
Lecture 8: Sum-product algorithm� Directed and undirected trees� Variable elimination on trees� Sum-product algorithm (belief propagation) for trees� MAP inference

1

Recall from last time� We want to compute the probability of some query variables
�

given values � for the evidence variables �� Variable elimination is an algorithm that allows us to compute

such probabilities exactly for general, directed or undirected

graphical models� Main ides is to re-arrange sums in order to (hopefully) compute

more efficiently� Today we discuss a more efficient algorithm, but which works

only for tree-structured models� Next time we put these two together

2

Directed trees

(I,S)

(K,C)

Directed model

K

S
C

B W

Undirected model

p(K)

p(S|K)

p(W|C)

p(C|K)

Kids

Chaos Sleep

WorkBills
p(B|C)

Ψ(B,C) Ψ(W,C)

Ψ(K,S)

Ψ(Κ)

Immunity
p(I|S)

I

Ψ

Ψ

� Directed trees are such that their moral graph is a tree� We can parameterize the corresponding undirected model by:���
root �	�
 � root � and

������������ ���
 ���������� �
for any nodes such that � � is the parent of � �

3

From undirected to directed trees� Any undirected tree can be converted into a directed one by

picking a root and directing arcs from there outwards� We will parameterize an undirected tree by
������� � , for all nodes�

, and
���� � ��� � � , for all arcs

� � � � � � �� If we want to compute � ����� � � , we introduce the evidence

potential ! ���"���$#��� � , for all evidence variables � �&% �� The potentials now become:')(����� � *+-, ' �� � �.! ��� � �$#� � � if � � % �' ���� � � otherwise

4

Outline of variable elimination

1. Pick a variable ordering with
�

at the end of the list

2. Initialize the active factor list:� with the CPDs in a Bayes net� with the potentials in a Markov random field

3. Introduce the evidence by adding to the active factor list the

evidence potentials ! � � �/#�0� , for all the variables in �
4. For

� � 1 to 2
(a) Take the next variable � � from the ordering.

(b) Take all the factors that have � � as an argument off the

active factor list, and multiply them, then sum over all values

of � � , creating a new factor 354$6
(c) Put 374$6 on the active factor list

5

Variable elimination on undirected trees

K

K

S
C

B W

P(S|B=0)=?

S

C

WB

I

I

� The query node becomes root� Traverse the resulting tree depth-first� A node can only be eliminated after all its children have been

eliminated� What orderings arise in our example?

6

Intermediate factors

Order: B,W,C,K,I,S

S

C

WB

IK

P(S|B=0)=?

� Consider nodes 8 and 9 , which are connected� 8 will be eliminated before 9� When we eliminate 8 , and create factor 3;: , what potentials

will get out of the active list? What variables will 3;: depend

on?

7

Intermediate factors

Order: B,W,C,K,I,S

S

C

WB

IK

P(S|B=0)=?

� ' � 9 � 8<� and
' (� 8<� will have to be eliminated� None of the factors that will be eliminated can reference = or>

, since they would have been eliminated already� None of the factors can reference ? or @ , (variables outside 8 ’s

subtree), because of tree-ness� So the factor that we create will be a function of 9 only!� We can view this as a message computed by 8 and passed on

to 9 . Call it 3A:CB � 9;� .
8

Message passing

B

(C)m
BC

(K)m
CK

(S)m
KS

(S)m
IS

(C)m
WC

C

K

S

I

W

The message passed by 8 to 9 will be:3D:EB � 9;�	� F G ' (��H � ' �HI�KJ �L3AMN: �H �L3AOP: �H �RQ
where 3AMS: � 8<� and 3AOP: � 8<� are the messages from = and 8 .

9

Variable elimination for trees� To eliminate node � � , we have:

3 �T�K���� ��� UWV XY ')(����� � ' ����������� � Z\[
neighbors] U V_^�`Ea U 6Rb 3 Z � ���� �Rcd� The desired probability is computed as:
 ��eE�f#� (��g ' (��e � Zh[

neighbors]ji ^ 3 Zlk �me �� But what if we want to query all of the variables in the network?

10

Abracadabra!

The same equations are sufficient to compute all probabilities!

B

(C)m
BC

(K)m
CK

(S)m
KS

(S)m
IS

(C)m
WC

C

K

S

I

WB

P(S|B=0)=? P(K|B=0)=?

(C)m
BC

(K)m
CK

(K)m
SK

(S)m
IS

(C)m
WC

C

K

S

I

W

Notice that when we ask for a different variable, almost all the

messages needed are still the same

11

Computing all probabilities

B

C

K

S

I

W� Key idea: messages can be re-used!� So we can compute all probabilities by computing all messages!� We can use our previous equations to compute messages, but

we need a protocol for when to compute them

12

Message-passing protocol

A node can send a message to a neighbor after it has received the

messages from all its other neighbors.

Synchronous parallel implementation: any node with n neighbors

sends a message after receiving messages on oqp 1 edges

B

C

K

S

I

W

What messages are sent next?

13

Message passing example

B

C

K

S

I

W B

C

K

S

I

W B

C

K

S

I

W B

C

K

S

I

W

Past messages are dashed, current messages are in solid arrow.

14

Sequential implementation of the sum-product algorithm

1. Introduce the evidence (by putting in the evidence potentials)

2. Choose any node as root

3. Inward pass: Send all messages toward the root

4. Outward pass: Send all messages outward from the root

5. Compute the probabilities at all the nodes

15

Remarks� A similar algorithm for inference in Bayes nets with v-structures

but no undirected cycles (polytrees) is given by Pearl, called

belief propagation� The algorithm can be implemented even if the Bayes net has

undirected cycles (there is more than one path from one node to

another). This is called loopy belief propagation, and works very

well in practice (though theoretical understanding is limited).

16

MAP inference� We want to compute rts0u U
 ���v� � � �w� , orsIxKy&rts0u U
 ���v� � � �w�� To compute rPs0u U
 ���v� � � �w� , we can use the same apparatus

as for computing
 ��v� � � �0� !� This is because for our purposes, rPs0u behaves like a sum:z|{\}�~ z|{ H � zq{ � }�~ H � rPs0u � z|{\} � z|{ H �$� z|{ � } �TH �� Hence, we can write down a variable elimination MAP inference

algorithm and also a “max-product” algorithm

17

Finding the MAP configuration� This can be a little tricky, because we can have ties, and we

need to make sure that we don’t mix up the values from different

assignments� When we send message 35���.��K� ����� � n we keep at node � and

index list, ! �K������� � , with the indices of the
���

values that

generated the rts0u .� In the outward pass, we pick a value from ! �K�K���� � , ���� , and this

remains set.

18

