
1

True Online Temporal-Difference Learning
(and Dutch Traces)

Harm van Seijen
Research Scientist, Maluuba

joint work with

Rupam Mahmood

Patrick Pilarski

Marlos Machado

Rich Sutton

part 1: why reinforcement learning?
part 2: true online temporal-difference learning
part 3: effective multi-step learning for non-linear FA

Outline

3

natural language
understanding

state tracker

policy manager
natural language

generation
data

“Hi, do you know a good  
Indian restaurant”

system
response

user act

system 
act

dialogue
stateuse

The central question: how to train the policy manager?

 inform(food=“Indian”)

user
input

“Sure. What price range  
are you thinking of?” request(price_range)

motivating example for RL

4

what is RL

Reinforcement Learning is a data-driven  
approach towards learning behaviour.

machine learning

unsupervised
learning

supervised
learning

reinforcement
learning

+ + +
=

deep reinforcement
learning

deep learning deep learning deep learning

+ + +

5

RL vs supervised learning

+

example: recognizing cats in images

f cat / no cat

behaviour: function that maps environment states to actions

supervised learning
hard to specify function
easy to identify correct output

6

RL vs supervised learning

+

reinforcement learning:
hard to specify function
hard to identify correct output
easy to specify behaviour goal

example: double inverted pendulum

state: θ1, θ2, ω1, ω2  
action: clockwise/counter-clockwise  
torque on top joint
goal: balance pendulum upright

behaviour: function that maps environment states to actions

7

advantages RL

+

does not require knowledge of good policy
does not require labelled data
online learning: adaptation to environment changes

8

challenges RL

+

requires lots of data
sample distribution changes during learning
samples are not i.i.d.

9

part 1: why reinforcement learning?
part 2: true online temporal-difference learning
part 3: effective multi-step learning for non-linear FA

Outline

10

Markov Decision Processes

11

Estimating the value function

12

Temporal-Difference (TD) learning exploits knowledge
about structure of .

Temporal-difference Learning

13

Bellman Equation:

TD(0) update target (1-step update target):

3-step update target:

update equations for linear function approximation:

TD(λ)

14

TD(λ) is a multi-step method, even though the update
target looks like a 1-step update target.

This update is different from the general TD update rule.

the λ-return algorithm:  

theorem*: for small step-sizes, computed by TD(λ) is
approximately the same as computed by the λ-return
algorithm.

the traditional forward view of TD(λ)

15

*see: Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming.

note:

λ controls a trade-off between variance and bias of the
update target, in general the best value of λ will differ from
domain to domain.

How to set λ?

16

λ not only influences the speed of convergence, but in case
of function approximation it also influences the asymptotic
performance.

theoretical results for TD(λ) (Peter Dayan, 1992):  
- for λ = 1: convergence to LMS solution

 - for λ < 1: convergence to a different fixed point

online method: the value of each visited state is updated
at the time step immediately after the visit.
offline method: the value of each visited state is updated
at the end of an episode.

online vs offline methods

17

Is it possible to construct an online version of the λ-return
algorithm that approximates TD(λ) at all time steps?

TD(λ) is an online method; the traditional λ-return
algorithm is an offline method.

To compute , no data beyond time t should be used.
At the same time, we want to have multi-step update
targets that look many time steps ahead.

the challenge of an online forward view

True Online Temporal-Difference Learning

Algorithm 1 accumulate TD(�)

INPUT: ↵,�, �,✓
init

✓ ✓
init

Loop (over episodes):
obtain initial �
e 0
While terminal state has not been reached, do:

obtain next feature vector �0 and reward R
� R + � ✓>�0 � ✓>�
e ��e + �
✓ ✓ + ↵�e
� �0

on simple tasks with bounded rewards. For this reason, a variant of TD(�) is often used
that is more robust with respect to these parameters. This variant, which assumes binary
features, uses a di↵erent trace-update equation:

e
t

(i) =

(
��e

t�1(i) if �
t

(i) = 0

1 if �
t

(i) = 1
for all features i .

This is referred to as the replacing-trace update. In this article, we use a simple generaliza-
tion of this update rule that allows us to apply it to domains with non-binary features as
well:

e
t

(i) =

(
��e

t�1(i) if �
t

(i) = 0

�
t

(i) if �
t

(i) 6= 0
for all features i . (6)

Note that for binary features this generalized trace update reduces to the default replacing-
trace update. We will refer to the version of TD(�) that uses Equation 6 as ‘replace TD(�)’.

3.2 True Online TD(�)

✓
t

The true online TD(�) update equations are:

�
t

= R
t+1 + �(✓t

t

)>�
t+1 � (✓t

t

)>�
t

(7)

e
t

= ��e
t�1 + �

t

� ↵��[e>
t�1�t

]�
t

(8)

✓t+1
t+1 = (✓t

t

) + ↵�
t

e
t

+ ↵[(✓t

t

)>�
t

� (✓t�1
t�1)

>�
t

][e
t

� �
t

] (9)

for t � 0, and with e�1 = 0. Compared to accumulate TD(�) (equations (3), (4) and
(5)), both the trace update and the weight update have an additional term. We call a
trace updated in this way a dutch trace; we call the term ↵[✓>

t

�
t

� ✓>
t�1�t

][e
t

� �
t

] the
TD-error time-step correction, or simply the �-correction. Algorithm 2 shows pseudocode
that implements equations (7), (8) and (9).1

1. We provide pseudocode for true online TD(�) with time-dependent step-size in Section 7.1. For reasons
explained in that section, this requires a modified trace update. In addition, for reference purposes, we
provide pseudocode for the special case of tabular features in Section 7.3.

5

the trick:

Use update targets that grow with the data-horizon.

18

normal update targets:

interim update targets:

interim update target

19

van Seijen, Mahmood, Pilarski, Machado, Sutton

experiments over a wide range of domains. Our extensive results support this hypothesis.
In terms of computational cost, TD(�) has a slight advantage. In the worst case, true online
TD(�) is twice as expensive. In the typical case of sparse features, it is only fractionally more
expensive than TD(�). Memory requirements are the same. In terms of learning speed, true
online TD(�) was often better, but never worse than TD(�) with either accumulating or
replacing traces, across all domains/representations that we tried. Our analysis showed that
especially on domains with relatively low stochasticity and frequent revisits of features a
large di↵erence in learning speed can be expected. Furthermore, true online TD(�) has the
advantage over TD(�) with replacing traces that it can be used with non-binary features,
and it has the advantage over TD(�) with accumulating traces that it is less sensitive with
respect to its parameters. Finally, we outlined an approach for deriving new true online
methods, based on rewriting the equations of a real-time forward view. This may lead to
new, interesting methods in the future.

9. Acknowledgements

The authors thank Hado van Hasselt for extensive discussions leading to the refinement
of these ideas. This work was supported by grants from Alberta Innovates Technology
Futures and the National Science and Engineering Research Council of Canada. Computing
resources were provided by Compute Canada through WestGrid.

�
t

! U
t

28

van Seijen, Mahmood, Pilarski, Machado, Sutton

experiments over a wide range of domains. Our extensive results support this hypothesis.
In terms of computational cost, TD(�) has a slight advantage. In the worst case, true online
TD(�) is twice as expensive. In the typical case of sparse features, it is only fractionally more
expensive than TD(�). Memory requirements are the same. In terms of learning speed, true
online TD(�) was often better, but never worse than TD(�) with either accumulating or
replacing traces, across all domains/representations that we tried. Our analysis showed that
especially on domains with relatively low stochasticity and frequent revisits of features a
large di↵erence in learning speed can be expected. Furthermore, true online TD(�) has the
advantage over TD(�) with replacing traces that it can be used with non-binary features,
and it has the advantage over TD(�) with accumulating traces that it is less sensitive with
respect to its parameters. Finally, we outlined an approach for deriving new true online
methods, based on rewriting the equations of a real-time forward view. This may lead to
new, interesting methods in the future.

9. Acknowledgements

The authors thank Hado van Hasselt for extensive discussions leading to the refinement
of these ideas. This work was supported by grants from Alberta Innovates Technology
Futures and the National Science and Engineering Research Council of Canada. Computing
resources were provided by Compute Canada through WestGrid.

�
t

! U
t

�
t

! U1
t

, U2
t

, U3
t

, . . . , Uh

t

28

data-horizon: time step up to which data is observed

λ-return:

interim λ-return: replace all n-step returns with n > h-t
with the (h-t)-step return

van Seijen, Mahmood, Pilarski, Machado, Sutton

1
2
3

T

time

…

…

1θ1
2θ1
3θ1

2θ2
3θ2

3θ3

Tθ1
Tθ2

TθT
Tθ3

Figure 9: The weight vectors of the new forward view mapped to the earliest time that they
can be computed.

call this version of the �-return the interim �-return, and use the notation G�|h
t

to indicate

the interim �-return depending on horizon h. G�|h
t

can be written as follows:

G�|h
t

= (1 � �)
h�t�1X

n=1

�n�1G(n)
t

+ (1 � �)
1X

n=h�t

�n�1G(h�t)
t

= (1 � �)
h�t�1X

n=1

�n�1G(n)
t

+ G(h�t)
t

·
h
(1 � �)

1X

n=h�t

�n�1
i

= (1 � �)
h�t�1X

n=1

�n�1G(n)
t

+ G(h�t)
t

·
h
�h�t�1(1 � �)

1X

k=0

�k

i

= (1 � �)
h�t�1X

n=1

�n�1G(n)
t

+ �h�t�1G(h�t)
t

(12)

Equation 12 fully specifies the interim �-return, except for one small detail: the weight
vector that should be used for the value estimates in the n-step returns has not been specified

yet. The regular �-return uses G(n)
t

(✓
t

) (see Equation 10). For the real-time forward view,
however, all weight vectors have two indices, so simply using ✓

t

does not work in this case.
So which double-indexed weight vector should be used? The two guiding principles on
deciding which weight vector to use is that we want the forward view to be an approximation
of accumulate TD(�) and that an e�cient implementation should be possible. One option

is to use G(n)
t

(✓h

t

). While with this definition the update-sequence at data-horizon T is
exactly the same as the sequence of updates from the �-return algorithm (basically, the
�-return implicitly uses a data-horizon of T), it prohibits e�ciently computation of ✓h+1

h+1

from ✓h

h

. For this reason, we use G(n)
t

(✓t+n�1
t+n�1), which does allow for e�cient computation,

and forms a good approximation of accumulate TD(�) as well (as we show below). Using

20

True Online Temporal-Difference Learning

6.1 The forward view of TD(�)

In Section 2, the general update rule for linear function approximation was presented (Equa-
tion 1), which is based on the update rule for stochastic gradient descent. The update
equations for TD(�), however, are of a di↵erent form (Equations 3, 4 and 5). The forward
view of TD(�) relates the TD(�) equations to Equation 1. Specifically, the forward view of
TD(�) specifies that TD(�) approximates the �-return algorithm. This algorithm performs
a series of updates of the form of Equation 1 with the �-return as update target:

✓
t+1 = ✓

t

+ ↵ [G�

t

� ✓>
t

�
t

]�
t

, for 0  t < T,

where T is the end of the episode, and G�

t

is the �-return at time t.
The �-return is a multi-step update target based on a weighted average of all future

state values, with � determining the weight distribution. Specifically, the �-return at time
t is defined as:

G�

t

= (1 � �)
1X

n=1

�n�1G(n)
t

(✓
t

)

with G (n)
t

(✓) is the n-step return, defined as:

G (n)
t

(✓) = R
t+1 + �R

t+2 + �2R
t+3 + · · · + �n�1R

t+n

+ �n ✓>�
t+n

.

For episodic tasks, G (n)
t

(✓) is equal to the full return, G
t

, if t + n � T , and the �-return
can be written as:

G�

t

= (1 � �)
T�t�1X

n=1

�n�1G(n)
t

(✓
t

) + �T�t�1G
t

. (10)

The forward view o↵ers a particularly straightforward interpretation of the �-parameter.
For � = 0, G�

t

reduces to the TD(0) update target, while for � = 1, G�

t

reduces to the full
return. In other words, for � = 0 the update target has maximum bias and minimum
variance, while for � = 1, the update target is unbiased, but has maximum variance. For �
in between 0 and 1, the bias and variance are between these two extremes. So, � enables
control over the trade-o↵ between bias and variance.

While the �-return algorithm has a very clear intuition, there is only an exact equivalence
for the o✏ine case. That is, the o✏ine variant of TD(�) computes the same value estimates
as the o✏ine variant of the �-return algorithm. For the online case, there is only an
approximate equivalence. Specifically, the weight vector at time T , computed by accumulate
TD(�) closely approximates the weight vector at time T computed by the online �-return
algorithm for appropriately small values of the step-size parameter (Sutton and Barto,
1998).

That the forward view only applies to the weight vector at the end of an episode, even
in the online case, is a limitation that is often overlooked. It is related to the fact that the
�-return for S

t

is constructed from data stretching from time t+1 all the way to time T , the
time that the terminal state is reached. A consequence is that the �-return algorithm can
compute its weight vectors only in hindsight, at the end of an episode. This is illustrated
by Figure 7, which maps each weight vector ✓

t

to the earliest time that it can be computed.
‘Time’ in this case refers to the time of data-collection: time t is defined as the moment

17

interim λ-return

20

update sequences

21

with

online lambda-return algorithm.

22

performance on a 10-state random walk task for the first 3
episodes (λ = 1, α = 0.2)

23

online vs offline λ-return algorithm

Theorem*

24

“For small step-size, the online λ-return algorithm
behaves like TD(λ) at all time steps”

*see Theorem 1: van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., and Sutton, R. S.
True online temporal-difference learning. Journal of Machine Learning Research, 17(145):1–40, 2016.

λ = 1

Sensitivity of TD(λ) to Divergence

25

RMS error during early learning

Computational Complexity

26

true online TD(λ) is an efficient implementation of the
online λ-return algorithm

True online TD(λ)

27

dutch trace

Empirical Comparison

28

in all domains, true online TD(λ) performs at least as good  
as replace/accumulate TD(λ)

0

0.2

0.4

0.6

0.8

1

1.2

n
o
rm

a
liz

e
d
 e

rr
o
r

replace TD(λ) accumulate TD(λ) true online TD(λ)

(10, 3, 0.1)
tabular

(10, 3, 0.1)
binary

(10, 3, 0.1)
non−binary

(100, 10, 0.1)
tabular

(100, 10, 0.1)
binary

(100, 10, 0.1)
non−binary

(100, 3, 0)
tabular

(100, 3, 0)
binary

(100, 3, 0)
non−binary

prostethic
angle

prostethic
force

part 1: why reinforcement learning?
part 2: true online temporal-difference learning
part 3: effective multi-step learning for non-linear FA

Outline

29

Implementing the online forward view is computationally
very expensive.

Memory as well as computation time per time step
grows over time.  

In the case of linear FA there is an efficient backward view
with exact equivalence: true online TD(λ).

Computational cost is span-independent and linear in
the number of features.  

In the case of non-linear FA such an efficient backward
view does not appear to exist.

30

Computational Cost

New Research Question

31

Answer: Υes

Is it possible to construct a different online forward
view, with a performance close to that of the online λ-
return algorithm, that can be implemented efficiently?

Uses online λ-return with fixed horizon, K steps ahead:
As a consequence, updates occur with a delay of K time
steps.
Computational cost is span-independent and efficient
(computational complexity equal to TD(0)).

forward TD(λ)

32

0 10 20 30 40 50 60
0

0.5

1

time steps

no
rm

al
iz

ed
 R

M
S

er
ro

r

offline λ −return algorithm

forward TD(λ)

online λ −return algorithm

(K=15)

Setting K involves a trade-off:
small K : less delay in updates
large K : better approximation of the λ-return

How well approximates depends on K, but
also on .
Whereas the weight of Rt+1 in is 1, the weight of Rt+n is
only γλn-1.

Example: γλ = 0.5 and n = 20, then γλn-1 is about 10-6.
Strategy: set K such that γλK-1 is just below η, with η
some tiny number like 0.01

How to set K?

33

Results on Prediction Task

34

mountain-car task with non-linear FA

λ = 0.9

Results on 2 Control Tasks

35

mountain-car task cart-pole task

What about deep RL?

36

Question: can this technique be applied to DQN?

Results on Atari Pong

37

1. The online λ-return algorithm outperforms TD(λ), but is
computationally very expensive.

2. For linear FA, an efficient backward view exists with exact
equivalence: true online TD(λ).

3. For non-linear FA, such an efficient backward view does not
appear to exist.

4. Forward TD(λ) approximates the online λ-return algorithm and
can be implemented efficiently for non-linear FA.

5. The price that forward TD(λ) pays is a delay in the updates.
6. Empirically, forward TD(λ) can outperform TD(λ) substantially

on domains with non-linear FA.
7. The forward TD(λ) strategy does not work well with experience

replay with long histories, but it can be applied to A3C.

Summary

38

39

Thank you!

References:  
1) van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., and Sutton, R. S.
True online temporal-difference learning. Journal of Machine Learning Research, 17(145):1–40, 2016.
2) van Seijen, H. Effective multi-step temporal-difference learning for non-linear function approximation.  
arXiv:1608.05151, 2016.

