
Lecture 18: EM for mixture models� Basic review of Gaussians� Mixture models� EM for mixture models
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Recall from last time: Expectation Maximization (EM)� A general purpose method for learning from incomplete data� Main idea:

– If we had complete data (sufficient statistics) we could easily

maximize the likelihood

– So in the case of missing values, we will “fantasize” what

they should be, based on the current parameter setting

– This means we compute expected sufficient statistics

– Then we improve the parameter setting, based on these

statistics
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Mixture models

� Suppose you have a bunch of data� You’d like to know how the data was generated� In particular, the data is coming from some underlying

probability distribution. Can we figure out what it is?� In this case, it seems that there are really 5 “distributions”

generating the data� This is called a mixture model� It also seems these distributions are normal, or Gaussian

(especially because everyone loves Gaussians :)
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Quick refresher: Gaussian distributions� The univariate Gaussian (Normal distribution) with mean � and

variance � :�����	� ��

����� �� ����� �	���������  "! ��� ! �#� �� �	� $� Suppose we have data with % attributes (so now a data instance&� is an % -dimensional vector)

The multivariate Gaussian distribution with mean vector
&�

( % -dimensional vector) and covariance matrix � ( %(')% matrix,

symmetric, positive semi-definite) is:��� &� ��� ����*� �,+.- �./ � /10 - � �����  �� � &� ! &�#�,23�54 0 � &� ! &�#� $
where / � / denotes the determinant of �
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Mixture of Gaussians� Suppose we have a set of data points, 6 &� 0 
�7�7�7 &�98;:� Gaussian assumption: Suppose there are < Gaussian

distributions = � &�?>@

��>A�B
DCE� � 7�7�7F< which generate data.� Every data point is generated by first selecting one of these

distributions, with probability � > 
DCE� � 
G7H7�7
< , and then

generating a point from the distribution.� Can we estimate � > 
 &� > 

� > 
DCI� � 7H7�7
< from the data?� We’ll do the 1-dimensional case first...
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Maximum likelihood to the rescue!� Write down the log likelihood of the data given a set of
parameters �9J , � J , � J , K�� � 
�7�7�7F< :LNMPO3Q R LSMTOVUXWZY\[ 0P]F^F^F^ [ +9_a` U 0G]F^F^
^ Ucb ]Zde0G]
^a^F^Zd b ],f90e^
^a^Zf bhgR LSMTO 8iJkj 0 UXWl[ J ` U 0G]F^F^F^ Ucb ]Zd?0G]F^
^F^Zd b ]mf90n^F^
^Zf b�g (assuming data is iid)R 8Jkj 0 LNMPOpoq b> j 0 U9Wl[ J ` d > ]mf > grU >Gst (given how the data is drawn)� Now compute derivative wrt � > , � > , � > , set to 0 and solve...

This cannot be solved analytically!
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Latent variables� In the previous model, we do not know which Gaussian

generates each data point.� The identity of the Gaussian is called a

latent (hidden, unobserved) variable� Latent variables are very important in practical applications� Latent variables make the problem difficult!
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A simple problem!� Suppose we knew the latent variables (i.e., we knew which

Gaussian generated which point)� Let < J be the Gaussian that generated point K . Then we have:uwvyx{z � 8Jkj 0 urv@x �|�����9J / � bB} 
~� bB} 
 � bB} ���� 8Jkj 0 � uwvyx �����#� / � b } 
�� b } ��� urv@x � b } �� 8Jkj 0 ! ���9J ! � b } � �� � �b } ! �� urvyx �D�*� � �bB} ��� urv@x � b }� Now it is easy to maximize the likelihood!
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Maximum likelihood estimation: Univariate Gaussian� Working with < J (the component which generated instance K ) is

awkward.� To make things easy, we’ll define an indicator variable, � J > ,
which is equal to 1 if and only if < J � C , 0 otherwise.� With this notation, the likelihood becomes:urvyx�z � 8J�j 0 b> j 0 � J >  ! ���9J ! � > � �� � �> ! �� urvyx �D�*� � �> ��� urv@x � > $� Note that we can reverse the sums at will
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Maximum likelihood estimation: Univariate Gaussian (2)� To compute the means � > , we have:� uwvyx�z� � > � 8Jkj 0 � J >  "! ����� J ! ��>A� � ! � �� � �> $ � �
Solving this, we get: � > � � 8Jkj 0 � J > �9J� 8Jkj 0 � J >
In other words, to estimate the mean of the C th component, we

compute the sample mean of the instances generated by it� Similarly, we get for the standard deviation:� �> � � 8Jkj 0 � J > ���9J ! � > � �� 8Jkj 0 � J >
10



Maximum likelihood estimation: Univariate Gaussian (3)� To find � > , we also have to take into account that � > � > � �
.� Assume without loss of generality (wlog) that we replace� b � � ! � b 4 0> j 0 � > :� LNMPO�Q� U > R 8Jkj 0���� J >��U >E� � J b ������ b 4 0> j 0 U > W ��� g�� R � ]��@� R � ]F^
^F^�� ���� By manipulating this equation, we get:� 8J�j 0 � J >� 8Jkj 0 � J b � � >� b 
Z� CE� � 
�7�7�7
< ! �� Now we take sums on both sides:b 4 0> j 0 � 8Jkj 0 � J >� 8Jkj 0 � J b � b 4 0> j 0 � >� b
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Maximum likelihood estimation: Univariate Gaussian (4)� We know that � 8Jkj 0 � b> j 0 � J > � ¡ (because each instance is

generated by exactly one Gaussian component)� We also know that � b 4 0> j 0 � > � � ! � b� Plugging everything back in the equation, we get:¡ ! � 8Jkj 0 � J b� 8J�j 0 � J b � � ! � b� b� Solving, we get that the probability � b is given by the empirical
fraction of the points coming from the < th distribution:Ucb¢R � 8Jkj 0 � J b£
And because we did this wlog, it holds for any � > .
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Maximum likelihood estimation: Multivariate Gaussian� It is just a straightforward generalization of the univariate case� The probability � > is just the number of points coming from theC th distribution U > R � 8Jkj 0 � J >£� The mean of the distribution is given by the empirical mean of
the points coming from it:¤d > R � 8Jkj 0 � J >

¤[ J� 8J�j 0 � J >� The covariance matrix is the covariance of the points from the
distribution ¥ > R � 8Jkj 0 � J > W

¤[ J � ¤d > gcW ¤[ J � ¤d > g 2� 8Jkj 0 � J >
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EM for Mixture of Gaussians� We start with an initial guess for the parameters � > , &� > , � >� We will iterate an e-step, in which we “complete” the data, with

an M-step, in which we re-compute the parameters� In the “hard EM” version, completing the data means that each

data point is assumed to be generated by exactly one Gaussian� This is very related to k-means clustering (which you may know)� In the “soft EM” version (also usually known as EM), we assume

that each data point could have been generated from

any component� In this case, each point will contribute to the mean and variance

estimate of each component.
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Hard EM for Mixture of Gaussians

1. Guess an initial parameter setting � > 
 &� > 

� > 
�CI� � 7�7H7
<
2. Repeat until convergence:

(a) E-step: For each K�� � 
G7�7�7¦¡ and each CI� � 
�7�7�7
< :� J R §�¨ZO	©ª§H« > UXW ¤[ J drawn from distribution � ` U > ] ¤d > ] ¥ > g
where

UXW ¤[ J drawn from distribution � ` U > ] ¤d > ] ¥ > g�¬­U > U9W ¤[ J ` ¤d > ] ¥ > g
(b) M-step: Update the parameters of the model to maximize the

likelihood of the dataU > R �£ 8Jkj 0®� J >
¤d > R � 8Jkj 0 � J >

¤[ J� 8J�j 0 � J >¥ > R � 8J�j 0 � J > W
¤[ J � ¤d > g W ¤[ J � ¤d > g 2� 8J�j 0 � J >
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Soft EM for Mixture of Gaussians

1. Guess an initial parameter setting � > 
 &� > 

� > 
�CI� � 
�7�7�7
<
2. Repeat until convergence:

(a) E-step: For each K�� � 
G7�7�7¦¡ and each CI� � 
�7�7�7
< :¯ > W\°±g�R­UXW ¤[ J drawn from distribution � ` U > ] ¤d > ] ¥ > g
where

UXW ¤[ J drawn from distribution � ` U > ] ¤d > ] ¥ > g�¬­U > U9W ¤[ J ` ¤d > ] ¥ > g
(b) M-step: Update the parameters of the model to maximize the

likelihood of the dataU > R �£ 8Jkj 0 ¯ > W\°±g
¤d > R � 8Jkj 0 ¯ > W\°±g ¤[ J� 8J�j 0 ¯ > Wl°Dg¥ > R � 8Jkj 0 ¯ > W\°±gcW ¤[ J � ¤d > g W ¤[ J � ¤d > g 2� 8Jkj 0 ¯ > W\°±g
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EM in general� Whenever we are trying to model data drawn probabilistically,

and we have missing values in the data, EM is an option� We need some structured or parametric form of the distribution

(we saw Bayes nets and mixtures of Gaussians as examples)� We starts with a guess for the parameters of the distribution� You can think of the E-step as trying to “complete” the data, by

filling in the missing values� The M-step will compute new parameters, given the completed

data
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Theoretical properties of EM� Each iteration improves the likelihood:z ��²AJ�³ 0 /µ´ ��¶ z �·²TJ /¸´ �� If the parameters do not change in one iteration, ²hJ�³ 0 � ²TJ ,
then the gradient of the log-likelihood function is 0 at ²�J :� z �·² /¸´ �� ² ��²AJ ��� �
This means that ² J is a min, max or saddle point� In practice, convergence only occurs at local maxima� See textbook for a detailed description of general EM and its

properties
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EM pros and cons� Much easier to implement than gradient descent; no parameter

tuning is necessary, and no projection of the parameters (we

compute them directly normalized)� Converges much faster than vanilla gradient descent� Not very sensitive to the starting point� Speed comparison with fancy gradient descent is unclear
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Summary� Difficulty of inference with missing data is that it generates a

complex likelihood function� We have a non-linear optimization problem, and we can use two

solutions:

– Gradient descent: always works for non-linear optimization

– EM: targeted towards optimizing likelihood� Both are only guaranteed to converge to local maxima, so we

need restarts� Both use inference to compute expected sufficient statistics of

the data� Hence, the inference step is a bottleneck for both
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