

# Two distinct problems

1

1. You know all the variables, but some values are missing in some

instances, e.g.,

| Х           | Y           | Z           |
|-------------|-------------|-------------|
| 0<br>1<br>0 | 1<br>?<br>? | 1<br>0<br>? |
|             | • • •       |             |

This makes the search problem a lot harder, but still doable

2. There are hidden (latent) variables which you *never* observe,

e.g.

| 0           |             |             |   |
|-------------|-------------|-------------|---|
| Х           | Y           | Z           | Н |
| 0<br>1<br>0 | 1<br>1<br>0 | 1<br>0<br>0 |   |

#### Scoring structure using MDL

• Recall that for a graph G, the MDL score has the form:

$$score_{MDL} = m \sum_{i} MI_{\hat{p}}(X_{i}, Parents(X_{i})) - Penalty(G)$$

- To get p̂, we need to compute the parameters of the graph G, from our incomplete data
- Simple idea: use gradient descent or EM to compute (as best we can) max. likelihood parameters given the data
- The penalty term depends on the size of the graph, <u>not</u> the parameters, so it will not be affected.

# A simple algorithm

3

- 1. Start with a graph structure G
- 2. Repeat as long as desired:
  - (a) Consider all graphs G' that can be obtained by adding or deleting an arc from G (these are G's successors)
  - (b) For each structure G', run EM (or gradient ascent) to fit its parameters.
  - (c) Compute score MDL(G') for each G'
  - (d) Pick a G' out of the candidates using your favorite method (e.g., greedily or using simulated annealing)

(e)  $G \leftarrow G'$ 

# The simple algorithm is too slow!

- If we have n random variables, <u>in each search step</u> there are n<sup>2</sup> possible successors for G (we can pick any pair of variables and add an arc, if none is there, or remove an arc, if they are connected
- Of course, this is a worst-case estimate, because some of the resulting structures may be illegal
- Finding the parameters of the network requires some number of EM iterations
- Then to compute the score, we need to compute the likelihood of the data, which is basically a step of inference
- We need a better idea!

#### 5

### Structural EM (Friedman, 1997)

- Recall the interpretation of the EM algorithm in parameter estimation
  - Start with a guess for the parameters
  - <u>Complete the data</u> by assigning the most likely values to the missing variables.
  - Improve the parameter guess based on the completed data, and iterate
- So let's *use our current network G* to complete the data!
- In our previous algorithm, we completed the data separately using each successor *G*<sup>'</sup>
- But G and G' differ only by one arc!
- So using G to complete the data cannot be too bad...



#### Example: Two versions of the algorithm

- Hard EM: pick the <u>most likely values</u> for  $Y^2$  and  $Z^3$ , then install them and use the resulting data set to score the successors G'
- Soft EM
  - Consider <u>all possible</u> assignments of values for  $Y^2$  and  $Z^3$ , which gives us several completed data sets
  - The score for the successors G' is obtained as an <u>expected value</u>, by averaging the scores obtained from each data set

#### Example: Soft EM

- Consider all possible combinations of values for  $Y^2$  and  $Z^3$ :  $\langle Y^2 = 0, Z^3 = 0 \rangle, \langle Y^2 = 1, Z^3 = 0 \rangle, ...$
- This gives us 4 data sets, call them  $D_{00}$ ,  $D_{01}$ ,  $D_{10}$ ,  $D_{11}$
- Because the data is i.i.d., the likelihood of each data set is:  $p(D_{ij}) = p(Y = i | X = 1, Z = 0, \langle G, \theta \rangle) p(Z = j | X = 0, Y = 1, \langle G, \theta \rangle)$
- For every G', evaluate 4 scores, score<sub>*ij*</sub>(G'), one corresponding to each completion of the data,  $D_{ij}$

$$\operatorname{score}_{MDL}(G') \approx \sum_{i \in \{0,1\}} \sum_{j \in \{0,1\}} p(D_{ij}) \operatorname{score}_{ij}(G')$$

• Note that the number of data sets created in the "soft" version is *exponential* in the number of missing values

#### 9

#### Making the algorithm more efficient

- Recall from lecture 16 that the likelihood of the (complete) data can be *decomposed* based on the network structure
- Likewise, the MDL score can be computed by looking at the mutual information of a node and it parents, which can be computed locally at each node, using counts
- So we keep sufficient statistics (counts) at each node
- The fact that there are missing values only means we need to keep alternate counts *at the nodes* for which values are missing.
- When going from G to a successor G', we recompute the score only for the families that are affected
- Every *k*th search step, we have to do EM again to compute a new completion of the data set

### Theoretical properties

• For any two graphs  $G_1$  and  $G_2$ , we have:

```
score_{MDL}(G_2) - score_{MDL}(G_1)

\geq E[score_{MDL}(G_2)|completed data] - E[score_{MDL}(G_1)|completed data]
```

- So if SEM moves from graph  $G_1$  to a graph  $G_2$  that seems to have a better expected MDL score (according to the possible data completions), then the true MDL score of  $G_2$  is also better than the true MDL score of  $G_1$
- The difference between the two MDL scores is at least as big as predicted by SEM
- Hence, the score is guaranteed to converge to a local maximum
- Of course, like in regular EM, multiple restarts will help get a better network in the end.

11

# What about Bayesian scoring?

• Recall the Bayesian score:

 $score_{\mathsf{Bayes}} = p(G|D) = p(G)p(D|G) = p(G)\int p(D|G,\theta)p(\theta|G)d\theta$ 

- We have to evaluate the integral for all graphs G!
- Evaluating the integral can also be quite expensive!
  - We can pick a few graphs that are most likely, and evaluate it only for those
  - Alternatively, use stochastic integration, but it turns nasty...

# **Computational hardship**

- The computation of parameters for every candidate is very expensive
- We cannot tell beforehand whether it's really worth doing it (how good will a candidate be?)
- Works only if we limit the search space to a small number of networks

13

#### **Dealing with hidden variables**

This is much harder!

- How can we tell there is something hidden?
- How many hidden variables should be introduce?
- How should they link to the rest of the network?



# How do we get the structure with hidden variables?

- How many hidden variables should be introduce?
  - As few as possible! Most applications introduce at most one....
- How should they link to the rest of the network?
  - Make a guess for an the structure (e.g. by looking at large cliques or strongly connected subsets of nodes)
  - Then use EM to estimate parameters!

# Hidden variables: Case study (Heckerman)

- Complete data from over 10000 Wisconsin high school graduates: sex (2 values), socio-economic status (4 values), IQ (4 values), parental encouragement (2 values), college plans (2 values)
- Goal is to find causal relationships between the variables
- Best structure found:



17

# Hidden variables: Case study (2)

- They considered adding 1-4 hidden variables, each with between 2-6 possible values.
- Best structure has one hidden variable, *H*,with two possible values



- This is  $2 \cdot 10^{10}$  more likely than the previous best!
- In general, bushy networks are an indication of potential hidden variables