Lecture 19, 20: Learning structure with incomplete data

e Two problems: missing values and missing (hidden) variables
e Scoring structures with missing values
e Structural EM

e Dealing with hidden variables

Two distinct problems

1. You know all the variables, but some values are missing in some

instances, e.g.,

X Y z
0 1 1
1 ? 0
0 ? ?

This makes the search problem a lot harder, but still doable
2. There are hidden (latent) variables which you never observe,

e.g.
X | Yy | z |H
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Scoring structure using MDL

e Recall that for a graph G, the MDL score has the form:

scoreppL. = M Z M1I5(X;,Parents(X;)) — Penalty(G)
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e To get p, we need to compute the parameters of the graph G,
from our incomplete data

e Simple idea: use gradient descent or EM to compute (as best
we can) max. likelihood parameters given the data

e The penalty term depends on the size of the graph, not the

parameters, so it will not be affected.

A simple algorithm

1. Start with a graph structure GG
2. Repeat as long as desired:
(a) Consider all graphs G’ that can be obtained by adding or

deleting an arc from G (these are (G’s successors)

(b) For each structure G’, run EM (or gradient ascent) to fit its
parameters.

(c) Compute scorepp (G) for each G’

(d) Pick a G’ out of the candidates using your favorite method
(e.g., greedily or using simulated annealing)

(e) G« ¢’




The simple algorithm is too slow!

If we have n random variables, in each search step there are n?

possible successors for GG (we can pick any pair of variables
and add an arc, if none is there, or remove an arc, if they are
connected

Of course, this is a worst-case estimate, because some of the
resulting structures may be illegal

Finding the parameters of the network requires some number of
EM iterations

Then to compute the score, we need to compute the likelihood
of the data, which is basically a step of inference

We need a better ideal
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Structural EM (Friedman, 1997)

Recall the interpretation of the EM algorithm in parameter
estimation
— Start with a guess for the parameters

— Complete the data by assigning the most likely values to the

missing variables.
— Improve the parameter guess based on the completed data,
and iterate

So let’s use our current network GG to complete the data!

In our previous algorithm, we completed the data separately
using each successor G’
But G and G’ differ only by one arc!

So using G to complete the data cannot be too bad...

6




Example

Suppose we have the following data, and G is a v-structure

X Z
X Y z
0 1 1
1 ? 0
X 0 1 ?

We need to complete the value of Y in instance 2, Y2, and the
value of Z in instance 3, Z>

To complete Y2, we need to compute

pY =1X=1,Z=0,(G,0)) (p(Y =0|X =1,Z =0,(G, 0))
can be obtained given that probabilities must sum to 1)

This requires inference!

Likewise, for Z3, we need to compute

p(Z|X =0,Y =1,(G,0))

Example: Two versions of the algorithm

Hard EM: pick the most likely values for Y2 and Z3, then install

them and use the resulting data set to score the successors G’
Soft EM
— Consider all possible assignments of values for Y2 and Z3,

which gives us several completed data sets

— The score for the successors G’ is obtained as an

expected value, by averaging the scores obtained from each

data set




Example: Soft EM

Consider all possible combinations of values for Y? and Z3:
(Y2=0,22=0),(Y2=1,Z3=0), ...

This gives us 4 data sets, call them Dqg, Do1, D10, D11
Because the data is i.i.d., the likelihood of each data set is:
p(Dij) =p(Y =X =1,Z2=0,(G,0))p(Z = j|X =0,Y =

1,{G,0))
For every G', evaluate 4 scores, score;; (G'),
one corresponding to each completion of the data, D;;

scoreprpr(G') & Z Z p(D;;)score;; (G')
i€{0,1} j€{0,1}

Note that the number of data sets created in the “soft” version is

exponential in the number of missing values
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Making the algorithm more efficient

Recall from lecture 16 that the likelihood of the (complete) data

can be decomposed based on the network structure

Likewise, the MDL score can be computed by looking at the
mutual information of a node and it parents, which

can be computed locally at each node, using counts

So we keep sufficient statistics (counts) at each node
The fact that there are missing values only means we need to
keep alternate counts at the nodes for which values are missing.

When going from G to a successor G’, we recompute the score

only for the families that are affected

Every kth search step, we have to do EM again to compute a

new completion of the data set
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Theoretical properties

e For any two graphs G1 and G2, we have:

scorepspr, (G2) — scoreprpr (G1)

> Elscoreprpr. (G2)|completed data] — Efscore s pr, (G1)|completed dat

e So if SEM moves from graph GG1 to a graph G2 that seems to
have a better expected MDL score (according to the possible
data completions), then the true MDL score of (G2 is also better
than the true MDL score of G

e The difference between the two MDL scores is at least as big as
predicted by SEM

® Hence, the score is guaranteed to converge to a local maximum

e Of course, like in regular EM, multiple restarts will help get a

better network in the end.
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What about Bayesian scoring?

e Recall the Bayesian score:
scoregayes = p(GID) = (G)p(DIG) = p(G) [ p(DIG.0)p(0]G)ao

e \We have to evaluate the integral for all graphs G'!
e Evaluating the integral can also be quite expensive!
— We can pick a few graphs that are most likely, and evaluate it
only for those

— Alternatively, use stochastic integration, but it turns nasty...

12

D




Computational hardship

e The computation of parameters for every candidate is very
expensive

e \We cannot tell beforehand whether it's really worth doing it (how
good will a candidate be?)

e \Works only if we limit the search space to a small number of

networks
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Dealing with hidden variables

This is much harder!
e How can we tell there is something hidden?
e How many hidden variables should be introduce?

e How should they link to the rest of the network?
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How can we tell there is something hidden?

e \We are doing structure learning and all networks have very low
score

e Based on prior knowledge of the domain, the obtained
structures do not make sense

e There are big cliques of nodes that are strongly connected

e Example: consider what happens below if we consider

removing node A:

A B~
®) é% ;a@
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How do we get the structure with hidden variables?

e How many hidden variables should be introduce?
— As few as possible! Most applications introduce at most
one....
e How should they link to the rest of the network?
— Make a guess for an the structure (e.g. by looking at large
cliques or strongly connected subsets of nodes)

— Then use EM to estimate parameters!
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Hidden variables: Case study (Heckerman)

Complete data from over 10000 Wisconsin high school
graduates: sex (2 values), socio-economic status (4 values), IQ
(4 values), parental encouragement (2 values), college plans (2
values)

Goal is to find causal relationships between the variables

Best structure found:

Sex
s
PE /

1Q

I

CP
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Hidden variables: Case study (2)

They considered adding 1-4 hidden variables, each with
between 2-6 possible values.
Best structure has one hidden variable, H,with two possible

values
H

-

SES
PE /

<

This is 2 - 10'° more likely than the previous best!

CP

In general, bushy networks are an indication of potential hidden
variables
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