True Online Temporal-Difference Learning (and Dutch Traces)

Harm van Seijen Research Scientist, Maluuba

joint work with

Rupam Mahmood

Patrick Pilarski

Marlos Machado

Rich Sutton

Outline

- part 1: why reinforcement learning?
- part 2: true online temporal-difference learning
- part 3: effective multi-step learning for non-linear FA

motivating example for RL

request(price_range)

The central question: how to train the policy manager?

what is RL

Reinforcement Learning is a data-driven approach towards learning behaviour.

RL vs supervised learning

behaviour: function that maps environment states to actions

supervised learning

- hard to specify function
- easy to identify correct output

example: recognizing cats in images

RL vs supervised learning

behaviour: function that maps environment states to actions

reinforcement learning:

- hard to specify function
- hard to identify correct output
- easy to specify behaviour goal

example: double inverted pendulum

state: θ 1, θ 2, ω 1, ω 2 action: clockwise/counter-clockwise torque on top joint goal: balance pendulum upright

advantages RL

- o does not require knowledge of good policy
- does not require labelled data
- online learning: adaptation to environment changes

challenges RL

- requires lots of data
- sample distribution changes during learning
- samples are not i.i.d.

Outline

- part 1: why reinforcement learning?
- o part 2: true online temporal-difference learning
- part 3: effective multi-step learning for non-linear FA

Markov Decision Processes

A Markov decision process (MDP) can be described by 5-tuple: $\langle S, A, p, r, \gamma \rangle$, with

- S: the set of all states
- A: the set of all actions
- p(s'|s, a): the transition probability function
- r(s, a, s'): the reward function
- γ: the discount factor

policy $\pi: S \times A \to [0, 1]$, function giving the selection probability for each action conditioned on the state

The return at time t: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... = \sum_{i=1}^{\infty} \gamma^{i-1} R_{t+i}$

state-value function:

$$v^{\pi}(s) = \mathbb{E}\{G_t \,|\, S_t = s, \pi\}$$

action-value function:

$$q^{\pi}(s,a) = \mathbb{E}\{G_t \,|\, S_t = s, A_t, = a, \pi\}$$

Estimating the value function

Find a weight vector $\boldsymbol{\theta} \in \mathbb{R}^n$ such that $\hat{V}(s|\boldsymbol{\theta})$ accurately approximates $v_{\pi}(s)$ for relevant states s.

Error function:
$$E(\boldsymbol{\theta}) := \frac{1}{2} \sum_{i} d_{\pi}(s_i) \left[v_{\pi}(s_i) - \hat{V}(s_i | \boldsymbol{\theta}) \right]^2$$

where d_{π} is the stationary distribution induced by π .

Stochastic gradient descent (sampling from the stationary distribution):

$$egin{aligned} oldsymbol{ heta}_{t+1} &= oldsymbol{ heta}_t - lpha rac{1}{2}
abla_ heta igg[v_\pi(S_t) - \hat{V}(S_t | oldsymbol{ heta}_t) igg]^2 \ &= oldsymbol{ heta}_t + lpha igg(v_\pi(S_t) - \hat{V}(S_t | oldsymbol{ heta}_t) igg)
abla_ heta \hat{V}(S_t | oldsymbol{ heta}_t) \end{aligned}$$

Because $v_{\pi}(S_t)$ is unknown:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \Big(U_t - \hat{V}(S_t | \boldsymbol{\theta}_t) \Big) \nabla_{\boldsymbol{\theta}} \hat{V}(S_t | \boldsymbol{\theta}_t).$$

where U_t is an estimate of $v_{\pi}(S_t)$ that we will call the update target.

With linear function approximation: $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha (U_t - \boldsymbol{\theta}_t^\top \boldsymbol{\phi}_t) \boldsymbol{\phi}_t$

unbiased estimate of $v_{\pi}(S_t)$: $U_t = G_t$

Temporal-difference Learning

- Temporal-Difference (TD) learning exploits knowledge about structure of v_{π} .
- Bellman Equation:

$$v_{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} p(s'|s, a) [r(s, a, s') + \gamma v_{\pi}(s')] \quad \text{for all } s$$
$$v_{\pi}(s) = \mathbb{E} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t \sim \pi(S_t, \cdot)]$$

• TD(0) update target (1-step update target):

$$U_t = R_{t+1} + \gamma \, \boldsymbol{\theta}^\top \boldsymbol{\phi}_{t+1}$$

3-step update target:

$$U_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 \boldsymbol{\theta}^\top \boldsymbol{\phi}_{t+3}$$

$TD(\lambda)$

• update equations for linear function approximation:

$$\begin{aligned} \delta_t &= R_{t+1} + \gamma \boldsymbol{\theta}_t^\top \boldsymbol{\phi}_{t+1} - \boldsymbol{\theta}_t^\top \boldsymbol{\phi}_t \,, \\ \boldsymbol{e}_t &= \gamma \lambda \boldsymbol{e}_{t-1} + \boldsymbol{\phi}_t \,, \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t + \alpha \delta_t \, \boldsymbol{e}_t \,, \end{aligned}$$

- $TD(\lambda)$ is a multi-step method, even though the update target looks like a 1-step update target.
- This update is different from the general TD update rule.

the traditional forward view of $TD(\lambda)$

• the λ -return algorithm:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \big(G_t^{\lambda} - \boldsymbol{\theta}_t^{\top} \boldsymbol{\phi}_t \big) \boldsymbol{\phi}_t$$

where G_t^{λ} is the λ -return, defined as:

$$\begin{aligned} G_t^{\lambda} &= (1-\lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)} \\ \text{with } G_t^{(n)} &= \sum_{k=1}^n \gamma^{k-1} R_{t+k} + \gamma^n \, \boldsymbol{\theta}^\top \boldsymbol{\phi}_{t+n} \end{aligned}$$

note:

$$\lambda = 0$$
 : $G_t^{\lambda} = G_t^{(1)}$
 $\lambda = 1$: $G_t^{\lambda} = G_t$

- λ controls a trade-off between variance and bias of the update target, in general the best value of λ will differ from domain to domain.
- λ not only influences the speed of convergence, but in case of function approximation it also influences the asymptotic performance.
- theoretical results for TD(λ) (Peter Dayan, 1992): - for $\lambda = 1$: convergence to LMS solution
 - for $\lambda < 1$: convergence to a different fixed point

online vs offline methods

- **online method:** the value of each visited state is updated at the time step immediately after the visit.
- offline method: the value of each visited state is updated at the end of an episode.
- TD(λ) is an online method; the traditional λ -return algorithm is an offline method.

Is it possible to construct an online version of the λ -return algorithm that approximates $TD(\lambda)$ at **all** time steps?

the challenge of an online forward view

- To compute θ_t , no data beyond time *t* should be used.
- At the same time, we want to have multi-step update targets that look many time steps ahead.

the trick:

Use update targets that grow with the data-horizon.

interim update target

on normal update targets:

$$\phi_t \rightarrow U_t$$

• interim update targets:

$$\phi_t \rightarrow U_t^1, U_t^2, U_t^3, \ldots, U_t^h$$

data-horizon: time step up to which data is observed

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

$$\begin{aligned} G_t^{\lambda|h} &= (1-\lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_t^{(n)} + (1-\lambda) \sum_{n=h-t}^{\infty} \lambda^{n-1} G_t^{(h-t)} \\ &= (1-\lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_t^{(n)} + G_t^{(h-t)} \cdot \left[(1-\lambda) \sum_{n=h-t}^{\infty} \lambda^{n-1} \right] \\ &= (1-\lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_t^{(n)} + G_t^{(h-t)} \cdot \left[\lambda^{h-t-1} (1-\lambda) \sum_{k=0}^{\infty} \lambda^k \right] \\ &= (1-\lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_t^{(n)} + \lambda^{h-t-1} G_t^{(h-t)} \end{aligned}$$

$$\begin{split} t &= 1: \quad \boldsymbol{\theta}_1^1 = \boldsymbol{\theta}_0^1 + \alpha \big(G_0^{\lambda|1} - (\boldsymbol{\theta}_0^1)^\top \, \boldsymbol{\phi}_0 \big) \boldsymbol{\phi}_0 \\ t &= 2: \quad \boldsymbol{\theta}_1^2 = \boldsymbol{\theta}_0^2 + \alpha \big(G_0^{\lambda|2} - (\boldsymbol{\theta}_0^2)^\top \, \boldsymbol{\phi}_0 \big) \boldsymbol{\phi}_0 \\ \boldsymbol{\theta}_2^2 &= \boldsymbol{\theta}_1^2 + \alpha \big(G_1^{\lambda|2} - (\boldsymbol{\theta}_1^2)^\top \, \boldsymbol{\phi}_1 \big) \boldsymbol{\phi}_1 \end{split}$$

$$t = 3: \quad \boldsymbol{\theta}_1^3 = \boldsymbol{\theta}_0^3 + \alpha \left(G_0^{\lambda|3} - (\boldsymbol{\theta}_0^3)^\top \boldsymbol{\phi}_0 \right) \boldsymbol{\phi}_0$$
$$\boldsymbol{\theta}_2^3 = \boldsymbol{\theta}_1^3 + \alpha \left(G_1^{\lambda|3} - (\boldsymbol{\theta}_1^3)^\top \boldsymbol{\phi}_1 \right) \boldsymbol{\phi}_1$$
$$\boldsymbol{\theta}_3^3 = \boldsymbol{\theta}_2^3 + \alpha \left(G_2^{\lambda|3} - (\boldsymbol{\theta}_2^3)^\top \boldsymbol{\phi}_2 \right) \boldsymbol{\phi}_2$$

with $\boldsymbol{\theta}_0^t := \boldsymbol{\theta}_{init}$

online lambda-return algorithm.

$$\begin{split} \boldsymbol{\theta}_t &:= \boldsymbol{\theta}_t^t \\ \boldsymbol{\theta}_{k+1}^t &:= \boldsymbol{\theta}_k^t + \alpha \Big(G_k^{\lambda|t} - (\boldsymbol{\theta}_k^t)^\top \, \boldsymbol{\phi}_k \Big) \boldsymbol{\phi}_k \,, \qquad \text{for } 0 \leq k < t \\ \text{with} \\ G_k^{\lambda|t} &:= (1-\lambda) \sum_{n=1}^{t-k-1} \lambda^{n-1} G_k^{(n)} + \lambda^{t-k-1} G_k^{(t-k)} \end{split}$$

online vs offline λ -return algorithm

• performance on a 10-state random walk task for the first 3 episodes ($\lambda = 1, \alpha = 0.2$)

Theorem*

"For small step-size, the online λ -return algorithm behaves like TD(λ) at all time steps"

*see Theorem 1: van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., and Sutton, R. S. True online temporal-difference learning. Journal of Machine Learning Research, 17(145):1–40, 2016.

Sensitivity of $TD(\lambda)$ to Divergence

RMS error during early learning

$$\begin{split} h &= 1: \quad \pmb{\theta}_{1}^{1} = \pmb{\theta}_{0}^{1} + \alpha \Big[G_{0}^{\lambda|1} - (\pmb{\theta}_{0}^{1})^{\top} \, \pmb{\phi}_{0} \Big] \pmb{\phi}_{0} \\ h &= 2 \\ \boldsymbol{\theta}_{1}^{2} = \pmb{\theta}_{0}^{2} + \alpha \Big[G_{0}^{\lambda|2} - (\pmb{\theta}_{0}^{2})^{\top} \, \pmb{\phi}_{0} \Big] \boldsymbol{\phi}_{0} \\ \boldsymbol{\theta}_{2}^{2} &= \pmb{\theta}_{1}^{2} + \alpha \Big[G_{1}^{\lambda|2} - (\pmb{\theta}_{1}^{2})^{\top} \, \pmb{\phi}_{1} \Big] \boldsymbol{\phi}_{1} \\ h &= 3: \quad \pmb{\theta}_{1}^{3} = \pmb{\theta}_{0}^{3} + \alpha \Big[G_{0}^{\lambda|3} - (\pmb{\theta}_{0}^{3})^{\top} \, \pmb{\phi}_{0} \Big] \boldsymbol{\phi}_{0} \\ \boldsymbol{\theta}_{2}^{3} &= \pmb{\theta}_{1}^{3} + \alpha \Big[G_{1}^{\lambda|3} - (\pmb{\theta}_{1}^{3})^{\top} \, \pmb{\phi}_{1} \Big] \boldsymbol{\phi}_{1} \\ \boldsymbol{\theta}_{3}^{3} &= \pmb{\theta}_{2}^{3} + \alpha \Big[G_{2}^{\lambda|3} - (\pmb{\theta}_{2}^{3})^{\top} \, \pmb{\phi}_{2} \Big] \boldsymbol{\phi}_{2} \end{split}$$

True online TD(λ)

• true online $TD(\lambda)$ is an efficient implementation of the online λ -return algorithm

$$\delta_{t} = R_{t+1} + \gamma \boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t+1} - \boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}$$

$$e_{t} = \gamma \lambda e_{t-1} + \boldsymbol{\phi}_{t} - \alpha \gamma \lambda [\boldsymbol{e}_{t-1}^{\top} \boldsymbol{\phi}_{t}] \boldsymbol{\phi}_{t}$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t} + \alpha \delta_{t} \boldsymbol{e}_{t} + \alpha [\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t} - \boldsymbol{\theta}_{t-1}^{\top} \boldsymbol{\phi}_{t}] [\boldsymbol{e}_{t} - \boldsymbol{\phi}_{t}]$$

Empirical Comparison

• in all domains, true online TD(λ) performs at least as good as replace/accumulate TD(λ)

Outline

- part 1: why reinforcement learning?
- part 2: true online temporal-difference learning
- o part 3: effective multi-step learning for non-linear FA

Computational Cost

- Implementing the online forward view is computationally very expensive.
 - Memory as well as computation time per time step grows over time.
- In the case of linear FA there is an efficient backward view with exact equivalence: true online $TD(\lambda)$.
 - Computational cost is span-independent and linear in the number of features.
- In the case of non-linear FA such an efficient backward view does not appear to exist.

New Research Question

Is it possible to construct a different online forward view, with a performance close to that of the online λ -return algorithm, that can be implemented efficiently?

Answer: Yes

forward TD(λ)

- Uses online λ -return with fixed horizon, K steps ahead: $G_t^{\lambda|t+K}$
- As a consequence, updates occur with a delay of K time steps.
- Computational cost is span-independent and efficient (computational complexity equal to TD(0)).

How to set K?

- Setting K involves a trade-off:
 - small K : less delay in updates
 - large K : better approximation of the λ -return
- How well $G_t^{\lambda|t+K}$ approximates G_t^{λ} depends on K, but also on $\gamma\lambda$.
- Whereas the weight of R_{t+1} in G_t^{λ} is 1, the weight of R_{t+n} is only $\gamma \lambda^{n-1}$.
 - Example: $\gamma \lambda = 0.5$ and n = 20, then $\gamma \lambda^{n-1}$ is about 10⁻⁶.
- Strategy: set K such that $\gamma \lambda^{K-1}$ is just below η , with η some tiny number like 0.01

Results on Prediction Task

Results on 2 Control Tasks

Question: can this technique be applied to DQN?

Results on Atari Pong

Summary

- 1. The online λ -return algorithm outperforms TD(λ), but is computationally very expensive.
- 2. For linear FA, an efficient backward view exists with exact equivalence: true online $TD(\lambda)$.
- 3. For non-linear FA, such an efficient backward view does not appear to exist.
- 4. Forward TD(λ) approximates the online λ -return algorithm and can be implemented efficiently for non-linear FA.
- 5. The price that forward TD(λ) pays is a delay in the updates.
- 6. Empirically, forward TD(λ) can outperform TD(λ) substantially on domains with non-linear FA.
- 7. The forward TD(λ) strategy does not work well with experience replay with long histories, but it can be applied to A3C.

Thank you!

References:

 van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., and Sutton, R. S. True online temporal-difference learning. Journal of Machine Learning Research, 17(145):1–40, 2016.
 van Seijen, H. Effective multi-step temporal-difference learning for non-linear function approximation. arXiv:1608.05151, 2016.