

➤ One ‘wild’ rollout could destroy something!

6

STAYING CLOSE TO PREVIOUS POLICIES

➤ Staying close to previous policy tends to be more ‘safe’

➤ Estimated value function can be imprecise  
(approximation or estimation errors)

➤ So we don’t want to fully trust the current best guess!

7

STAYING CLOSE TO PREVIOUS POLICIES

➤ Staying close to previous policy tends to be more ‘safe’

➤ Estimated value function can be imprecise  
(approximation or estimation errors)

➤ So we don’t want to fully trust the current best guess!

+1 +0 +0 +0 +0.9

+10 +9 +8.1 +8.1 +9

+8.1 7.3 +7.3 +8.1 +9

True V

Estimated V

World

greedy
policy

Initial policy:  
50% left or right

Updated policy:  
100% right 8

STAYING CLOSE TO PREVIOUS POLICIES

➤ Staying close to previous policy tends to be more ‘safe’

➤ Estimated value function can be imprecise  
(approximation or estimation errors)

➤ So we don’t want to fully trust the current best guess!

➤ Normal policy gradient: small step in direction of best policy

parameter value

return

current parameters

linear  

approximation

parameter  
 update

9

STAYING CLOSE TO PREVIOUS POLICIES

➤ Staying close to previous policy tends to be more ‘safe’

➤ How close are subsequent policies?

➤ Limit update norm

➤ Policy gradient!

➤ Standard (‘vanilla’) policy gradients maximise Taylor
expansion of J s.t. update is on norm sphere!

✓⇤ � ✓0 =max

d✓
J(✓0 + d✓) s.t. d✓T d✓ = c

⇡max

d✓
J(✓0) + (r✓J(✓0))

T d✓ s.t. d✓T d✓ = c

/r✓J(✓0)

10

STAYING CLOSE TO PREVIOUS POLICIES

➤ Standard (‘vanilla’) policy gradients maximise Taylor
expansion of J s.t. update is on norm sphere!

➤ Euclidean norm is sensitive to parametrisation:

➤ Can we express policy closeness covariantly?

➤ (covariant: independent of choice of parametrisation)

0 2 4 6 8 10 12 14

variance

1 1.5 2 2.5 3 3.5 4

standard deviation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

precision

11

STAYING CLOSE TO PREVIOUS POLICIES

➤ Why do we want covariant norm (invariant to parametrisation)?

➤ Don’t waste time tuning parametrisation

➤ Parameters with different ‘meaning’: mean and precision

➤ does a norm in this space make sense?

➤ step size never right on all parameters if scale different 
(have to take step small enough for most sensitive direction)

➤ Correlations between parameters ignored 
(feature modulated by more parameters easier to change)

➤ Conceptually, it’s not the change in parameters we care about!

➤ Limit change in trajectories, states, and/or actions?

12

STAYING CLOSE TO PREVIOUS POLICIES

➤ How to express policy closeness covariantly?

➤ Kullback-Leibler (KL) divergence is information-theoretic
quantification of difference between probability distributions

➤ Asymmetric, minimal value of 0 when p=q

➤ KL is invariant under parameter transformations

➤ Idea: KL between policies, state-action distributions, or
trajectory distributions to limit policy change

DKL(P ||Q) =

Z 1

�1
p(x) log

p(x)

q(x)

dx

13

STAYING CLOSE TO PREVIOUS POLICIES

➤ Idea: use KL to specify how the policy can change in one step

➤ Several algorithms can be understood using this idea

➤ Natural policy gradient

➤ Trust region policy optimization (TRPO)

➤ Relative entropy policy search (REPS)

14

STAYING CLOSE TO PREVIOUS POLICIES

➤ Idea: use KL to specify how the policy can change in one step

➤ Several algorithms can be understood using this idea

➤ Natural policy gradient

➤ Trust region policy optimization (TRPO)

➤ Relative entropy policy search (REPS)

15

NATURAL POLICY GRADIENT

➤ Idea: make policy gradients covariant [Kakade 2002]

➤ this yields an algorithm that exploits structure of parameters

➤ Here, will look how it relates to KL [Bagnell 2003]

16

NATURAL POLICY GRADIENT

➤ Recall vanilla policy gradients

➤ replace constraint by quadratic expansion of KL divergence

➤ since minimal value of 0 is reached if parameter doesn’t change

➤ direction of KL does not matter for quadratic expansion

✓⇤ � ✓0 =max

d✓
J(✓0 + d✓) s.t. d✓T d✓ = c

⇡max

d✓
J(✓0) + (r✓J(✓0))

T d✓ s.t. d✓T d✓ = c

/r✓J(✓0)

c = Es [DKL(⇡(a|s;✓0)||⇡(a|s;✓)] = EKL(✓)

⇡ EKL(✓0) + d✓T (rd✓ EKL) (✓0) + d✓T �
r2

d✓ EKL
�
(✓0)d✓

⇡ 0 + d✓T �
r2

d✓ EKL
�
(✓0)d✓

17

NATURAL POLICY GRADIENT

➤ This is the squared length with respect to matrix

➤ is the Fisher information matrix of the policy!

➤ characterises information about parameters in observation

c = Es [DKL(⇡(a|s;✓0)||⇡(a|s;✓)] = EKL(✓)

⇡ d✓T �
r2

d✓ EKL
�
(✓0)d✓

F = r2
d✓ EKL = Es

⇥
r2

d✓DKL(⇡(a|s;✓0)||⇡(a|s;✓)]
⇤
, where

r2
d✓DKL = r2

d✓

Z

⇥
⇡(a|s;✓0) log

⇡(a|s;✓0)

⇡(a|s;✓0 + d✓)

= Ea|s;✓0
⇥
r2

d✓ log ⇡(a|s;✓0 + d✓)
⇤

= Fs

[Kakade 2002, Bagnell 2003]
18

NATURAL POLICY GRADIENT

➤ This is the squared length with respect to matrix

➤ is the Fisher information matrix of the policy!

➤ characterises information about parameters in observation

c = Es [DKL(⇡(a|s;✓0)||⇡(a|s;✓)] = EKL(✓)

⇡ d✓T �
r2

d✓ EKL
�
(✓0)d✓

F = r2
d✓ EKL = Es

⇥
r2

d✓DKL(⇡(a|s;✓0)||⇡(a|s;✓)]
⇤
, where

r2
d✓DKL = r2

d✓

Z

⇥
⇡(a|s;✓0) log

⇡(a|s;✓0)

⇡(a|s;✓0 + d✓)

= Ea|s;✓0
⇥
r2

d✓ log ⇡(a|s;✓0 + d✓)
⇤

= Fs

[Kakade 2002, Bagnell 2003]
19

NATURAL POLICY GRADIENT

➤ Consider now the modified optimisation problem

➤ solve constraint optimisation problem: Lagrangian

➤ At optimality, partial derivatives of L are 0

✓⇤ � ✓0 =max

d✓
J(✓0 + d✓) s.t. d✓TFd✓ = c

⇡max

d✓
J(✓0) + (r✓J(✓0))

T d✓ s.t. d✓TFd✓ = c

[Kakade 2002, Bagnell 2003]

@L(d✓,�)

@d✓
= 0

@L(d✓,�)

@�
= 0

(r✓J(✓0)) + �Fd✓ = 0

d✓TFd✓ = c

L(d✓,�) = J(✓0) +r✓J(✓0)
T d✓ + �(d✓TFd✓ � c)

20

NATURAL POLICY GRADIENT

➤ So optimality conditions are

➤ From the first line, update direction

➤ This is the natural gradient 
(natural gradients in ML used at least since [Amari, 1998],
used in RL since [Kakade 2002])

(r✓J(✓0)) + �Fd✓ = 0

d✓TFd✓ = c

✓⇤ � ✓0 / F�1r✓J(✓0)

21

NATURAL POLICY GRADIENT

➤ The policy is adapted using the natural gradient

➤ We can use any known approach for the vanilla gradient

➤ Will this always improve J?

➤ For small enough step size, objective improves if

➤ Fisher information is positive definite! So yes!

✓⇤ � ✓0 / F�1r✓J(✓0)

(✓⇤ � ✓0)
Tr✓J(✓0) > 0

(r✓J(✓0))
TF�1r✓J(✓0)

?
> 0

22

NATURAL POLICY GRADIENT

➤ The policy is adapted using the natural gradient

➤ We can use any known approach for the vanilla gradient

➤ Will this always improve J?

➤ For small enough step size, objective improves if

➤ Fisher information is positive definite! So yes! 
(geometric perspective: inner product with vanilla gradient)

✓⇤ � ✓0 / F�1r✓J(✓0)

(✓⇤ � ✓0)
Tr✓J(✓0) > 0

(r✓J(✓0))
TF�1r✓J(✓0)

?
> 0

23

NATURAL POLICY GRADIENT

increasing  
return

param 1

param 2

constant euclidean norm
current parameters

param 1

param 2

constant norm wrt F

24

NATURAL POLICY GRADIENT

param 1

param 2

param 1

param 2

Regular gradient Natural gradient

Direction of expected return Within 90° of direction of return
Possibly bigger steps (depends on F)

25

NATURAL ACTOR CRITIC

➤ Natural policy gradients can be used in actor-critic set-up

➤ Additional benefit: F cancels out!

➤ Natural gradients can help where the likelihood is almost flat

[Peters 2008]
26

NATURAL ACTOR CRITIC

➤ Natural policy gradients can be used in actor-critic set-up

➤ Additional benefit: F cancels out!

➤ Natural gradients can help where the likelihood is almost flat

[Peters 2008]
27

NATURAL ACTOR CRITIC

[Peters 2008]
28

NATURAL ACTOR CRITIC EXAMPLE

[Peters 2008]
29

NATURAL POLICY GRADIENTS

➤ Advantages

➤ Usually needs less training than regular policy gradients

➤ Can use most tricks used for vanilla gradients

➤ Inherits advantageous properties from vanilla gradients

➤ Relatively easy to implement

➤ Limitations

➤ Need Fisher information matrix

➤ Known for some standard distributions, e.g. Gaussian

➤ PG methods: high variance, might need many steps

30

STAYING CLOSE TO PREVIOUS POLICIES

➤ Idea: use KL to specify how the policy can change in one step

➤ Natural policy gradient

➤ Trust region policy optimization (TRPO)

➤ Relative entropy policy search (REPS)

31

TRUST REGION POLICY OPTIMISATION

➤ Trust region: region where approximation is valid

➤ Optimization step shouldn’t leave this region

➤ Main idea goes back long way, e.g. Levenberg (1944)

➤ Schulman’s “Trust Region policy optimisation” uses this
notion to define a new RL algorithm

➤ Type of trust region motivated by theoretical bound

32

TRPO: THEORETICAL BOUND GUARANTEES IMPROVEMENT

➤ Idea: take larger steps while guaranteeing improvement

1. approximate the return function

2. apply a penalty term to yield lower bound

3. maximize this lower bound

parameter value

return

current parameters

 approximation

lower bound
[Schulman 2016]

33

TRPO 1: APPROXIMATE THE RETURN FUNCTION

➤ Why approximate? (Simplified argument)

➤ However, samples are from previous policy.

➤ Know how policy changed, correct with importance sampling

➤ But we don’t know state distribution changed! Approximate:

⌘(✓) = Es,a [r(s,a)|✓]

⌘(✓) ⇡ L✓0(✓) = Es,a


p(a|s;✓)
p(a|s;✓0)

r(s,a)|✓0
�

Ea⇠⇡✓(s)[r(s,a)] =

Z

A
⇡✓(a|s)r(s,a)da

=

Z

A
⇡✓0(a|s) ⇡✓(a|s)

⇡✓0(a|s)r(s,a)da = Ea⇠⇡✓0 (s)


⇡✓(a|s)
⇡✓0(a|s)r(s,a)

�

[Schulman 2016]
34

Ea⇠⇡✓(s)[r(s,a)] =

Z

A
⇡✓(a|s)r(s,a)da

=

Z

A
⇡✓0(a|s) ⇡✓(a|s)

⇡✓0(a|s)r(s,a)da = Ea⇠⇡✓0 (s)


⇡✓(a|s)
⇡✓0(a|s)r(s,a)

�

TRPO 2: GET LOWER BOUND

➤ [Schulman, 2016] shows the following holds:

⌘(✓) � L✓0
(✓)� 2✏�

(1� �)2
max

s
DKL(⇡✓0

(·|s)||⇡✓0
(·|s))

lower bound

depends on problem,  
old policy

approximation maximum KL

parameter value

return

current parameters

 approximation

lower bound

35

TRPO 3: FIND NEW POLICY

➤ Policy maximising lower-bound has guaranteed improvement

➤ In practice, need to approximate:

➤ average KL instead of max, constraint instead of penalty

➤ step in direction of natural gradient, size determined by KL

parameter value

return

current parameters

 approximation

lower bound

36

CONNECTION TO NATURAL GRADIENTS

➤ Natural gradients find direction that improves most s.t. KL

➤ Step size is manually set

➤ Easier: set max KL

➤ TRPO: solve for step size β in

➤ This is based on approximation (linear L, quadratic KL):

➤ follow by line search using analytic expressions of L, KL

➤ prevents overshooting

DKL ⇡ �2sTFss/2

parameter value

return

  L (approx J) linear approx to L

trust region  
(KL < max_KL)

37

TRPO EVALUATION
different TRPO variants
direct policy search
natural gradients,  
reward-weighted regression

neural network policy used

[Schulman, 2015]
38

TRPO EXAMPLE

TRPO with generalised advantage estimate, [Schulman 2016]
39

TRPO

➤ Advantages

➤ Can take larger steps than natural gradients

➤ In principle, guaranteed to converge

➤ Works well with neural network controllers

➤ Disadvantages

➤ Approximations break guarantee

➤ Typically, still need quite many trials

➤ Need Q-estimates, can be high-variance or need simulator

40

STAYING CLOSE TO PREVIOUS POLICIES

➤ Idea: use KL to specify how the policy can change in one step

➤ Natural policy gradient

➤ Trust region policy optimization (TRPO)

➤ Relative entropy policy search (REPS)

41

REPS

➤ Relative Entropy Policy search also uses KL divergence

➤ Again: stay close to previous data

➤ Knowledge most reliable in frequently visited states

➤ Don’t forget what was earlier learned

➤ Small change in policy can have large impact on state
distribution - limiting expected policy divergence not enough!

➤ Think of policy that can go one step left or right in any state

42

REPS

➤ Small change in policy can have large impact on state
distribution - limiting expected policy divergence not enough!

➤ So, limit KL from reference to next state-action distribution

➤ Could allow even larger steps in policy space

43

c = Es [DKL(⇡(a|s;✓0)||⇡(a|s;✓)] = EKL(✓)

⇡ d✓T �
r2

d✓ EKL
�
(✓0)d✓

max

⇡,µ⇡

ZZ

S⇥A
⇡(a|s)µ⇡(s)Ra

sdads,

s. t.

ZZ

S⇥A
⇡(a|s)µ⇡(s)dads = 1,

8s0.
ZZ

S⇥A
⇡(a|s)µ⇡(s)Pa

ss0dads = µ⇡(s
0
),

KL(⇡(a|s)µ⇡(s)||q(s,a))  ✏,

REPS

➤ So, limit KL from reference to next state-action distribution

max

⇡,µ⇡

ZZ

S⇥A
⇡(a|s)µ⇡(s)Ra

sdads,

s. t.

ZZ

S⇥A
⇡(a|s)µ⇡(s)dads = 1,

8s0.
ZZ

S⇥A
⇡(a|s)µ⇡(s)Pa

ss0dads = µ⇡(s
0
),

KL(⇡(a|s)µ⇡(s)||q(s,a))  ✏,

maximize expected reward

normalised distribution

Bellman flow constraint

KL constraint

new policy and induced state distribution

reference or sampling distribution

[Peters 2010]
44

REPS

➤ So, limit KL from reference to next state-action distribution

➤ Solve using Lagrangian optimisation

max

⇡,µ⇡

ZZ

S⇥A
⇡(a|s)µ⇡(s)Ra

sdads,

s. t.

ZZ

S⇥A
⇡(a|s)µ⇡(s)dads = 1,

8s0.
ZZ

S⇥A
⇡(a|s)µ⇡(s)Pa

ss0dads = µ⇡(s
0
),

KL(⇡(a|s)µ⇡(s)||q(s,a))  ✏,

maximize expected reward

normalised distribution

Bellman flow constraint

KL constraint

new policy and induced state distribution

reference or sampling distribution

[Peters 2010]
45

REPS

➤ Lagrangian V looks like a value function! Policy like softmax!

➤ Now know form of p, but dependent on unknown parameters

[Peters 2010]
46

REPS

➤ Lagrangian V looks like a value function! Policy like softmax!

➤ Now know form of p, but dependent on unknown parameters

➤ Define search space for V, e.g. linear

➤ Re-insert in Lagrangian

➤ Expectation wrt q can be approximated using samples

V (s) = �(s)T✓

[Peters 2010]
47

REPRESENTING THE POLICY

➤ Generally, can’t represent the policy in simple form

➤ Use weighted samples to represent it

➤ Then, we can fit a stochastic controller

samples
from q re-weighting factors

states

actions

Bad sample  
(low weight)

Good sample  
(high weight)

48

REPRESENTING THE POLICY

➤ Generally, can’t represent the policy in simple form

➤ Use weighted samples to represent it

➤ Then, we can fit a stochastic controller

samples
from q re-weighting factors

states

actions

Bad sample  
(low weight)

Good sample  
(high weight)

49

REPS

➤ REPS-style KL bound or TRPO style KL bound 
(step-based variant)

[Lioutikov, 2014]

better final policysimilar final policy

50

REPS

➤ Learning pendulum swing-up from vision 
(non-parametric variant)

[van Hoof, 2015] 51

REPS

➤ Learning to manipulate 
(non-parametric variant)

[van Hoof, 2015] 52

REPS

➤ Advantages

➤ Should be able to take larger steps than TRPO, NPG

➤ Consequentially, is relatively data-efficient

➤ Variant has optimal regret in adversarial MDPs [Zimin 2013]

➤ Disadvantages

➤ Tricky to implement

➤ Requires policy approximation step

➤ Usually with linear or Gaussian process policies

➤ Optimization problem computation intensive

53

CONCLUSIONS

➤ Better metric for policy updates: use structure of parameters

➤ Allows taking larger steps in policy space than e.g. PGT

➤ NPG, NAC: easy to implement

➤ TRPO: larger steps (faster), use with neural network

➤ REPS: even larger steps (?), tricky to implement, linear or
Gaussian controllers (for now)

54

REFERENCES
➤ [Amari 1998] Amari S.-i., 1998, Natural Gradient Works Efficiently in Learning. Neural Computation, 10, pp.

251–276

➤ [Bagnell 2003] Bagnell, J.A. and Schneider, J., 2003. Covariant policy search. IJCAI.

➤ [Kakade 2002] Kakade, S., 2002. A natural policy gradient. Advances in neural information processing systems,
2, pp.1531-1538.

➤ [Lioutikov 2014] Lioutikov, R., Paraschos, A., Peters, J. and Neumann, G., 2014. Generalizing Movements with
Information-Theoretic Stochastic Optimal Control. Journal of Aerospace Information Systems, 11(9), pp.579-595

➤ [Peters 2008] Peters, J. and Schaal, S., 2008. Natural actor-critic. Neurocomputing, 71(7), pp.1180-1190

➤ [Peters 2010] Peters, J., Mülling, K. and Altun, Y., 2010, July. Relative Entropy Policy Search. In AAAI (pp.
1607-1612).

➤ [Schulman 2015] Schulman, J., Levine, S., Abbeel, P., Jordan, M.I. and Moritz, P., 2015. Trust Region Policy
Optimization. In ICML (pp. 1889-1897).

➤ [Schulman 2016] Schulman, J., Moritz, P., Levine, S., Jordan, M.I. and Abbeel, P., 2016. High-Dimensional
Control using Generalized Advantage Estimation. In ICLR.

➤ [Van Hoof 2015] Van Hoof, H., Peters, J. and Neumann, G., 2015. Learning of Non-Parametric Control Policies
with High-Dimensional State Features. In AIStats.

➤ [Zimin 2013] Zimin, A. and Neu, G., 2013. Online learning in episodic Markovian decision processes by relative
entropy policy search. In NIPS (pp. 1583-1591).

55

