
Learning structure in Bayes Nets: Scoring functions

� Maximum likelihood scoring� Minimum description length� Bayesian scoring
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Scoring networks

� Recall from last time: we will do a search over the space of

DAGs, then fit parameters on top of the structure� For the search, we need to assign a score (value, goodness) to

each network� The search process requires scoring many networks!� But the application of an operator (add, delete, reverse arc) only

changes the local structure of the network� We need scoring metrics that can be decomposed into scores

for each family� Then we can compute a change in score easily
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Assumptions

� We are looking for a Bayes net over � random variables� We have a data set
�

of i.i.d. samples� Let � � � � � be the size of the data set� Each sample has the form: ���	� 
�������������������� where ���� is the

value of variable � � in the � th sample� We assume complete data (all values are known in all samples)
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Maximum likelihood scoring� Recall: the likelihood function measures the likelihood of the

data given a model. We used this for parameter learning,

assuming a given structure � :
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� We know how to compute the parameters
"

(the CPTs) that

maximize the likelihood using counts� The maximum likelihood score for a structure � is defined as

the likelihood given the best parameter setting for that structure:
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� Does this have an interpretation?
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Entropy� The entropy of a random variable D drawn from a distribution (
is: EGF  D & � H I (  � & <>=@?J(  � &

� This is trivially extended if D is a set of random variables and (
is their joint distribution.� Entropy measures the amount of randomness in the distribution.

Equivalently, it measures the amount of information.
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Entropy and information theory

� Suppose I will get data �  and I want to send it over a channel. I

know that the probability of item �  is (  .� Suppose there are 4 possible values, and all are equally likely.

Then I can encode them in two bits each, so on every

transmission I need 2 bits� Suppose now (�KL� M��ON , ( � � M��QP@N , (SRT� (�U!� M��>V�P@N . Can I

get a better encoding? What is the expected length of the

message that I will have to send over time?
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More on information theory

� Suppose I believe the messages are generated according to

distribution W , but really they come from X� Then my best encoding will take an expected HZY  (�[<\=@?^]B
bits� The difference in the number of bits is:

H  (_`<>=@?^]BaH H  (_`<>=@?b(_ �  (�[<\=@? ( ] 
This is our old friend the KL distance! (also called

relative entropy)
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Mutual information

� For two sets of random variables c and d , the mutual

information relative to distribution ( is:

e f F  c �Bd & � g�hjik(  �l �nm & <\=@? (  ol �nm &(  olk& (  m &
� This is the relative entropy between (  c �)d & and (  c & (  d & .� e f F  c �,d & measures how much information one variable

provides about the other
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Properties of mutual information

� e f F  c �,d &qp M� e f F  c �,d & � Msr c and d are independent� e f F  c �,d & � EGF  c & r c is totally predictable given d
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Likelihood score in terms of entropy

� We can show that:

�! �%� �'& � � �
t +b�
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 � � &�& H E vF  � � &�&

where � is the number of instances, and x( is the probability

distribution generated by the maximum likelihood fit to the

parameters of �� Nice intuitive explanation: the larger the dependency of each

variable on its parents, the larger the score.� Bad news: see homework!
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Overfitting

General problem for all learning algorithms!

Possible solutions:� Restricting the hypothesis space

E.g. restrict the number of parents allowed for any node, or the

number of parameters in any CPT� Minimum description length: prefer compact models over large

ones� Bayesian approach: use prior knowledge to set priors over

structures
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Minimum description length (MDL) principle

� Suppose we want to transmit data
�

over a communication

channel� To save space, we want a compact model of
�

- note that a

Bayes net can be viewed as such a model� We also need enough information to get the exact instances

back� If we know the probability distribution of the data, ( , then we can

encode the instances based on universal coding: most likely

instances get the fewest bits (as seen before)
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MDL for Bayes nets

We need to encode the graph structure � , the CPTs at each node,

and then the instances themselves. We want to minimize the total

description length:� Suppose the graph is encoded in
�y�! � & bits� We have Y � ParentValues

 � � &z �{� � �/H V & parameters in the

CPTs. Each has to be encoded in some number of bits | . The

typical choice is | � }�~�� *R� So transmitting the parameters takes a number of bits:

<\=@?��P � ParentValues
 � � &� �{� � �/H V &

� For the data, the optimal encoding length is:

H�<\=@?-(  �[���z������� * ����� "0& � H 2436587:9 ;  ��� " � �'&
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MDL score

�$�$���4�z��� ; � �)���z�4� ;����T���������S�����k�A���S�  Q¡�¢J£¤ � ParentValues �¦¥ � ���§�¨¥ � �6�ª©z�
� £ �

« ¬ vF �¥ � � Parents �¥ � �®�S� £ �
¯ vF �¦¥ � �

�  °¡�¢ «¤ � ParentValues �¥ � �n�§�¨¥ � �6�±©z�w�²�³�´�����
� The entropy term is the same for any graph, so we can ignore it� The description length of the graph,

�µ�! � & , does not depend

on the size of the data set � . So for large � , this can be

ignored
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More observations

�$�$���4� ��� ;'¶ £ �
« ¬ vF �¥ � � Parents �¦¥ � �·�S�  °¡�¢ «¤ � ParentValues �¥ � �n�§�¨¥ � �6�±©z�

� There is a trade-off between the size of the graph and how well

we fit the data:

– If the graph is large, the score decreases

– If a variable is highly dependent on its parents, the score

increases� As � grows very large, the emphasis will be on the fit to the

data, so asymptotically (as � ¸ ¹ ), MDL will find the same

network as max. likelihood
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Consistency of a scoring function

� Suppose that there exists a true model, �Gº , which generated

the data� A scoring function is called consistent if the following two

properties hold with increasing probability, as � ¸ ¹ :

– �»º maximizes the score

– All structures � that are not equivalent to �Gº (in the I-map

sense) will have strictly lower score� Both max. likelihood and MDL are consistent scoring functions
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Bayesian approach

� Main idea: put a distribution over any unknowns!!� Last time we used this idea to learn parameters of a network

Query

θ

x1 x2 x n n+1x

Evidence� Now we use it for learning structure:

G,

x1 x2 x n n+1x

Evidence Query

θ
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Bayesian inference for scoring structures

G,

x1 x2 x n n+1x

Evidence Query

θ

� We compute (  � *a¼ � � �C&
as an expectation over the unknown

structure � (assuming we consider all possible structures):

(  � *a¼ � � �'& � ½ (  � *a¼ � �¾��� �C& (  �%� �C&
� Computing (  � *a¼ � ����� �C&

is easy - the same as prediction with

known structure� We need to compute (  �%� �C&
(the score of the network).
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Bayesian scoring of network structures� By Bayes rule, we have:

¿ ���À�����J� ¿ ���Á�j��� ¿ �����¿ �o���
(  A�C&

is the normalizing factor, same for all structures, so it can

be dropped� So the Bayesian score is:

2436587:98Â  �%� �'& � <>=@?b(  A� ��� &ÄÃ <>=@?J(  � &
– (  � & is the prior over network structures. It allows control of

the complexity of the network (e.g. we can penalize dense

nets).

– (  #� �¾� & is called the marginal likelihood of the data given

the structure (we marginalize out the parameters)
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Marginal likelihood

We compute (  #� �¾� & by marginalizing the network parameters
"
:

(  A� ��� & � (  A� ����� "0& (  A" �¾� &§Å�"
� (  A� ����� "�& is the likelihood function,

�! ��� " � �C&
.� (  A" �¾� & is the prior over the parameters� Problem: we need a prior for all parameters in the network!
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Priors

� Quite often all nets are considered equally likely� To get the parameter priors, we assume a prior over the joint

(e.g. the joint is uniform) and an equivalent sample size� Given a network structure, our joint prior factorizes over the

network. So we can compute local priors for all parameters!
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Bayesian vs. likelihood scoring

� To compute the ML score of a network, we used the “best”

parameter setting:

" º � ÆÈÇ�?^ÉµÆ/ÊË �! ��� " � �'&
� The Bayesian score considers all possible parameter settings

and computes an expected value of the likelihood over all these

settings:

(  A� ��� & � (  #� � " �$� & (  A" ��� &§Å�"
� Intuitively, the integral measures the sensitivity to the choice of

parameters
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Asymptotic behavior

� If (  A" ��� & is “well-behaved”, and we have a reasonable prior,

then:

<\=@?-(  A� ��� & � 2436587:9 ��� ; Ã Ì% V &
So they asymptotically give the same answer.� Bayesian score is usually less sensitive to noise in the data.
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