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Approaches to control
1. Previous approach: Action-value methods: 

• learn the value of each action; 

• pick the max (usually)

2. New approach: Policy-gradient methods: 

• learn the parameters of a stochastic policy

• update by gradient ascent in performance                      

• includes actor-critic methods, which learn both 
value and policy parameters



The old approach:  
Action-value methods

• The value of an action in a state given a policy 
is the expected future reward starting from 
the state taking that first action, then 
following the policy thereafter

• Policy: pick the max most of the time  
 
but sometimes pick at random (𝜀-greedy)
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Actor-critic architecture

World



Why approximate policies 
rather than values?

• In many problems, the policy is simpler to  
approximate than the value function

• In many problems, the optimal policy is 
stochastic

• e.g., bluffing, POMDPs

• To enable smoother change in policies

• To avoid a search on every step (the max)

• To better relate to biology



Policy Approximation
• Policy = a function from state to action

• How does the agent select actions?

• In such a way that it can be affected by 
learning?

• In such a way as to assure exploration?

•  Approximation: there are too many states 
and/or actions to represent all policies

• To handle large/continuous action spaces



We first saw this in Chapter 2, with the  
Gradient-bandit algorithm

• Store action preferences 
rather than action-value estimates

• Instead of 𝜀-greedy, pick actions by an exponential soft-max:

• Also store the sample average of rewards as

• Then update:
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Figure 2.5: Average performance of UCB action selection on the 10-armed testbed. As
shown, UCB generally performs better that "-greedy action selection, except in the first k
plays, when it selects randomly among the as-yet-unplayed actions. UCB with c = 1 would
perform even better but would not show the prominent spike in performance on the 11th
play. Can you think of an explanation of this spike?

no known practical way of utilizing the idea of UCB action selection.

2.7 Gradient Bandits

So far in this chapter we have considered methods that estimate action values and
use those estimates to select actions. This is often a good approach, but it is not the
only one possible. In this section we consider learning a numerical preference Ht(a)
for each action a. The larger the preference, the more often that action is taken, but
the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

Pk
b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:
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.
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⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
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The calculations showing this require only beginning calculus, but take several
steps. If you are mathematically inclined, then you will enjoy the rest of this section
in which we go through these steps. (And if you are not, then you may skip the rest
of this section without preventing understanding of the rest of this book.) First we
take a closer look at the exact performance gradient:
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where Xt can be any scalar that does not depend on b. We can include it here because
the gradient sums to zero over all the actions,

P
b
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some actions’ probabilities go up and some down, but the sum of the changes must
be zero because the sum of the probabilities must remain one.
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The equation is now in the form of an expectation, summing over all possible values
b of the random variable At, then multiplying by the probability of taking those
values. Thus:

@E[Rt]

@Ht(a)
= E

�
q⇤(At) � Xt

�@⇡t(At)

@Ht(a)
/⇡t(At)

�

= E
�

Rt � R̄t

�@⇡t(At)

@Ht(a)
/⇡t(At)

�
,

where here we have chosen Xt = R̄t and substituted Rt for q⇤(At), which is permitted
because E[Rt] = q⇤(At) and because all the other factors are non-random. Shortly
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Recall that our plan has been to write the performance gradient as an expectation of
something that we can sample on each step, as we have just done, and then update
on each step proportional to the sample. Substituting a sample of the expectation
above for the performance gradient in (2.11) yields:
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, 8a,
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Exercise 2.4 The results shown in Figure 2.4 should be quite reliable because they
are averages over 2000 individual, randomly chosen 10-armed bandit tasks. Why,
then, are there oscillations and spikes in the early part of the curve for the optimistic
method? In other words, what might make this method perform particularly better
or worse, on average, on particular early steps?

2.6 Upper-Confidence-Bound Action Selection

Exploration is needed because the estimates of the action values are uncertain. The
greedy actions are those that look best at present, but some of the other actions
may actually be better. "-greedy action selection forces the non-greedy actions to
be tried, but indiscriminately, with no preference for those that are nearly greedy or
particularly uncertain. It would be better to select among the non-greedy actions
according to their potential for actually being optimal, taking into account both how
close their estimates are to being maximal and the uncertainties in those estimates.
One e↵ective way of doing this is to select actions as

At
.
= argmax

a

"
Qt(a) + c

s
log t

Nt(a)

#
, (2.8)

where log t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would
have to be raised to in order to equal t), Nt(a) denotes the number of times that
action a has been selected prior to time t (the denominator in (2.1)), and the number
c > 0 controls the degree of exploration. If Nt(a) = 0, then a is considered to be a
maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-
root term is a measure of the uncertainty or variance in the estimate of a’s value.
The quantity being max’ed over is thus a sort of upper bound on the possible true
value of action a, with the c parameter determining the confidence level. Each time
a is selected the uncertainty is presumably reduced; Nt(a) is incremented and, as it
appears in the denominator of the uncertainty term, the term is decreased. On the
other hand, each time an action other than a is selected t is increased; as it appears in
the numerator the uncertainty estimate is increased. The use of the natural logarithm
means that the increase gets smaller over time, but is unbounded; all actions will
eventually be selected, but as time goes by it will be a longer wait, and thus a lower
selection frequency, for actions with a lower value estimate or that have already been
selected more times.

Results with UCB on the 10-armed testbed are shown in Figure 2.5. UCB will
often perform well, as shown here, but is more di�cult than "-greedy to extend
beyond bandits to the more general reinforcement learning settings considered in the
rest of this book. One di�culty is in dealing with nonstationary problems; something
more complex than the methods presented in Section 2.4 would be needed. Another
di�culty is dealing with large state spaces, particularly function approximation as
developed in Part II of this book. In these more advanced settings there is currently
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Figure 2.5: Average performance of UCB action selection on the 10-armed testbed. As
shown, UCB generally performs better that "-greedy action selection, except in the first k
plays, when it selects randomly among the as-yet-unplayed actions. UCB with c = 1 would
perform even better but would not show the prominent spike in performance on the 11th
play. Can you think of an explanation of this spike?

no known practical way of utilizing the idea of UCB action selection.
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Rt, the preferences are updated by:
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where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
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Figure 2.6: Average performance of the gradient-bandit algorithm with and without a
reward baseline on the 10-armed testbed when the q⇤(a) are chosen to be near +4 rather
than near zero.

in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
is below baseline, then probability is decreased. The non-selected actions move in
the opposite direction.

Figure 2.6 shows results with the gradient-bandit algorithm on a variant of the
10-armed testbed in which the true expected rewards were selected according to a
normal distribution with a mean of +4 instead of zero (and with unit variance as
before). This shifting up of all the rewards has absolutely no a↵ect on the gradient-
bandit algorithm because of the reward baseline term, which instantaneously adapts
to the new level. But if the baseline were omitted (that is, if R̄t was taken to be
constant zero in (2.10)), then performance would be significantly degraded, as shown
in the figure.

One can gain a deeper insight into this algorithm by understanding it as a stochas-
tic approximation to gradient ascent. In exact gradient ascent, each preference Ht(a)
would be incrementing proportional to the increment’s e↵ect on performance:

Ht+1(a)
.
= Ht(a) + ↵

@E [Rt]

@Ht(a)
, (2.11)

where the measure of performance here is the expected reward:

E[Rt]
.
=

X

b

⇡t(b)q⇤(b),

and the measure of the increment’s e↵ect is the partial derivative of this performance
measure with respect to the preference. Of course, it is not possible to implement
gradient ascent exactly in our case because by assumption we do not know the q⇤(b),
but in fact the updates of our algorithm (2.10) are equal to (2.11) in expected value,
making the algorithm an instance of stochastic gradient ascent.



eg, linear-exponential policies 
(discrete actions)

• The “preference” for action a in state s is linear 
in 𝜽 and a state-action feature vector 𝜙(s,a)

• The probability of action a in state s is 
exponential in its preference

• Corresponding eligibility function:

Final, complete policy-gradient algorithm:
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eg, linear-gaussian policies 
(continuous actions)

action

action
prob.

density

𝜇 and 𝜎 linear 
in the state



eg, linear-gaussian policies 
(continuous actions)

• The mean and std. dev. for the action taken in 
state s are linear and linear-exponential in 

• The probability density function for the action 
taken in state s is gaussian
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Gaussian eligibility functions
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Policy-gradient setup
Given a policy parameterization:

⇡(a|s,✓)

Approximate stochastic gradient ascent:

(or average reward)

Typically, based on the Policy-Gradient Theorem:
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Finally, we note that the choice of policy parameterization is sometimes a good
way of injecting prior knowledge about the desired form of the policy into the rein-
forcement learning system.

13.2 The Policy Gradient Theorem

In addition to the practical advantages of policy parameterization discussed in the
previous section, there are also important theoretical advantages... Actually, I am
not quite sure how to do this transition. It will depend how I have introduce control
with function approximation in Chapter 10. There or here I will have to define the
performance measure ⌘. There are two definitions, one for the episodic case and one
for the continuing case. We try to present everything so that it applies to both cases
with the same notation and text.

However, we encourage the reader to think first about the episodic case, for which
we define the performance measure as the value of the start state of the episode. We
can simplify the notation without losing any meaningful generality by assuming that
every episode starts in some particular (non-random) state s0. Then, in the episodic
case we define performance as

⌘(✓) , v⇡✓(s0), (13.4)

where v⇡✓ is the true value function for ⇡✓, the policy determined by ✓.

Next we talk about how, with function approximation, it is challenging to change
the policy weights in a way that ensures improvement. The problem is that per-
formance depends both on the action selections and on the states in which those
selections are made, and both are a↵ected by the policy weights. Given a state, the
e↵ect of the policy weights on the actions, and thus on reward, can be computed
in a relatively straightforward way from knowledge of the policy parameterization.
But the e↵ect of the policy on the state distribution is completely a function of the
environment and is typically completely unknown. How can we estimate the perfor-
mance gradient with respect to the policy weights when the gradient depends on the
unknown e↵ect of changing the policy on the state distribution?

This brings us to the policy gradient theorem, which provides us an analytic ex-
pression for the gradient of performance with respect to the policy weights (which
is what we need to approximate for gradient ascent (13.1)) that does involve the
derivative of the state distribution. The policy gradient theorem is that

r⌘(✓) =
X

s

d⇡(s)
X

a

q⇡(s, a)r✓⇡(a|s, ✓), (13.5)

where the gradients in all cases are the column vectors of partial derivatives with
respect to the components of ✓, and ⇡ denotes the policy corresponding to weight
vector ✓. The notion of the distribution d⇡ here should be clear from what transpired
in Chapters 9 and 10. That is, in the episodic case, d⇡(s) is defined to be the expected
number of time steps t on which St = s in a randomly generated episode starting

And objective:

r✓⇡(a|s,✓)
⇡(a|s,✓) = r✓ log ⇡(a|s,✓)

Chapter 13

Policy Gradient Methods

In this chapter we consider something new. So far in this book almost all the methods
have learned the values of actions and then selected actions based on their estimated
action values1; their policies would not even exist without the action-value estimates.
In this chapter we consider methods that instead learn a parameterized policy that
can select actions without consulting a value function. A value function may still be
used to learn the policy weights, but is not required for action selection. We continue
to use the notation ✓ 2 Rn for the primary learned weight vector—but in this chapter
it is the policy weight vector. Thus we write ⇡(a|s, ✓)

.
= Pr{At =a | St =s, ✓t =✓}

for the probability that action a is taken at time t given that the agent is in state
s at time t with weight vector ✓. If a method uses a learned value function as well,
then the value function’s weight vector is denoted w to distinguish it from ✓, as in
v̂(s,w).

In this chapter we consider methods for learning the policy weights based on the
gradient of some performance measure ⌘(✓) with respect to the policy weights. These
methods seek to maximize performance, so their updates approximate gradient ascent
in ⌘:

✓t+1
.
= ✓t + ↵ \r⌘(✓t), (13.1)

where \r⌘(✓t) is a stochastic estimate whose expectation approximates the gradient
of the performance measure with respect to its argument ✓t. All methods that follow
this general schema we call policy gradient methods, whether or not they also learn
an approximate value function. Methods that learn approximations to both policy
and value functions are often called actor–critic methods, where ‘actor’ is a reference
to the learned policy, and ‘critic’ refers to the learned value function, usually a state-
value function. First we treat the episodic case, in which performance is defined as
the value of the start state under the parameterized policy, ⌘(✓)

.
= v⇡✓(S0), before

going on to consider the continuing case, in which performance is defined as the

1The lone exception is the gradient bandit algorithms of Section 2.8. In fact, that section goes
through many of the same steps, in the single-state bandit case, as we go through here for full MDPs.
Reviewing that section would be good preparation for fully understanding this chapter.
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in s0 and following ⇡ and the dynamics of the MDP. The policy gradient theorem is
proved for the episodic case in the box below.

Proof of the Policy Gradient Theorem (episodic case)

With just elementary calculus and re-arranging terms we can prove the policy
gradient theorem from first principles. To keep the notation simple, we leave
it implicit in all cases that ⇡ is a function of ✓, and all gradients are also
implicitly with respect to ✓. First note that the gradient of the state-value
function can be written in terms of the action-value function as

rv⇡(s) = r
"
X

a

⇡(a|s)q⇡(s, a)

#
, 8s 2 S (Exercise 3.11)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)rq⇡(s, a)

i
(product rule)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)r

X

s0,r

p(s0, r|s, a)
�
r + �v⇡(s0)

�i

(Exercise 3.12 and Equation 3.8)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)

X

s0

�p(s0|s, a)rv⇡(s0)
i

(Eq. 3.10)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)

X

s0

�p(s0|s, a) (unrolling)

X

a0

⇥
r⇡(a0|s0)q⇡(s0, a0) + ⇡(a0|s0)

X

s00

�p(s00|s0, a0)rv⇡(s00)
⇤i

=
X

x2S

1X

k=0

�k Pr(s!x, k, ⇡)
X

a

r⇡(a|x)q⇡(x, a),

after repeated unrolling, where Pr(s!x, k, ⇡) is the probability of transition-
ing from state s to state x in k steps under policy ⇡. It is then immediate
that

r⌘(✓) = rv⇡(s0)

=
X

s

1X

k=0

�kPr(s0 !s, k, ⇡)
X

a

r⇡(a|s)q⇡(s, a)

=
X

s

d⇡(s)
X

a

r⇡(a|s)q⇡(s, a). Q.E.D.

Proof of the 
Policy-Gradient

Theorem
(from the 2nd Edition)
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13.3 REINFORCE: Monte Carlo Policy Gradient

We are now ready for our first policy-gradient learning algorithm. Recall our overall
strategy of stochastic gradient ascent (13.1), for which we need a way of obtaining
samples whose expectation is equal to the performance gradient. The policy gradient
theorem (13.5) gives us an exact expression for this gradient; all we need is some way
of sampling whose expectation equals or approximates this expression. Notice that
the right-hand side is a sum over states weighted by how often the states occurs
under the target policy ⇡ weighted again by � times how many steps it takes to
get to those states; if we just follow ⇡ we will encounter states in these proportions,
which we can then weight by �t to preserve the expected value. Thus

r⌘(✓) =
X

s

d⇡(s)
X

a

q⇡(s, a)r✓⇡(a|s, ✓), (13.5)

= E⇡

"
�t

X

a

q⇡(St, a)r✓⇡(a|St, ✓)

#
.

This is good progress, and we would like to carry it further and handle the action
in the same way (replacing a with the sample action At). The remaining part of
the expectation above is a sum over actions; if only each term was weighted by the
probability of selecting the actions, that is, according to ⇡(a|St, ✓). So let us make it
that way, multiplying and dividing by this probability. Continuing from the previous
equation, this gives us

r⌘(✓) = E⇡

"
�t

X

a

⇡(a|St, ✓)q⇡(St, a)
r✓⇡(a|St, ✓)

⇡(a|St, ✓)

#

= E⇡


�tq⇡(St, At)

r✓⇡(At|St, ✓)

⇡(At|St, ✓)

�
(replacing a by the sample At ⇠ ⇡)

= E⇡


�tGt

r✓⇡(At|St, ✓)

⇡(At|St, ✓)

�
(because E⇡[Gt|St, At] = q⇡(St, At))

which is exactly what we want, a quantity that we can sample on each time step
whose expectation is equal to the gradient. Using this sample to instantiate our
generic stochastic gradient ascent algorithm (13.1), we obtain the update

✓t+1 , ✓t + ↵�tGt
r✓⇡(At|St, ✓)

⇡(At|St, ✓)
. (13.6)

We call this algorithm REINFORCE (after Williams, 1992). Its update has an
intuitive appeal. Each increment is proportional to the product of a return Gt and
a vector, the gradient of the probability of taking the action actually taken, divided
by the probability of taking that action. The vector is the direction in weight space
that most increases the probability of repeating the action At on future visits to
state St. The update increases the weight vector in this direction proportional to
the return, and inversely proportional to the action probability. The former makes
sense because it causes the weights to move most in the directions that favor actions
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action values1; their policies would not even exist without the action-value estimates.
In this chapter we consider methods that instead learn a parameterized policy that
can select actions without consulting a value function. A value function may still be
used to learn the policy weights, but is not required for action selection. We continue
to use the notation ✓ 2 Rn for the primary learned weight vector—but in this chapter
it is the policy weight vector. Thus we write ⇡(a|s, ✓) , Pr{At =a | St =s, ✓t =✓}
for the probability that action a is taken at time t given that the agent is in state
s at time t with weight vector ✓. If a method uses a learned value function as well,
then the value function’s weight vector is denoted w to distinguish it from ✓, as in
v̂(s,w).

In this chapter we consider methods for learning the policy weights based on the
gradient of some performance measure ⌘(✓) with respect to the policy weights. These
methods seek to maximize performance, so their updates approximate gradient ascent
in ⌘:

✓t+1 , ✓t + ↵ \r⌘(✓t), (13.1)

where \r⌘(✓t) is a stochastic estimate whose expectation approximates the gradient
of the performance measure with respect to its argument ✓t. All methods that follow
this general schema we call policy gradient methods, whether or not they also learn
an approximate value function. Methods that learn approximations to both policy
and value functions are often called actor–critic methods, where ‘actor’ is a reference
to the learned policy, and ‘critic’ refers to the learned value function, usually a state-
value function. First we treat the episodic case, in which performance is defined as
the value of the start state under the parameterized policy, ⌘(✓) = v⇡✓(s0), before
going on to consider the continuing case, in which performance is defined as the

1The lone exception is the gradient bandit algorithms of Section 2.8. In fact, that section goes
through many of the same steps, in the single-state bandit case, as we go through here for full MDPs.
Reviewing that section would be good preparation for fully understanding this chapter.
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a vector, the gradient of the probability of taking the action actually taken, divided
by the probability of taking that action. The vector is the direction in weight space
that most increases the probability of repeating the action At on future visits to
state St. The update increases the weight vector in this direction proportional to
the return, and inversely proportional to the action probability. The former makes
sense because it causes the weights to move most in the directions that favor actions

Thus



REINFORCE with baseline

Thus

Policy-gradient theorem with baseline:
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13.4 REINFORCE with Baseline

The policy gradient theorem (13.5) can be generalized to include a comparison of
the action value to an arbitrary baseline b(s):

r⌘(✓) =
X

s

d⇡(s)
X

a

⇣
q⇡(s, a) � b(s)

⌘
r✓⇡(a|s, ✓). (13.8)

The baseline can be any function, even a random variable, as long as it does not vary
with a; the equation remains true, because the the subtracted quantity is zero:

X

a

b(s)r✓⇡(a|s, ✓) = b(s)r✓

X

a

⇡(a|s, ✓) = b(s)r✓1 = 0 8s 2 S.

However, after we convert the policy gradient theorem to an expectation and an
update rule, using the same steps as in the previous section, then the baseline can
have a significant e↵ect on the variance of the update rule.

The update rule that we end up with is a new version of REINFORCE that includes
a general baseline:

✓t+1 , ✓t + ↵
⇣
Gt � b(St)

⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
. (13.9)

As the baseline could be uniformly zero, this update is a strict generalization of
REINFORCE. In general, the baseline leaves the expected value of the update un-
changed, but it can have a large e↵ect on its variance. For example, we saw in
Section 2.8 that an analogous baseline can significantly reduce the variance (and
thus speed the learning) of gradient bandit algorithms. In the bandit algorithms the
baseline was just a number (the average of the rewards seen so far), but for MDPs
the baseline should vary with state. In some states all actions have high values and
we need a high baseline to di↵erentiate the higher valued actions from the less highly
valued ones; in other states all actions will have low values and a low baseline is
appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where
w 2 Rm is a second learned weight vector learned by one of the methods presented
in previous chapters. Because REINFORCE is a Monte Carlo method for learning
the policy weights, ✓, it seems natural to also use a Monte Carlo method to learn
the state-value weights, w. A complete pseudocode algorithm for REINFORCE with
baseline is given in the box using such a learned state-value function as the baseline.

Here it would be nice to repeat experiments as in the previous section, or other
experiments, showing a nice improvement with the baseline.

Here it would also be nice to discuss the choice of the step-size parameters, ↵ and
�. The step size for values is relatively easy; we have rules of thumb. For action
values though it is much less clear. It depends on the range of variation of the
rewards, and on the policy parameterization.
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13.4 REINFORCE with Baseline

The policy gradient theorem (13.5) can be generalized to include a comparison of
the action value to an arbitrary baseline b(s):

r⌘(✓) =
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d⇡(s)
X

a

⇣
q⇡(s, a) � b(s)

⌘
r✓⇡(a|s, ✓). (13.8)

The baseline can be any function, even a random variable, as long as it does not vary
with a; the equation remains true, because the the subtracted quantity is zero:

X

a

b(s)r✓⇡(a|s, ✓) = b(s)r✓

X

a

⇡(a|s, ✓) = b(s)r✓1 = 0 8s 2 S.

However, after we convert the policy gradient theorem to an expectation and an
update rule, using the same steps as in the previous section, then the baseline can
have a significant e↵ect on the variance of the update rule.

The update rule that we end up with is a new version of REINFORCE that includes
a general baseline:

✓t+1 , ✓t + ↵
⇣
Gt � b(St)

⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
. (13.9)

As the baseline could be uniformly zero, this update is a strict generalization of
REINFORCE. In general, the baseline leaves the expected value of the update un-
changed, but it can have a large e↵ect on its variance. For example, we saw in
Section 2.8 that an analogous baseline can significantly reduce the variance (and
thus speed the learning) of gradient bandit algorithms. In the bandit algorithms the
baseline was just a number (the average of the rewards seen so far), but for MDPs
the baseline should vary with state. In some states all actions have high values and
we need a high baseline to di↵erentiate the higher valued actions from the less highly
valued ones; in other states all actions will have low values and a low baseline is
appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where
w 2 Rm is a second learned weight vector learned by one of the methods presented
in previous chapters. Because REINFORCE is a Monte Carlo method for learning
the policy weights, ✓, it seems natural to also use a Monte Carlo method to learn
the state-value weights, w. A complete pseudocode algorithm for REINFORCE with
baseline is given in the box using such a learned state-value function as the baseline.
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REINFORCE with baseline:

Actor-Critic method:
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One-step Actor-Critic (episodic)

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓), 8a 2 A, s 2 S, ✓ 2 Rn

Input: a di↵erentiable state-value parameterization v̂(s,w), 8s 2 S,w 2 Rm

Parameters: step sizes ↵ > 0, � > 0

Initialize policy weights ✓ and state-value weights w
Repeat forever:

Initialize S (first state of episode)
I  1
While S is not terminal:

A ⇠ ⇡(·|S, ✓)
Take action A, observe S0, R
�  R + � v̂(S0,w)� v̂(S,w) (if S0 is terminal, then v̂(S0,w) , 0)
w w + ��rwv̂(S,w)
✓  ✓ + ↵I �r✓ log ⇡(A|S, ✓)
I  �I
S  S0

state-value function as the baseline) as follow:

✓t+1 , ✓t + ↵
⇣
G(1)

t � v̂(St,w)
⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
(13.10)

= ✓t + ↵
⇣
Rt+1 + �v̂(St+1,w)� v̂(St,w)

⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
. (13.11)

The natural state-value-function learning method to pair with this is semi-gradient
TD(0). Pseudocode for the complete algorithm is given in the box above. Note that
it is now a fully online, incremental algorithm, with states, actions, and rewards
processed as they occur and then never revisited.

The generalizations to the forward view of multi-step methods and then to a
�-return algorithm are straightforward. The one-step return in (13.10) is merely

replaced by G(n)
t and G�

t respectively. The backward views are also straightforward,
using separate eligibility traces for the actor and critic, each after the patterns in
Chapter 12. Pseudocode for the complete algorithm is given in the box on the next
page.

Now we should continue with some examples showing the advantages, either con-
tinuing the small ones in examples 1 and 2, doing some larger ones like mountain car
or blackjack, or ones from the literature such as the Degris et al. paper.

�t

^

�t

^

�t

^ ^

�R̄t



γ!
We should never discount 

when approximating policies!

γis ok it there is a 
start state/distribution



Average reward setting
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• and we learn an approximation
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The average-reward setting
• Maximize the reward rate (reward per step): 

where 

• Learn to approximate        and new “differential” values, 
in which all rewards are compared to the reward rate:
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In Section 11.1 we also discussed a more sophisticated actor–critic method that
uses the update

Ht+1(s, a)
.
=

⇢
Ht(s, a) + ��t[1 � ⇡t(a|s)] if a=At and s=St

Ht(s, a) otherwise.

To generalize this equation to eligibility traces we can use the same update (11.1)
with a slightly di↵erent trace. Rather than incrementing the trace by 1 each time a
state–action pair occurs, it is updated by 1 � ⇡t(St, At):

Et(s, a)
.
=

⇢
��Et�1(s, a) + 1 � ⇡t(St, At) if s=St and a = At;
��Et�1(s, a) otherwise,

(11.2)

for all s, a.

11.3 R-Learning and the Average-Reward Setting

When the policy is approximated, we generally have to abandon the discounted-
reward setting that we have relied on up to now. We replace it with the average-
reward setting, which we discuss in this section.

R-learning is an o↵-policy control method for the advanced version of the rein-
forcement learning problem in which one neither discounts nor divides experience
into distinct episodes with finite returns. In this average-reward setting, one seeks to
maximize the average reward per time step. The value functions for a policy, ⇡, are
defined relative to the average expected reward per step under the policy, r(⇡):

r(⇡)
.
= lim

n!1

1

n

nX

t=1

E⇡[Rt] =
X

s

d⇡(s)
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)r,

where d⇡(s) is the limiting state distribution under policy ⇡. This average reward is
well defined if we assume that the process is ergodic (nonzero probability of reaching
any state from any other under any policy), and thus that d⇡ exists and does not
depend on the starting state. From any state, in the long run the average reward
is the same, but there is a transient. From some states better-than-average rewards
are received for a while, and from others worse-than-average rewards are received. It
is this transient that defines the value of a state:

ṽ⇡(s) =
1X

k=1

E⇡[Rt+k � r(⇡) | St =s] ,

and the value of a state–action pair is similarly the transient di↵erence in reward
when starting in that state and taking that action:

q̃⇡(s, a) =
1X

k=1

E⇡[Rt+k � r(⇡) | St =s, At =a] .

An Emphatic Approach to Off-policy TD Learning

If any of the diagonal elements are negative, then the corresponding diagonal element of
I� ↵At will be greater than one, and the corresponding component of ✓t will be amplified,
which will lead to divergence if continued. (The second term (↵bt) does not a↵ect the
stability of the iteration.) On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than one over the largest of them, such that I�↵At is diagonal
with all diagonal elements between 0 and 1. In this case the first term of the update tends
to shrink ✓t, and stability is assured. In general, ✓t will be reduced toward zero whenever
At is positive definite.1

In actuality, however, At and bt are random variables that vary from step to step, in
which case stability is determined by the steady-state expectation, limt!1 E[At]. In our set-
ting, after an initial transient, states will be visited according to the steady-state distribution
under ⇡. We represent this distribution by a vector d⇡, each component of which gives the
limiting probability of being in a particular state2 [d⇡]s

.
= d⇡(s)

.
= limt!1 P{St =s}, which

we assume exists and is positive at all states (any states not visited with nonzero probability
can be removed from the problem). The special property of the steady-state distribution is
that once the process is in it, it remains in it. Let P⇡ denote the N ⇥N matrix of transition
probabilities [P⇡]ij

.
=

P
a ⇡(a|i)p(j|i, a) where p(j|i, a)

.
= P{St+1

=j|St = i, At =a}. Then
the special property of d⇡ is that

P

>
⇡ d⇡ = d⇡. (5)

Consider any stochastic algorithm of the form (4), and let A

.
= limt!1 E[At] and

b

.
= limt!1 E[bt]. We define the stochastic algorithm to be stable if and only if the

corresponding deterministic algorithm,

✓̄t+1

.
= ✓̄t + ↵(b � A✓̄t), (6)

is convergent to a unique fixed point independent of the initial ✓̄
0

. This will occur i↵ the
A matrix has a full set of eigenvalues all of whose real parts are positive. If a stochastic
algorithm is stable and ↵ is reduced according to an appropriate schedule, then its parameter
vector may converge with probability one. However, in this paper we focus only on stability
as a prerequisite for convergence (of the original stochastic algorithm), leaving convergence
itself to future work. If the stochastic algorithm converges, it is to a fixed point ✓̄ of the
deterministic algorithm, at which A✓̄ = b, or ✓̄ = A

�1

b. (Stability assures existence of
the inverse.) In this paper we focus on establishing stability by proving that A is positive
definite. From definiteness it immediately follows that A has a full set of eigenvectors
(because y

>
Ay > 0, 8y 6= 0) and that the corresponding eigenvalues all have real parts.3

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any real vector y 6= 0.
2. Here and throughout the paper we use brackets with subscripts to denote the individual elements of

vectors and matrices.
3. To see the latter, let Re(x) denote the real part of a complex number x, and let y⇤ denotes the conjugate

transpose of a complex vector y. Then, for any eigenvalue–eigenvector pair �,y: 0 < Re(y⇤Ay) =
Re(y⇤

�y) = Re(�)y⇤y =) 0 < Re(�).

5
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Initialize R̄ and Q(s, a), for all s, a, arbitrarily
Repeat forever:

S  current state
Choose action A in S using behavior policy (e.g., ✏-greedy)
Take action A, observe R, S0

�  R� R̄ + maxa Q(S0, a)�Q(S, A)
Q(S, A) Q(S, A) + ↵�
If Q(S, A) = maxa Q(S, a), then:

R̄ R̄ + ��

Figure 11.2: R-learning: An o↵-policy TD control algorithm for undiscounted, continuing
tasks. The scalars ↵ and � are step-size parameters.

We call these relative values because they are relative to the average reward under
the current policy.

There are subtle distinctions that need to be drawn between di↵erent kinds of
optimality in the undiscounted continuing case. Nevertheless, for most practical
purposes it may be adequate simply to order policies according to their average
reward per time step, in other words, according to their r(⇡). For now let us consider
all policies that attain the maximal value of r(⇡) to be optimal.

Other than its use of relative values, R-learning is a standard TD control method
based on o↵-policy GPI, much like Q-learning. It maintains two policies, a behavior
policy and an estimation policy, plus an action-value function and an estimated
average reward. The behavior policy is used to generate experience; it might be the
"-greedy policy with respect to the action-value function. The estimation policy is
the one involved in GPI. It is typically the greedy policy with respect to the action-
value function. If ⇡ is the estimation policy, then the action-value function, Q, is an
approximation of q̃⇡ and the average reward, R̄, is an approximation of r(⇡). The
complete algorithm is given in Figure 11.2.

Example 11.1: An Access-Control Queuing Task This is a decision task
involving access control to a set of n servers. Customers of four di↵erent priorities
arrive at a single queue. If given access to a server, the customers pay a reward
of 1, 2, 4, or 8, depending on their priority, with higher priority customers paying
more. In each time step, the customer at the head of the queue is either accepted
(assigned to one of the servers) or rejected (removed from the queue). In either case,
on the next time step the next customer in the queue is considered. The queue never
empties, and the proportion of (randomly distributed) high priority customers in the
queue is h. Of course a customer can be served only if there is a free server. Each
busy server becomes free with probability p on each time step. Although we have just
described them for definiteness, let us assume the statistics of arrivals and departures
are unknown. The task is to decide on each step whether to accept or reject the next
customer, on the basis of his priority and the number of free servers, so as to maximize
long-term reward without discounting. Figure 11.3 shows the solution found by R-
learning for this task with n = 10, h = 0.5, and p = 0.06. The R-learning parameters
were ↵ = 0.01, � = 0.01, and ✏ = 0.1. The initial action values and R̄ were zero.
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ṽ⇡(s)
.
=

1X

k=1

E⇡[Rt+k � r(⇡) | St=s]

q̃⇡(s, a)
.
=

1X

k=1

E⇡[Rt+k � r(⇡) | St=s, At=a]

�✓t ⇡ ↵
@r(⇡)

@✓
.
= ↵rr(⇡)

rr(⇡) =
X

s

d⇡(s)
X

a

q̃⇡(s, a)r⇡(a|s,✓) (the policy-gradient theorem)

= E
⇣

q̃⇡(St, At)� v(St)

⌘r⇡(At|St,✓)

⇡(At|St)

���� St ⇠ d⇡, At ⇠ ⇡(·|St,✓)

�

= E
⇣

˜G�
t � v̂(St,w)

⌘r⇡(At|St,✓)

⇡(At|St)

���� St ⇠ d⇡, At:1 ⇠ ⇡

�

⇡
⇣
˜G�
t � v̂(St,w)

⌘r⇡(At|St,✓)

⇡(At|St)
(by sampling under ⇡)

✓t+1
.
= ✓t + ↵

⇣
˜G�
t � v̂(St,w)

⌘r⇡(At|St,✓)

⇡(At|St)

e.g., in the one-step linear case:

= ✓t + ↵
⇣
Rt+1 � ¯Rt +w>

t �t+1 �w>
t �t)

⌘r⇡(At|St,✓)

⇡(At|St)
.
= ✓t + ↵�te(At, St)

i

differential
action-value fn

stochastic
gradient ascent



⇡(a|s,✓) .
= Pr{At = a | St = s}

r(⇡)
.
= lim

n!1

1

n

nX

t=1

E⇡[Rt] =

X

s

d⇡(s)
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)r

d⇡
.
= lim

t!1
Pr{St = s}
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rṽ⇡(s) = r
X

a

⇡(a|s,✓)q̃⇡(s, a)

=

X

a

h
r⇡(a|s,✓)q̃⇡(s, a) + ⇡(a|s,✓)rq̃⇡(s, a)

i

=

X

a

h
r⇡(a|s,✓)q̃⇡(s, a) + ⇡(a|s,✓)r

X

s0,r

p(s0, r|s, a)
⇥
r � r(⇡) + ṽ⇡(s
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Complete PG algorithm

update eligibility trace for critic

form TD error from critic

update average reward estimate

update critic parameters

update eligibility trace for actor

update actor parameters

Final, complete policy-gradient algorithm:

Initialize parameters of policy ✓ 2 Rn, and state-value function w 2 Rm

Initialize eligibility traces e✓ 2 Rn and ew 2 Rm to 0

Initialize R̄ = 0

On each step, in state S:

Choose A according to ⇡(·|S,✓)
Take action A, observe S 0, R

�  R� R̄ + v̂(S 0,w)� v̂(S,w)

R̄ R̄ + ↵✓�

ew  �ew +rwv̂(S,w)

w w + ↵w �ew

e✓  �e✓ + r⇡(A|S,✓)
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✓  ✓ + ↵✓ �e✓
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The generality of the  
policy-gradient strategy

• Can be applied whenever we can compute the effect 
of parameter changes on the action probabilities, 

• E.g., has been applied to spiking neuron models

• There are many possibilities other than linear-
exponential and linear-gaussian, e.g., mixture of 
random, argmax, and fixed-width gaussian; learn the 
mixing weights, drift/diffusion models

• Can be applied whenever we can compute the effect of 
parameter changes on the action probabilities, 
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