True Online Temporal-Difference Learning
(and Dutch Traces)

Harm van Seijen
Research Scientist, Maluuba

) A Maluuba

soft company

joint work with

Marlos Machado

Rupam Mahmood

Patrick Pilarski Rich Sutton

UNIVERSITY OF

@ ALBERTA

Outline

@ part 1: why reinforcement learning?
@ part 2: true online temporal-difference learning

@ part 3: effective multi-step learning for non-linear FA

motivating example for RL

“Hi, do you know a good , o
Indian restaurant” inform(food="Indlian”)

= -
dialogue
state
- data

request(price_range)

user
input

el

system
response

system

, act
“‘Sure. What price range

are you thinking of?”

The central question: how to train the policy manager?

what is RL

Reinforcement Learning is a data-driven
approach towards learning behaviour.

machine learning

reinforcement

unsupervised supervised earnin
learning learning 9
+ + +
deep learning deep learning deep learning

deep reinforcement
learning

RL vs supervised learning

behaviour: function that maps environment states to actions

supervised learning
hard to specify function

easy to identify correct output

example: recognizing cats in images

f — cat/nocat

RL vs supervised learning

behaviour: function that maps environment states to actions

reinforcement learning:

hard to specify function
hard to identify correct output
easy to specify behaviour goal

example: double inverted pendulum

\\ state: 61, 62, w1, w2
\ Ny | . . .
_\‘ action: clockwise/counter-clockwise
TN, torque on top joint

> goal: balance pendulum upright

advantages RL

does not require knowledge of good policy
does not require labelled data
online learning: adaptation to environment changes

challenges RL

requires lots of data
sample distribution changes during learning
samples are not i.i.d.

Outline

@ part 1: why reinforcement learning?
@ part 2: true online temporal-difference learning

@ part 3: effective multi-step learning for non-linear FA

10

Markov Decision Processes

A Markov decision process (MDP) can be described by 5-tuple: (S,.A,p,r,7), with
e S: the set of all states

e A: the set of all actions
e p(s’|s,a): the transition probability function
e 7(s,a,s’): the reward function

e ~: the discount factor

policy w: 8 x A — [0,1], function giving the selection probability
for each action conditioned on the state

o0
The return at time ¢: Gi = Riy1 +v Ry + Y Reyg + .. = Z i Ry
i=1

state-value function: v"(8) = E{G¢| St = 5,7}

action-value function: q" (s,a) = E{G:| St = s, At,= a, 7}

11

Estimating the value function

Find a weight vector @ € R™ such that V(s|@) accurately approximates vy (s)
for relevant states s.

Error function: E(6) := % Z dr(8;) [vx(si) — f/(s,-|0)]2
i
where d is the stationary distribution induced by =.

Stochastic gradient descent (sampling from the stationary distribution):

01 = 0.~ Vo[ua(S) - V(5100
= 0.+ a(vs(S,) - V(5.16,)) VeV (Si160)

Because vx(S;) is unknown:
Opii=0i & a(u, e V(s,w,)) VoV (S:|0).
where U, is an estimate of v-(S;) that we will call the update target.

With linear function approximation: 6,4, = 6; + a(Ut — OtTd)t)d)t

unbiased estimate of v;(S;): Ui = Gy
12

Temporal-difference Learning

@ Temporal-Difference (TD) learning exploits knowledge
about structure of U .

@ Bellman Equation:

vr(8) = Zvr(s,a) Zp(s'ls,a) [r(s,a,8") + yvz(s)] for all s
v(8) = E[RH-I + Y0z (Se41)|Se = 8, Ay ~ w(Sy, ')]

@ TD(0) update target (1-step update target):
U= Rep1+70" ¢y44

@ 3-step update target:

Us = Rey1 +YRey2 + V2 Revs + 720 05

13

TD(®)

@ update equations for linear function approximation:

0t = Ryp1+ 7"0;_¢t+1 — 9z-r¢t:
A/)‘et—l + ¢t)
Oir1 = 6+ aosey,

€

@ TD(A) is a multi-step method, even though the update
target looks like a 1-step update target.

@ This update 1s different from the general TD update rule.

14

the traditional forward view of TD(2)

@ the A-return algorithm:

0141 = 0: + (G} — 6/ ¢,) P,

where G is the A-return, defined as:
G=ll=XN ER, g

with Gt(n) =Y r1 ¥ Rk + 70"

note:

A=0 : G}=GY
A=1 : G} =G,

15

How to set A.?

@ A controls a trade-off between variance and bias of the
update target, in general the best value of A will differ from
domain to domain.

@ A not only influences the speed of convergence, but in case
of function approximation it also influences the asymptotic
performance.

@ theoretical results for TD(A) (Peter Dayan, 1992):
- for A = 1: convergence to LMS solution
- for A < 1: convergence to a different fixed point

16

online vs offline methods

@ online method: the value of each visited state is updated
at the time step immediately after the visit.

@ offline method: the value of each visited state is updated
at the end of an episode.

@ TD(A) is an online method; the traditional A-return
algorithm 1s an offline method.

Is it possible to construct an online version of the A-return
algorithm that approximates TD(A) at all time steps?

17

the challenge of an online forward view

@ To compute 6; , no data beyond time ¢ should be used.

@ At the same time, we want to have multi-step update
targets that look many time steps ahead.

the trick:

Use update targets that grow with the data-horizon.

18

interim update target

@ normal update targets:

o — U

@ interim update targets:

o — U U U, ..., U@ﬁ

data-horizon: time step up to which data is observed +—

19

interim A-return

A S n—1~(n)
® Mhreturn: C¢ —(1_”2_:1/\ Gy

@ interim A-return: replace all n-step returns with n > h-t
with the (h-t)-step return

h—t—1
G?“L = ZX’L 1(;”)_|_ Z)\n 1Ght
n=h—t
h—t—1
— Z)\n 1G(n)_|_Gh t) |: Z)\n 1]
n=1 n=h—t
h—t—1 0
= (1-2)\) Z)\n—ngn) —|—G§h_t)- [)\h—t—1(1 _)‘)Z)‘k}
n=1
h—t—1
= (1-M\) Z)\n—ngn)+>\h—t—1G§h—t)

n=1

20

update sequences

t=1: 6} =0} +a(Gy" — (8}) ¢o) o

t=2: 6} =03 +a(Gy” - (63) bo)o
0: = 0% + a(G i‘p — ()" b1) 1

t=3: 603 =63+ cz(G)‘|3 —(63)" ¢0) o
03 = 63 +a(Gy° — (63)" ¢1) 1
03 = 03 +a(Gy" — (63)T ¢2) b2

21

online lambda-return algorithm.

Ot = 9%
t ._ pt Alt INT
0k+1 o= 9k+a(G’k —(Ok) ¢k)¢k, fOI'OSk<t

with
t—k—1
G,’:'t =(1-2) Z /\"“lec") s /\t—k-lait—k)

n=]1

22

online vs offline A-return algorithm

@ performance on a 10-state random walk task for the first 3
episodes (A =1, =0.2)

B

offline A —return algorithm

normalized RMS error
o
(4]

online A -return algorithm \—’\M
A ! | - A A
0 10 20 30 40

time steps

23

Theorem®*

“For small step-size, the online A-return algorithm

behaves like TD(A) at all time steps”

*see Theorem 1: van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., and Sutton, R. S.
True online temporal-difference learning. Journal of Machine Learning Research, 17(145):1-40, 2016.
24

Sensitivity of TD(A) to Divergence

RMS error during early learning

1

o
(o

o
(o))

RMS error
o
NN

o
n

oO

0.2 0.4 0.6 0.8 1

25

Computational Complexity

Al
Go

G,\|2
G)\|2

G,\|3
G’\'3
G,\|3

- (6)" 6o
(65)" ¢0:
637 61
(65)" ¢0:
63" ¢1
(63)" ¢2:

P
o

of)
o)
o)

26

True online TD(2)

@ true online TD(A) is an efficient implementation of the
online A-return algorithm

dutch trace

g
|

Rey1 + 7"9;r¢1+1 - OtTd)t
YACt=1+ Py — n*;/\[e,! l qbf] ¢, ——
9t+1 = 0t + ol e +“[9/] by — 97—1‘15/][‘3! - qb,]

D
|

27

Empirical Comparison

-
= no
\

o
o)
\

normalized error
o o
~ o
T T

o
no
\

o

(10,3,0.1) (10,3,0.1)
tabular binary

I rcplace TD()) B =ccumulate TD(A) B true online TD(A)

(10, 3,0.1) (100, 10, 0.1) (100, 10, 0.1) (100, 10, 0.1) (100, 3,0) (100, 3, 0) (100, 3, 0) prostethic prostethic
non-binary tabular binary non-binary tabular binary non-binary angle force

@ in all domains, true online TD(A) performs at least as good
as replace/accumulate TD(A)

28

Outline

@ part 1: why reinforcement learning?
@ part 2: true online temporal-difference learning

@ part 3: effective multi-step learning for non-linear FA

29

Computational Cost

Implementing the online forward view 1s computationally
Very expensive.

» Memory as well as computation time per time step
grows over time.

In the case of linear FA there is an efficient backward view
with exact equivalence: true online TD(A).

» Computational cost 1s span-independent and linear in
the number of features.

In the case of non-linear FA such an efficient backward
view does not appear to exist.

30

New Research Question

Is it possible to construct a different online forward

view, with a performance close to that of the online A-
return algorithm, that can be implemented efficiently?

Answer: Yes

31

forward TD(A)

® Uses online A-return with fixed horizon, K steps ahead: G;""**

@ As a consequence, updates occur with a delay of K time
steps.

@ Computational cost 1s span-independent and efficient
(computational complexity equal to TD(0)).

I I I I I I
1 K=15)
W offline A —return algorithm (-)
0.5+ — il
\/\,ﬁ forward TD(A)
online A —return algorithm V\’\/\\/G

0 ! ! ! ! ! !
0 10 20 30 40 50 60

time steps

normalized RMS error

32

How to set K?

@ Setting K involves a trade-oft:
e small K : less delay in updates
e large K : better approximation of the A-return

@ How well ¢}"** approximates G, depends on K, but

alsoon YA .

@ Whereas the weight of R1 in G is 1, the weight of Run is
only yAr1,

e Example: YA =0.5 and n = 20, then yA™! is about 10-6.

@ Strategy: set K such that yAK-1is just below 1, with 1
some tiny number like 0.01

33

Results on Prediction Task

mountain-car task with non-linear FA

% 0.8
%) online A —return algorithm
=
c 0.6
e
I offline A —return algorithm
© 0.4
£
o)
c
0.2
—/4
forward TD(A)
0

0 0005 001 0015 002 0025 0.03
o

34

Results on 2 Control Tasks

mountain-car task

avg. return over first 50 episodes

forward Sarsa(i)

cart-pole task

g

8

avg. steps over first 1000 episodes

3
$

8

&

&

5 § 8

forward Sarsa(®)

Sarsa(h) .

<

0.1 02 03 04 0% 06 0.7

08

09

35

What about deep RL?

Question: can this technique be applied to DQN?

36

Results on Atari Pong

Average Score

20

10

-10

Pong A3C vs. A3C(A)

—— adc
— a3c(A)

5 10 15 20 25 30 35
Epochs

37

Summary

. The online A-return algorithm outperforms TD()A), but is
computationally very expensive.

. For linear FA, an efficient backward view exists with exact
equivalence: true online TD(A).

. For non-linear FA, such an efficient backward view does not
appear to exist.

. Forward TD(M\) approximates the online A-return algorithm and
can be implemented efficiently for non-linear FA.

. The price that forward TD(A) pays is a delay in the updates.

6. Empirically, forward TD(M) can outperform TD(A) substantially

on domains with non-linear FA.

. The forward TD(A) strategy does not work well with experience
replay with long histories, but it can be applied to A3C.

38

Thank you!

References:
1) van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., and Sutton, R. S.
True online temporal-difference learning. Journal of Machine Learning Research, 17(145):1-40, 2016.

2) van Seijen, H. Effective multi-step temporal-difference learning for non-linear function approximation.
arXiv:1608.05151, 2016.

39

