Lecture 18: EM for mixture models

® Basic review of Gaussians
e Mixture models

e EM for mixture models

Recall from last time: Expectation Maximization (EM)

e A general purpose method for learning from incomplete data
e Main idea:
— If we had complete data (sufficient statistics) we could easily
maximize the likelihood
— So in the case of missing values, we will “fantasize” what
they should be, based on the current parameter setting

— This means we compute expected sufficient statistics

— Then we improve the parameter setting, based on these

statistics

Mixture models

o o®
': : :‘:o
e

Suppose you have a bunch of data

You'd like to know how the data was generated

In particular, the data is coming from some underlying
probability distribution. Can we figure out what it is?

In this case, it seems that there are really 5 “distributions”
generating the data

This is called a mixture model

It also seems these distributions are normal, or Gaussian

(especially because everyone loves Gaussians :)

3

Quick refresher: Gaussian distributions

The univariate Gaussian (Normal distribution) with mean p and
variance o:

p(z;p,) = ;) exp <_%)

(2702

Suppose we have data with n, attributes (so now a data instance
Z is an n-dimensional vector)

The multivariate Gaussian distribution with mean vector ji

(n-dimensional vector) and covariance matrix X (n X n matrix,
symmetric, positive semi-definite) is:

p@) = g o0 (3@ - 7S -)

where |X| denotes the determinant of X

4

Mixture of Gaussians

e Suppose we have a set of data points, (1, ...Zmn)

e Gaussian assumption: Suppose there are £ Gaussian

distributions NV (1ij, X;),4 = 1...k which generate data.
e Every data point is generated by first selecting one of these
distributions, with probability p;,7 = 1, ... k, and then
generating a point from the distribution.
e Can we estimate p;, tij, >;,7 = 1...k from the data?

e We'll do the 1-dimensional case first...

Maximum likelihood to the rescue!

e \Write down the log likelihood of the data given a set of
parameters p;, i, 0i,t = 1,...k:

logL, = logp({x1,...xn)|P1, - -Pks M1, .- MUk, 01 --.0k)

m
= log Hp(a:i|p1, e DksMly--- MUk, 01 ---0F) (assuming dat

=1

m k
= Z log Z p(xi|pj,o5)p; | (given how the data is drawn)
i=1 j=1

e Now compute derivative wrt p;, uj, o5, setto 0 and solve...

This cannot be solved analytically!

a is iid)

Latent variables

e In the previous model, we do not know which Gaussian

generates each data point.
e The identity of the Gaussian is called a

latent (hidden, unobserved) variable

e |atent variables are very important in practical applications

e Latent variables make the problem difficult!

A simple problem!

e Suppose we knew the latent variables (i.e., we knew which
Gaussian generated which point)

e Let k; be the Gaussian that generated point z. Then we have:

logL =) log(p(wilpr,, ok, pr;))

1=1
m 2
i — Uk, 1
= > (_(205)" _ - log (27ra,3i)+logpki>
i=1 ki

e Now it is easy to maximize the likelihood!

Maximum likelihood estimation: Univariate Gaussian

e Working with k; (the component which generated instance 1) is
awkward.

e To make things easy, we'll define an indicator variable, d;;,
which is equal to 1 if and only if k; = 7, 0 otherwise.

e \With this notation, the likelihood becomes:

1
log L — ZZ%Q_—Q—Emmﬁ+m@
.7

=1 j=1

e Note that we can reverse the sums at will

9

Maximum likelihood estimation: Univariate Gaussian (2)

e To compute the means p;, we have:

dlogL _ I~ [2wi—p)(=1) _
Ou; 2 (207 !

=1 J

Solving this, we get:

= 2iz1 diss
’ 2 i1 0ij

In other words, to estimate the mean of the jth component, we

compute the sample mean of the instances generated by it

e Similarly, we get for the standard deviation:

o2 ooy b (i — py)?

O' .

7 Z;ﬁ;l 52'.7'

10

Maximum likelihood estimation: Univariate Gaussian (3)

e To find p;, we also have to take into account that Zj pj = 1.
e Assume without loss of generality (wlog) that we replace

k—1
pr=1— ijl Pj-

Olog L u (1 1
= d;5 — + 0ix — (—1)> =0,Vy=1,...k—1
o, 2\ Mo,

e By manipulating this equation, we get:

Mo .
21 %% _ Py g1
Zi:l 5ik Pk
e Now we take sums on both sides:
k—1

k—1
221 0ij Pj
;Zm 4 _Zpk

i=1 Yik =1

11

Maximum likelihood estimation: Univariate Gaussian (4)

® We know that) .I" | Zle di; = m (because each instance is
generated by exactly one Gaussian component)
k—1
e We also know that } >~ pj =1 — py
e Plugging everything back in the equation, we get:
m_zgl(sik 1 —py
Z;r;l dik Pk
e Solving, we get that the probability pg is given by the empirical
fraction of the points coming from the kth distribution:

> e Gk

m

Pr =

And because we did this wlog, it holds for any p;.

12

Maximum likelihood estimation: Multivariate Gaussian

® It is just a straightforward generalization of the univariate case
e The probability p; is just the number of points coming from the
gth distribution
> iz 9ij
m
e The mean of the distribution is given by the empirical mean of
the points coming from it:

5= D i1 04 T
n = =l W
>iz10ij
e The covariance matrix is the covariance of the points from the
distribution

p; =

— — — S\T
Yoy 0i5 (@5 — py) (25 — py)

5. —
’ Sty 8

13

EM for Mixture of Gaussians

e \We start with an initial guess for the parameters p;, j, 3,

e \We will iterate an e-step, in which we “complete” the data, with
an M-step, in which we re-compute the parameters

e In the “hard EM” version, completing the data means that each

data point is assumed to be generated by exactly one Gaussian

e This is very related to k-means clustering (which you may know)

e In the “soft EM” version (also usually known as EM), we assume
that each data point could have been generated from

any component

e In this case, each point will contribute to the mean and variance

estimate of each component.

14

Hard EM for Mixture of Gaussians

1. Guess an initial parameter setting p;, trj, %;,7 =1...k
2. Repeat until convergence:
(@) E-step: Foreach?z =1,...mandeachj =1,...k:
k; = arg max; p(a; drawn from distribution j|p;, ti, ;)
where p(; drawn from distribution j|p;, 5, X;) o< p; (25 |1], 2;)

(b) M-step: Update the parameters of the model to maximize the
likelihood of the data

p; = i id ;i = M
J - 1) j —
mi Yo 04
— — — T
2, = > ieq 835 (25 — 45) (%7 — 4j)
> ity 6ij
15

Soft EM for Mixture of Gaussians

1. Guess an initial parameter setting p;, tij, 2,7 =1,...k
2. Repeat until convergence:
(@) E-step: Foreach? =1,...mandeachj =1,...k:
w;(4) = p(5 drawn from distribution j|p;, f, ;)
where p(; drawn from distribution j|p;, (rj, X;) o< p; (23 |1], 2;)

(b) M-step: Update the parameters of the model to maximize the
likelihood of the data

1 «— . > e wj(1)7;
j o = — w (’L) '[J,_" = 1= -
T e B R
. — — — \T
oL T w) (@ -) (@ —)
J .
ieq w; (1)

16

EM in general

e Whenever we are trying to model data drawn probabilistically,
and we have missing values in the data, EM is an option

e \We need some structured or parametric form of the distribution
(we saw Bayes nets and mixtures of Gaussians as examples)

e \\e starts with a guess for the parameters of the distribution

e You can think of the E-step as trying to “complete” the data, by
filling in the missing values

e The M-step will compute new parameters, given the completed

data

17

Theoretical properties of EM

e Each iteration improves the likelihood:
L(0i+1|D) > L(6:|D)
e |f the parameters do not change in one iteration, 8;+1 = 6;,

then the gradient of the log-likelihood function is 0 at 6;:

AL(0|D)
0

This means that 6; is a min, max or saddle point

(6:) =0

® |n practice, convergence only occurs at local maxima
e See textbook for a detailed description of general EM and its

properties

18

EM pros and cons

Much easier to implement than gradient descent; no parameter
tuning is necessary, and no projection of the parameters (we
compute them directly normalized)

Converges much faster than vanilla gradient descent

Not very sensitive to the starting point

Speed comparison with fancy gradient descent is unclear

19

Summary

Difficulty of inference with missing data is that it generates a
complex likelihood function

We have a non-linear optimization problem, and we can use two
solutions:

— Gradient descent: always works for non-linear optimization
— EM: targeted towards optimizing likelihood

Both are only guaranteed to converge to local maxima, so we
need restarts

Both use inference to compute expected sufficient statistics of
the data

Hence, the inference step is a bottleneck for both

20

