Learning structure in Bayes Nets: Scoring functions

e Maximum likelihood scoring
e Minimum description length

e Bayesian scoring

Scoring networks

e Recall from last time: we will do a search over the space of
DAGs, then fit parameters on top of the structure

e For the search, we need to assign a score (value, goodness) to
each network

e The search process requires scoring many networks!

e But the application of an operator (add, delete, reverse arc) only
changes the local structure of the network

e \We need scoring metrics that can be decomposed into scores
for each family

e Then we can compute a change in score easily




Assumptions

We are looking for a Bayes net over n random variables

We have a data set D of i.i.d. samples

Let m = | D| be the size of the data set

Each sample has the form: x; = (zj1,...z;j,) Where x;; is the
value of variable X; in the jth sample

We assume complete data (all values are known in all samples)
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Maximum likelihood scoring

Recall: the likelihood function measures the likelihood of the
data given a model. We used this for parameter learning,

assuming a given structure G

L(0,G|D) =p(D|0,G) = H (x;]0) = H Hp(wjz-|Parents(
=1 j=1l:=1

We know how to compute the parameters 0 (the CPTs) that
maximize the likelihood using counts
The maximum likelihood score for a structure G is defined as

the likelihood given the best parameter setting for that structure:
scorer (G) = log L(6, G| D)

Does this have an interpretation?

Tji))
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Entropy

e The entropy of a random variable X drawn from a distribution p

IS:
Zp ) log p(x

e This is trivially extended if X is a set of random variables and p
is their joint distribution.

e Entropy measures the amount of randomness in the distribution.
Equivalently, it measures the amount of information.
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Entropy(S)

Entropy and information theory

e Suppose | will get data x; and | want to send it over a channel. |
know that the probability of item x; is p;.

® Suppose there are 4 possible values, and all are equally likely.
Then | can encode them in two bits each, so on every
transmission | need 2 bits

® Suppose now po = 0.9, p1 = 0.25, p2 = p3 = 0.125. Can |
get a better encoding? What is the expected length of the
message that | will have to send over time?




More on information theory

e Suppose | believe the messages are generated according to
distribution (), but really they come from P

e Then my best encoding will take an expected — Zj pj log q;
bits

e The difference in the number of bits is:
p.
—) pjlogg; — (— > p; 10gpj> =) p; logq—J_
J J J

This is our old friend the KL distance! (also called

relative entropy)

Mutual information

e For two sets of random variables Y and Z, the mutual

information relative to distribution p is:

p(y)p(z)

e This is the relative entropy between p(Y,Z) and p(Y)p(Z).

A
MIL(Y.2) = 3 ply.2)log 22
y,z

e M1I,(Y,Z) measures how much information one variable

provides about the other




Properties of mutual information

o MIP(Y7 Z) Z 0
o MI,(Y,Z)=0=Y and Z are independent
e MI,(Y,Z)= Hy,(Y) =Y istotally predictable given Z

Likelihood score in terms of entropy

e \We can show that:
L(GID) =m )  (MIs(X;,Parents(X;)) — Hy(X:))
1=1

where m is the number of instances, and p is the probability
distribution generated by the maximum likelihood fit to the
parameters of G

e Nice intuitive explanation: the larger the dependency of each
variable on its parents, the larger the score.

e Bad news: see homework!
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Overfitting

General problem for all learning algorithms!

Possible solutions:

Restricting the hypothesis space

E.g. restrict the number of parents allowed for any node, or the
number of parameters in any CPT

Minimum description length: prefer compact models over large
ones

Bayesian approach: use prior knowledge to set priors over

structures
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Minimum description length (MDL) principle

Suppose we want to transmit data D over a communication
channel

To save space, we want a compact model of D - note that a
Bayes net can be viewed as such a model

We also need enough information to get the exact instances
back

If we know the probability distribution of the data, p, then we can

encode the instances based on universal coding: most likely

instances get the fewest bits (as seen before)
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MDL for Bayes nets

We need to encode the graph structure G, the CPTs at each node,
and then the instances themselves. We want to minimize the total
description length:

e Suppose the graph is encoded in DL(G) bits

e We have ) . ParentValues(X;)(|X;| — 1) parameters in the

CPTs. Each has to be encoded in some number of bits B. The

logm
2

® So transmitting the parameters takes a number of bits:

typical choice is B =

log m

Z ParentValues(X;) (| X:| — 1)

e For the data, the optimal encoding length is:
—logp(x1,...zm|G,0) = —scorer, (G, 0|D)
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MDL score
scoreprpr, = scorer(G,0|D) — DL(G) — ogm Z ParentValues (X
= mZMI (X, Parents(X mZH (X5)

log M

Z ParentValues(X;)(|X;| — 1) — DL(G)

e The entropy term is the same for any graph, so we can ignore it
e The description length of the graph, DL(G), does not depend
on the size of the data set m. So for large m, this can be

ignored
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More observations

log M
2

scoreppr N mz M1I5(X;,Parents(X;)) —

Z ParentValues(X; )
i i
e There is a trade-off between the size of the graph and how well
we fit the data:
— If the graph is large, the score decreases
— If a variable is highly dependent on its parents, the score
Increases
® As m grows very large, the emphasis will be on the fit to the
data, so asymptotically (as m — oc), MDL will find the same

network as max. likelihood
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Consistency of a scoring function

e Suppose that there exists a true model, G*, which generated
the data
® A scoring function is called consistent if the following two
properties hold with increasing probability, as m — oc:
— GG* maximizes the score
— All structures G that are not equivalent to G* (in the I-map
sense) will have strictly lower score

e Both max. likelihood and MDL are consistent scoring functions
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Bayesian approach

e Main idea: put a distribution over any unknowns!!

e Last time we used this idea to learn parameters of a network

D
@/@A@

Evidence Query

e Now we use it for learning structure:

cs
@/@A@

Evidence Query
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Bayesian inference for scoring structures

cs
@/@/K@

Evidence Query

e We compute p(zm+1|D) as an expectation over the unknown

structure G (assuming we consider all possible structures):

p(zm+1|D) = Z p(zm+1|G, D)p(G|D)
G

e Computing p(zm+1|G, D) is easy - the same as prediction with
known structure

e We need to compute p(G|D) (the score of the network).
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Bayesian scoring of network structures

e By Bayes rule, we have:

p(D|G)p(G)
p(D)

p(G|D) =

p(D) is the normalizing factor, same for all structures, so it can
be dropped
e So the Bayesian score is:

scorep(G|D) = log p(D|G) + log p(G)

— p(G) is the prior over network structures. It allows control of
the complexity of the network (e.g. we can penalize dense
nets).

— p(D|G) is called the marginal likelihood of the data given

the structure (we marginalize out the parameters)
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Marginal likelihood

We compute p(D|G) by marginalizing the network parameters 6:

p(DIG) = [ p(DIG.O)p(6]G)ds

e p(D|G,0) is the likelihood function, L(G, 6| D).
e p(0|G) is the prior over the parameters

e Problem: we need a prior for all parameters in the network!
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Priors

e Quite often all nets are considered equally likely

e To get the parameter priors, we assume a prior over the joint

(e.g. the joint is uniform) and an equivalent sample size

e Given a network structure, our joint prior factorizes over the

network. So we can compute local priors for all parameters!
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Bayesian vs. likelihood scoring

e To compute the ML score of a network, we used the “best”

parameter setting:
0" = arg max L(G,0|D)

e The Bayesian score considers all possible parameter settings

and computes an expected value of the likelihood over all these

settings:
#(DIG) = [ p(DI6, G)p(61G)dt

e Intuitively, the integral measures the sensitivity to the choice of

parameters
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Asymptotic behavior

e If p(6|G) is “well-behaved”, and we have a reasonable prior,
then:
log p(D|G) = scorempr + O(1)

So they asymptotically give the same answer.

e Bayesian score is usually less sensitive to noise in the data.
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