ADVANCED POLICY
SEARCH METHODS



RECAP: WHAT IS POLICY SEARCH

» Objective: find policy with maximum return
> Explicitly represent policy, usually parametric mg(als)

» Expected return, e.g.

A
> discounted cumulative reward J(8) =Er | » ~'r(s;,a;)| 6
1=1

> average reward J(0) = Ega[r(s,a)|0]

/ current parameters
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RECAP: WHAT IS POLICY SEARCH

» Objective: find policy with maximum return
> Explicitly represent policy, usually parametric mg(als)

» Expected return, e.g.

A
> discounted cumulative reward J(8) =Er | » ~'r(s;,a;)| 6
1=1

~

> average reward J(0) = Ega[r(s,a)|0]

» Fix parameters over an episode: use any zero-order optimiser
(direct policy search)

» Many parameters, or high variance: use intermediate steps
(e.g. policy gradient theorem)



RECAP: WHY POLICY SEARCH INSTEAD OF POLICY ITERATION?

» Policy iteration: fit Q or V, then greedy policy wrt these

» Finding max at each step is costly with continuous actions
> PS converges to local optimum (approximate PI not always)
» Arguably easier to use prior knowledge as initial policy
» Staying close to previous policy tends to be more ‘safe’

» Knowledge is most reliable in frequently visited states

» Do not forget what was previously learned
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RECAP: WHY POLICY SEARCH INSTEAD OF POLICY ITERATION?

» These advantages especially important for physical systems!
» Finding max costly with continuous actions
» Physical systems usually have continuous controls
» Stable convergence to local optimum
» Usually limited no. of samples, fitting V can be unstable
» Arguably easier to use prior knowledge as initial policy
» Demonstration or designed policy often available
» Staying close to data

» One ‘wild’ rollout could destroy something!



STAYING CLOSE TO PREVIOUS POLICIES

» Staying close to previous policy tends to be more ‘safe’

» Estimated value function can be imprecise
(approximation or estimation errors)

» So we don’t want to fully trust the current best guess!



STAYING CLOSE TO PREVIOUS POLICIES

» Staying close to previous policy tends to be more ‘safe’

» Estimated value function can be imprecise
(approximation or estimation errors)

» So we don’t want to fully trust the current best guess!

Initial policy:
50% left or right

True V +10 | +9 | +81 | +8.1| 49 *

EstimatedV | +8.1 | 7.3 +9

World +1 +0 +0 +0 | +0.9

Updated policy:
100% right ¢




STAYING CLOSE TO PREVIOUS POLICIES

» Staying close to previous policy tends to be more ‘safe’

» Estimated value function can be imprecise
(approximation or estimation errors)

» So we don’t want to fully trust the current best guess!

» Normal policy gradient: small step in direction of best policy

return

arameter
P update

parameter value



STAYING CLOSE TO PREVIOUS POLICIES

)

» Staying close to previous policy tends to be more ‘safe
» How close are subsequent policies?

» Limit update norm

6" — 6y =max J(6 + db) s.t. d81dO = ¢
~max J(6o) + (Vo J(00))'de s.t. d601dO = ¢
OCVQJ(H())

» Policy gradient!

» Standard (‘vanilla’) policy gradients maximise Taylor
expansion of J s.t. update is on norm sphere!
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STAYING CLOSE TO PREVIOUS POLICIES

» Standard (‘vanilla’) policy gradients maximise Taylor
expansion of ] s.t. update is on norm sphere!

» Euclidean norm is sensitive to parametrisation:

‘ O O O O O
| | | | | | |
0 2 4 6 8 10 12 14
variance
‘ O O O O O
| | | | | |
1 1.5 P 2.5 3 3.5 4
standard deviation
‘ QD @) O
| | | | | | |
0 0.1 0.2 0.3 04 0.5 0.6 0.7
precision

» Can we express policy closeness covariantly?

» (covariant: independent of choice of parametrisation)
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STAYING CLOSE TO PREVIOUS POLICIES

» Why do we want covariant norm (invariant to parametrisation)?
» Don’t waste time tuning parametrisation
» Parameters with different ‘meaning’: mean and precision

» does a norm in this space make sense?

> step size never right on all parameters if scale different
(have to take step small enough for most sensitive direction)

» Correlations between parameters ignored
(feature modulated by more parameters easier to change)

» Conceptually, it’s not the change in parameters we care about!

» Limit change in trajectories, states, and/or actions?
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STAYING CLOSE TO PREVIOUS POLICIES

» How to express policy closeness covariantly?

» Kullback-Leibler (KL) divergence is information-theoretic
quantification of difterence between probability distributions

O

Da(PlQ) = [ pla) m%m

» Asymmetric, minimal value of O when p=q

» KL is invariant under parameter transformations

» Idea: KL between policies, state-action distributions, or
trajectory distributions to limit policy change
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STAYING CLOSE TO PREVIOUS POLICIES

> Idea: use KL to specify how the policy can change in one step
» Several algorithms can be understood using this idea

» Natural policy gradient

» Trust region policy optimization (TRPO)

» Relative entropy policy search (REPS)

14



STAYING CLOSE TO PREVIOUS POLICIES

> Idea: use KL to specify how the policy can change in one step
» Several algorithms can be understood using this idea

» Natural policy gradient

» Trust region policy optimization (TRPO)

» Relative entropy policy search (REPS)
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NATURAL POLICY GRADIENT

» Idea: make policy gradients covariant [Kakade 2002 ]
> this yields an algorithm that exploits structure of parameters

» Here, will look how it relates to KL [Bagnell 2003 ]
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NATURAL POLICY GRADIENT

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Recall vanilla policy gradients

0" — 6y =max.J(6) + d6) s.t. d01dO = ¢
~max J(6o) + (Vo J(00))"dO s.t. d0' dO = ¢
OCV@J(H())

» replace constraint by quadratic expansion of KL divergence

c = Eg [Dky(w(als; 8g)||m(als; 0)] = EKL(0)
~ EKL(0) + d0" (V49 EKL) (09) + d8" (V24 EKL) (60)d@
~ 0 +dO" (VigEKL) (80)d0

» since minimal value of O is reached if parameter doesn’t change

» direction of KL does not matter for quadratic expansion
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NATURAL POLICY GRADIENT

¢ = B [Dkr,((als; 8)||7(als; 6)] = EKL(8)
~ d0" (Ve EKL) (8)d0

» This is the squared length with respect to matrix

| Vfw EKL = E, [meDKL(W(a\S; 0o)||m(als; 0)]] , where

v2 D :v2 / 7T(a’|S7 0
WOTRE TN (als; 0y + dO)

= Ea|s:0, [V?w log w(als; 8y + dG)]
— [,

m(als; 0g) log
-

> is the Fisher information matrix of the policy!

» characterises information about parameters in observation
[Kakade 2002, Bagnell 2003]
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NATURAL POLICY GRADIENT

¢ = B [Dkr,((als; 8)||7(als; 6)] = EKL(8)
~ d0" (Ve EKL) (8)d0

» This is the squared length with respect to matrix

F = V50 EKL = E; [V3e Dk (7(als; 0o)||7(als; 0)]] , where

v2 D :v2 / 7T(a’|S7 0
WOTRE TN (als; 0y + dO)

= Ea|s:0, [V?w log w(als; 8y + dG)]
— [,

m(als; 0g) log
-

> is the Fisher information matrix of the policy!

» characterises information about parameters in observation
[Kakade 2002, Bagnell 2003]
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NATURAL POLICY GRADIENT

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Consider now the modified optimisation problem

6" — 69 =max J(6) + dO) s.t. d0' Fdf = ¢
~max J(0)) + (VoJ(60))'de s.t. d@' F'dO = ¢

> solve constraint optimisation problem: Lagrangian

L(dO,)\) = J(0o) + Ve J(00)'dO + \(d6' FdO — ¢)

> At optimality, partial derivatives of L are O

OL(d6,)) _
0de (VoJ(0g)) + AFdO =0
OL(d, ) _ A0 FdO = ¢
O\

[Kakade 2002, Bagnell 2003 ]
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NATURAL POLICY GRADIENT

» So optimality conditions are
(VQJ(H())) + ANFdf =0
d0" FdO = c

» From the first line, update direction

0" — 0y x F~'VeJ(6))

» This is the natural gradient
(natural gradients in ML used at least since [Amari, 1998],
used in RL since [Kakade 2002])
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NATURAL POLICY GRADIENT

» The policy is adapted using the natural gradient
0" — 0y x F~'VeJ(0))
» We can use any known approach for the vanilla gradient
» Will this always improve J?
» For small enough step size, objective improves if
(0% — 09) Vo J(0y) >0
(Vo J(00) F~1VeJ(6p) ; 0

» Fisher information is positive definite!
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NATURAL POLICY GRADIENT

» The policy is adapted using the natural gradient
0" — 0y x F~'VeJ(0))
» We can use any known approach for the vanilla gradient
» Will this always improve J?
» For small enough step size, objective improves if
(0% — 09) Vo J(0y) >0
(Vo J(00) F~1VeJ(6p) ; 0

» Fisher information is positive definite! So yes!

(geometric perspective: inner product with vanilla gradient)
23



NATURAL POLICY GRADIENT

current parameters constant norm wrt F
constant euclidean norm
A

increasing
return

param 2 param 2

param 1 param I
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NATURAL POLICY GRADIENT

Regular gradient Natural gradient

param 2 param 2

param 1 param I

Direction of expected return Within 90° of direction of return

Possibly bigger steps (depends on F)
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NATURAL ACTOR CRITIC

» Natural policy gradients can be used in actor-critic set-up
» Additional benefit: F cancels out!

» Natural gradients can help where the likelihood is almost flat

[Peters 2008]
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NATURAL ACTOR CRITIC

» Natural policy gradients can be used in actor-critic set-up
» Additional benefit: F cancels out!

» Natural gradients can help where the likelihood is almost flat

(a)‘Vanilla’ policy gradients  (b) Natural policy gradlents
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NATURAL ACTOR CRITIC

(1) Cart-Pole Comparison
(a) Physical system (b) Performance
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[Peters 2008]
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NATURAL ACTOR CRITIC EXAMPLE

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

[Peters 2008]
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NATURAL POLICY GRADIENTS

» Advantages
» Usually needs less training than regular policy gradients
» (Can use most tricks used for vanilla gradients
» Inherits advantageous properties from vanilla gradients
» Relatively easy to implement
» Limitations
» Need Fisher information matrix
» Known for some standard distributions, e.g. Gaussian

» PG methods: high variance, might need many steps
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STAYING CLOSE TO PREVIOUS POLICIES

> Idea: use KL to specify how the policy can change in one step
» Natural policy gradient
» Trust region policy optimization (TRPO)

» Relative entropy policy search (REPS)
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TRUST REGION POLICY OPTIMISATION

» Trust region: region where approximation is valid
» Optimization step shouldn’t leave this region
» Main idea goes back long way, e.g. Levenberg (1944)

» Schulman’s “Trust Region policy optimisation” uses this
notion to define a new RL algorithm

> Type of trust region motivated by theoretical bound
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TRPO: THEORETICAL BOUND GUARANTEES IMPROVEMENT

> Idea: take larger steps while guaranteeing improvement
1. approximate the return function
2. apply a penalty term to yield lower bound

3. maximize this lower bound

A / current parameters

.
return «%‘
o
<,
(o

lower boun

> (}O
2

[Schulman 2016]

33

pa/ameter value



TRPO 1: APPROXIMATE THE RETURN FUNCTION

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Why approximate? (Simplified argument)
1(0) = Esalr(s,a)|0]

» However, samples are from previous policy.

» Know how policy changed, correct with importance sampling

Lo (s)7(S,a)] :/ me(als)r(s,a)da

A

o(afs)  [melal)
— To’rlAlS T S,a da: <L‘a_f\_n'(' 7 (S r S7a‘
ool ey o ®) | g (als) >

» But we don’t know state distribution changed! Approximate:

TalAalS
0(0) ~ Lo (0) = Bgn | T2 g a0

Te’(als)

[Schulman 2016]
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TRPO 2: GET LOWER BOUND

» [Schulman, 2016] shows the following holds:

n(@) >
ap

lower bound

A / current parameters

.
return %
(@)
2,
(o

lower boun
>

N
2

pa/ameter value
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TRPO 3: FIND NEW POLICY

» Policy maximising lower-bound has guaranteed improvement
» In practice, need to approximate:
» average KL instead of max, constraint instead of penalty

> step in direction of natural gradient, size determined by KL

A / current parameters

.
return "%
o
2,
(o

lower boun
>

2
2

pa/ameter value
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CONNECTION TO NATURAL GRADIENTS

» Natural gradients find direction that improves most s.t. KL
» Step size is manually set

» Easier: set max KL

» TRPO: solve for step size p in Dky, =~ B%s! F.s /2

» This is based on approximation (linear L, quadratic KL):

» follow by line search using analytic expressions of L, KL
07@9 2 trust region
9 K
%, (KL < max_KL)

> prevents overshooting

©
return a

37
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TRPO EVALUATION

Sutmmer | different TRPO variants
- direct policy search
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TRPO EXAMPLE

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

TRPO with generalised advantage estimate, [Schulman 2016]
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» Advantages
» Can take larger steps than natural gradients
» In principle, guaranteed to converge
» Works well with neural network controllers
» Disadvantages
» Approximations break guarantee
» Typically, still need quite many trials

» Need Q-estimates, can be high-variance or need simulator
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STAYING CLOSE TO PREVIOUS POLICIES

> Idea: use KL to specify how the policy can change in one step
» Natural policy gradient
» Trust region policy optimization (TRPO)

» Relative entropy policy search (REPS)
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» Relative Entropy Policy search also uses KL divergence
» Again: stay close to previous data
» Knowledge most reliable in frequently visited states
» Don’t forget what was earlier learned

» Small change in policy can have large impact on state
distribution - limiting expected policy divergence not enough!

» Think of policy that can go one step left or right in any state

42



» Small change in policy can have large impact on state
distribution - limiting expected policy divergence not enough!

Es [Dkw(m(als; 00)||m(als; 0))
» So, limit KL from reference to next state-action distribution
KL(7(als)ur(s)|lq(s,a))

» Could allow even larger steps in policy space
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» So, limit KL from reference to next state-action distribution
new policy and induced state distribution

max / / m(als)ur(s)Redads, maximize expected reward
T SxA
s. t. // m(als)ur(s)dads =1, normalised distribution
SxA
Vs’ / / m(als)uy(s)P2, dads = (s, Bellman flow constraint
SxA
KL(TF(8_|S)/L7T(S < e, KL constraint

[Peters 2010]
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» So, limit KL from reference to next state-action distribution
new policy and induced state distribution

max / / m(als)ur(s)Redads, maximize expected reward
T SxA
s. t. // m(als)ur(s)dads =1, normalised distribution
SxA
Vs’ / / m(als)uy(s)P2, dads = (s, Bellman flow constraint
SxA
KL(TF(8_|S)MW(S < e, KL constraint

» Solve using Lagrangian optimisation

Lip,m,V.\) = // pr(s,a)Ridads | /V(s") (// pr(s,a)Pi,dads p,,,(s')) ds’
AxS S AxS

+ A (1 i /] pn(s,a)dads) +n (e — // P (8. a)log p",('s’ 2) dads) .
AxSE AxS qis, aﬁ

[Peters’2010]
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RE+ [V (s :a ,ds’ — (S))exp (—/\—n>

Px(s,a) = q(s,a)exp (

» Lagrangian V looks like a value function! Policy like softmax!

» Now know form of p, but dependent on unknown parameters

[Peters 2010]
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a npa Jo! oy
RE+ [V (s ):Ss,ds V(s)) - ( A n)

Pr(s,a) =g(s,a)exp (

» Lagrangian V looks like a value function! Policy like softmax!
» Now know form of p, but dependent on unknown parameters

> Define search space for V, e.g. linear V (s) = ¢(s)* 0

» Re-insert in Lagrangian
Pr (Sa a)
q(s, a)

9(77, Vv, /\) =A + ne+ ]Epﬂ-(s,a) 5(57 a, V) — A —nlog

=ne + 1 log (]Eq(s,a) exp (5(87 a, V)/U)) )

» Expectation wrt q can be approximated using samples
[Peters 2010]
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REPRESENTING THE POLICY

» Generally, can’t represent the policy in simple form

Pe(s,a) = g(s,a) exp (Ra + fsV(s')::s'ds' - V(s)) - (—,\ - n)

samples
re-weighting factors

» Use weighted samples to represent it

» Then, we can fit a stochastic controller
Bad sample

$ o (low weight)
o

‘@
'/ Good sample
o (high weight)

actions

states
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REPRESENTING THE POLICY

» Generally, can’t represent the policy in simple form

Pe(s,a) = g(s,a) exp (Ra + fsV(s')::s'ds' - V(s)) - (—,\ - n)

samples
re-weighting factors

» Use weighted samples to represent it

» Then, we can fit a stochastic controller
Bad sample

$ ° ‘ o (low weight)

actions / ‘ \ Good sample
o ’/ (high weight)

states

49



» REPS-style KL bound or TRPO style KL bound
(step-based variant)

T similar final policy , . 10" better final policy
(o) Q@
© 3.00¢+ S 4.00!
. 5
24.00¢ 8
= c 00 = 5.00
13N S 6.00
E 6.00 + g
® 7.00| o 7.00
o —ITSOC = _ —ITSOC
> 8.007 —KL-bound on policy > e — KL-bound on policy
9.00 —No KL-bound 9.00 —No KL-bound
°05101520253035404550 '05101520253035404550
iterations iterations
(a) 4-link reaching.No Gravity. e = 0.3 (b) 4-link reaching.With Gravity. € = 0.3

[Lioutikov, 2014]

50



» Learning pendulum swing-up from vision
(non-parametric variant)

Information-Theoretic Reinforcement
Learning With Non-Parametric Policies

Image-based real-rochot pendulum swing-up

[van Hoof, 2015] s



» Learning to manipulate
barametric variant

Learning Robot In-Hand

Manipulation with Tactile
Features

Herke van Hoof, Tucker Herman,
Gerhard Neumann, and Jan Peters
TU Darmstadt

[van Hoof, 2015] =



» Advantages

» Should be able to take larger steps than TRPO, NPG

» Consequentially, is relatively data-efficient

» Variant has optimal regret in adversarial MDPs [Zimin 2013]
» Disadvantages

> Tricky to implement

» Requires policy approximation step

» Usually with linear or Gaussian process policies

» Optimization problem computation intensive
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CONCLUSIONS

» Better metric for policy updates: use structure of parameters
> Allows taking larger steps in policy space than e.g. PGT

» NPG, NAC: easy to implement

» TRPO: larger steps (faster), use with neural network

» REPS: even larger steps (?), tricky to implement, linear or
Gaussian controllers (for now)
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