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RECAP: WHAT IS POLICY SEARCH

➤ Objective: find policy with maximum return 

➤ Explicitly represent policy, usually parametric 

➤ Expected return, e.g.  

➤ discounted cumulative reward  

➤ average reward
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RECAP: WHAT IS POLICY SEARCH

➤ Objective: find policy with maximum return 

➤ Explicitly represent policy, usually parametric 

➤ Expected return, e.g.  

➤ discounted cumulative reward  

➤ average reward 

➤ Fix parameters over an episode: use any zero-order optimiser 
(direct policy search) 

➤ Many parameters, or high variance: use intermediate steps 
(e.g. policy gradient theorem)

⇡✓(a|s)

J(✓) = ET

"
TX

i=1

�ir(si,ai)

�����✓
#

J(✓) = Es,a [r(s,a)|✓]

3



RECAP: WHY POLICY SEARCH INSTEAD OF POLICY ITERATION?

➤ Policy iteration: fit Q or V, then greedy policy wrt these 

➤ Finding max at each step is costly with continuous actions 

➤ PS converges to local optimum (approximate PI not always) 

➤ Arguably easier to use prior knowledge as initial policy 

➤ Staying close to previous policy tends to be more ‘safe’ 

➤ Knowledge is most reliable in frequently visited states 

➤ Do not forget what was previously learned
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RECAP: WHY POLICY SEARCH INSTEAD OF POLICY ITERATION?

➤ These advantages especially important for physical systems! 

➤ Finding max costly with continuous actions 

➤ Stable convergence to local optimum 

➤ Arguably easier to use prior knowledge as initial policy 

➤ Staying close to data
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RECAP: WHY POLICY SEARCH INSTEAD OF POLICY ITERATION?

➤ These advantages especially important for physical systems! 

➤ Finding max costly with continuous actions 

➤ Physical systems usually have continuous controls 

➤ Stable convergence to local optimum 

➤ Usually limited no. of samples, fitting V can be unstable 

➤ Arguably easier to use prior knowledge as initial policy 

➤ Demonstration or designed policy often available 

➤ Staying close to data 

➤ One ‘wild’ rollout could destroy something!
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STAYING CLOSE TO PREVIOUS POLICIES

➤ Staying close to previous policy tends to be more ‘safe’ 

➤ Estimated value function can be imprecise  
(approximation or estimation errors) 

➤ So we don’t want to fully trust the current best guess!
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STAYING CLOSE TO PREVIOUS POLICIES

➤ Staying close to previous policy tends to be more ‘safe’ 

➤ Estimated value function can be imprecise  
(approximation or estimation errors) 

➤ So we don’t want to fully trust the current best guess! 
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STAYING CLOSE TO PREVIOUS POLICIES

➤ Staying close to previous policy tends to be more ‘safe’ 

➤ Estimated value function can be imprecise  
(approximation or estimation errors) 

➤ So we don’t want to fully trust the current best guess! 

➤ Normal policy gradient: small step in direction of best policy 
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STAYING CLOSE TO PREVIOUS POLICIES

➤ Staying close to previous policy tends to be more ‘safe’ 

➤ How close are subsequent policies? 

➤ Limit update norm 

➤ Policy gradient! 

➤ Standard (‘vanilla’) policy gradients maximise Taylor 
expansion of J s.t. update is on norm sphere!
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STAYING CLOSE TO PREVIOUS POLICIES

➤ Standard (‘vanilla’) policy gradients maximise Taylor 
expansion of J s.t. update is on norm sphere! 

➤ Euclidean norm is sensitive to parametrisation: 

➤ Can we express policy closeness covariantly? 

➤ (covariant: independent of choice of parametrisation)
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STAYING CLOSE TO PREVIOUS POLICIES

➤ Why do we want covariant norm (invariant to parametrisation)? 

➤ Don’t waste time tuning parametrisation 

➤ Parameters with different ‘meaning’: mean and precision 

➤ does a norm in this space make sense? 

➤ step size never right on all parameters if scale different 
(have to take step small enough for most sensitive direction) 

➤ Correlations between parameters ignored 
(feature modulated by more parameters easier to change) 

➤ Conceptually, it’s not the change in parameters we care about! 

➤ Limit change in trajectories, states, and/or actions?
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STAYING CLOSE TO PREVIOUS POLICIES

➤ How to express policy closeness covariantly? 

➤ Kullback-Leibler (KL) divergence is information-theoretic 
quantification of difference between probability distributions 

➤ Asymmetric, minimal value of 0 when p=q 

➤ KL is invariant under parameter transformations 

➤ Idea: KL between policies, state-action distributions, or 
trajectory distributions to limit policy change
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STAYING CLOSE TO PREVIOUS POLICIES

➤ Idea: use KL to specify how the policy can change in one step 

➤ Several algorithms can be understood using this idea 

➤ Natural policy gradient 

➤ Trust region policy optimization (TRPO) 

➤ Relative entropy policy search (REPS)
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STAYING CLOSE TO PREVIOUS POLICIES

➤ Idea: use KL to specify how the policy can change in one step 

➤ Several algorithms can be understood using this idea 

➤ Natural policy gradient 

➤ Trust region policy optimization (TRPO) 

➤ Relative entropy policy search (REPS)
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NATURAL POLICY GRADIENT

➤ Idea: make policy gradients covariant [Kakade 2002] 

➤ this yields an algorithm that exploits structure of parameters 

➤ Here, will look how it relates to KL [Bagnell 2003]
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NATURAL POLICY GRADIENT

➤ Recall vanilla policy gradients 

➤ replace constraint by quadratic expansion of KL divergence 

➤ since minimal value of 0 is reached if parameter doesn’t change 

➤ direction of KL does not matter for quadratic expansion

✓⇤ � ✓0 =max

d✓
J(✓0 + d✓) s.t. d✓T d✓ = c

⇡max

d✓
J(✓0) + (r✓J(✓0))

T d✓ s.t. d✓T d✓ = c

/r✓J(✓0)

c = Es [DKL(⇡(a|s;✓0)||⇡(a|s;✓)] = EKL(✓)

⇡ EKL(✓0) + d✓T (rd✓ EKL) (✓0) + d✓T �
r2

d✓ EKL
�
(✓0)d✓

⇡ 0 + d✓T �
r2

d✓ EKL
�
(✓0)d✓

17



NATURAL POLICY GRADIENT

➤ This is the squared length with respect to matrix  

➤ is the Fisher information matrix of the policy! 

➤ characterises information about parameters in observation
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NATURAL POLICY GRADIENT

➤ This is the squared length with respect to matrix  

➤ is the Fisher information matrix of the policy! 

➤ characterises information about parameters in observation
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NATURAL POLICY GRADIENT

➤ Consider now the modified optimisation problem 

➤ solve constraint optimisation problem: Lagrangian 

➤ At optimality, partial derivatives of L are 0 
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NATURAL POLICY GRADIENT

➤ So optimality conditions are 

➤ From the first line, update direction 

➤ This is the natural gradient 
(natural gradients in ML used at least since [Amari, 1998], 
used in RL since [Kakade 2002])
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NATURAL POLICY GRADIENT

➤ The policy is adapted using the natural gradient 

➤ We can use any known approach for the vanilla gradient 

➤ Will this always improve J? 

➤ For small enough step size, objective improves if 

➤ Fisher information is positive definite! So yes!
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NATURAL POLICY GRADIENT

➤ The policy is adapted using the natural gradient 

➤ We can use any known approach for the vanilla gradient 

➤ Will this always improve J? 

➤ For small enough step size, objective improves if 

➤ Fisher information is positive definite! So yes! 
(geometric perspective: inner product with vanilla gradient)
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NATURAL POLICY GRADIENT

increasing  
return

param 1

param 2

constant euclidean norm
current parameters

param 1

param 2

constant norm wrt F
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NATURAL POLICY GRADIENT

param 1

param 2

param 1

param 2

Regular gradient Natural gradient

Direction of expected return Within 90° of direction of return
Possibly bigger steps (depends on F)
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NATURAL ACTOR CRITIC

➤ Natural policy gradients can be used in actor-critic set-up 

➤ Additional benefit: F cancels out! 

➤ Natural gradients can help where the likelihood is almost flat

[Peters 2008]
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NATURAL ACTOR CRITIC

➤ Natural policy gradients can be used in actor-critic set-up 

➤ Additional benefit: F cancels out! 

➤ Natural gradients can help where the likelihood is almost flat

[Peters 2008]
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NATURAL ACTOR CRITIC

[Peters 2008]
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NATURAL ACTOR CRITIC EXAMPLE

[Peters 2008]
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NATURAL POLICY GRADIENTS

➤ Advantages 

➤ Usually needs less training than regular policy gradients 

➤ Can use most tricks used for vanilla gradients 

➤ Inherits advantageous properties from vanilla gradients 

➤ Relatively easy to implement 

➤ Limitations 

➤ Need Fisher information matrix 

➤ Known for some standard distributions, e.g. Gaussian 

➤ PG methods: high variance, might need many steps
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STAYING CLOSE TO PREVIOUS POLICIES

➤ Idea: use KL to specify how the policy can change in one step 

➤ Natural policy gradient 

➤ Trust region policy optimization (TRPO) 

➤ Relative entropy policy search (REPS)

31



TRUST REGION POLICY OPTIMISATION

➤ Trust region: region where approximation is valid 

➤ Optimization step shouldn’t leave this region 

➤ Main idea goes back long way, e.g. Levenberg (1944) 

➤ Schulman’s “Trust Region policy optimisation” uses this 
notion to define a new RL algorithm 

➤ Type of trust region motivated by theoretical bound

32



TRPO: THEORETICAL BOUND GUARANTEES IMPROVEMENT

➤ Idea: take larger steps while guaranteeing improvement 

1. approximate the return function  

2. apply a penalty term to yield lower bound 

3. maximize this lower bound

parameter value

return

current parameters

 approximation

lower bound
[Schulman 2016]

33



TRPO 1: APPROXIMATE THE RETURN FUNCTION

➤ Why approximate? (Simplified argument) 

➤ However, samples are from previous policy.  

➤ Know how policy changed, correct with importance sampling 

➤ But we don’t know state distribution changed! Approximate: 
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[Schulman 2016]
34

Ea⇠⇡✓(s)[r(s,a)] =

Z

A
⇡✓(a|s)r(s,a)da

=

Z

A
⇡✓0(a|s) ⇡✓(a|s)

⇡✓0(a|s)r(s,a)da = Ea⇠⇡✓0 (s)


⇡✓(a|s)
⇡✓0(a|s)r(s,a)

�



TRPO 2: GET LOWER BOUND

➤ [Schulman, 2016] shows the following holds:
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TRPO 3: FIND NEW POLICY

➤ Policy maximising lower-bound has guaranteed improvement 

➤ In practice, need to approximate: 

➤ average KL instead of max, constraint instead of penalty 

➤ step in direction of natural gradient, size determined by KL

parameter value

return

current parameters

 approximation

lower bound

36



CONNECTION TO NATURAL GRADIENTS

➤ Natural gradients find direction that improves most s.t. KL 

➤ Step size is manually set 

➤ Easier: set max KL 

➤ TRPO: solve for step size β in  

➤ This is based on approximation (linear L, quadratic KL): 

➤ follow by line search using analytic expressions of L, KL 

➤ prevents overshooting

DKL ⇡ �2sTFss/2

parameter value

return

  L (approx J) linear approx to L

trust region  
(KL < max_KL)
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TRPO EVALUATION
different TRPO variants
direct policy search
natural gradients,  
reward-weighted regression

neural network policy used

[Schulman, 2015]
38



TRPO EXAMPLE

TRPO with generalised advantage estimate, [Schulman 2016] 
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TRPO

➤ Advantages 

➤ Can take larger steps than natural gradients 

➤ In principle, guaranteed to converge 

➤ Works well with neural network controllers 

➤ Disadvantages 

➤ Approximations break guarantee 

➤ Typically, still need quite many trials 

➤ Need Q-estimates, can be high-variance or need simulator
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STAYING CLOSE TO PREVIOUS POLICIES

➤ Idea: use KL to specify how the policy can change in one step 

➤ Natural policy gradient 

➤ Trust region policy optimization (TRPO) 

➤ Relative entropy policy search (REPS)
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REPS

➤ Relative Entropy Policy search also uses KL divergence 

➤ Again: stay close to previous data 

➤ Knowledge most reliable in frequently visited states 

➤ Don’t forget what was earlier learned 

➤ Small change in policy can have large impact on state 
distribution - limiting expected policy divergence not enough! 

➤ Think of policy that can go one step left or right in any state
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REPS

➤ Small change in policy can have large impact on state 
distribution - limiting expected policy divergence not enough! 

➤ So, limit KL from reference to next state-action distribution 

➤ Could allow even larger steps in policy space
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REPS

➤ So, limit KL from reference to next state-action distribution
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maximize expected reward

normalised distribution

Bellman flow constraint

KL constraint
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REPS

➤ So, limit KL from reference to next state-action distribution 

➤ Solve using Lagrangian optimisation 
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[Peters 2010]
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REPS

➤ Lagrangian V looks like a value function! Policy like softmax! 

➤ Now know form of p, but dependent on unknown parameters

[Peters 2010]
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REPS

➤ Lagrangian V looks like a value function! Policy like softmax! 

➤ Now know form of p, but dependent on unknown parameters 

➤ Define search space for V, e.g. linear 

➤ Re-insert in Lagrangian 

➤ Expectation wrt q can be approximated using samples

V (s) = �(s)T✓

[Peters 2010]
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REPRESENTING THE POLICY

➤ Generally, can’t represent the policy in simple form 

➤ Use weighted samples to represent it 

➤ Then, we can fit a stochastic controller 

samples 
from q re-weighting factors

states

actions

Bad sample  
(low weight)

Good sample  
(high weight)
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REPRESENTING THE POLICY

➤ Generally, can’t represent the policy in simple form 

➤ Use weighted samples to represent it 

➤ Then, we can fit a stochastic controller 

samples 
from q re-weighting factors

states

actions

Bad sample  
(low weight)

Good sample  
(high weight)
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REPS

➤ REPS-style KL bound or TRPO style KL bound 
(step-based variant)

[Lioutikov, 2014] 

better final policysimilar final policy
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REPS

➤ Learning pendulum swing-up from vision 
(non-parametric variant)

[van Hoof, 2015] 51



REPS

➤ Learning to manipulate 
(non-parametric variant)

[van Hoof, 2015] 52



REPS

➤ Advantages 

➤ Should be able to take larger steps than TRPO, NPG 

➤ Consequentially, is relatively data-efficient 

➤ Variant has optimal regret in adversarial MDPs [Zimin 2013] 

➤ Disadvantages 

➤ Tricky to implement 

➤ Requires policy approximation step 

➤ Usually with linear or Gaussian process policies 

➤ Optimization problem computation intensive
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CONCLUSIONS

➤ Better metric for policy updates: use structure of parameters 

➤ Allows taking larger steps in policy space than e.g. PGT 

➤ NPG, NAC: easy to implement 

➤ TRPO: larger steps (faster), use with neural network 

➤ REPS: even larger steps (?), tricky to implement, linear or 
Gaussian controllers (for now)
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