
Lecture 7: Exact inference: Variable Elimination

� Given a Bayes net, what kinds of questions can we ask?� Complexity of inference� Variable elimination algorithm
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Queries

Graphical models (directed or undirected) can answer questions

about the underlying probability distribution:� Conditional or unconditional probability queries:

– What is the probability of a given value assignment for a

subset of variables
�

?

– What is the probability of different value assignments for

query variables
�

given evidence about variables � ? I.e.

compute ��� ��� � � 	�
� Maximum a posteriori (MAP) queries: given evidence � � 	 ,
find the most likely assignment of values to the query variables�

: � 
��� ��� � � 	�
�� ������������ ��� � � � � � � 	�
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Examples of MAP queries

� In speech recognition, given a speech signal, one can attempt

to reconstruct the most likely sequence of words that could have

generated the signal.� In classification, given the training data and a new example, we

want to determine the most probable class label of the new

example.
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Complexity of inference

� Given a Bayesian network and a random variable � , deciding

whether ����� � ��
 � ! is NP-hard.� This implies that there is no general inference procedure that

will work efficiently for all network configurations� But for particular families of networks, inference can be done

efficiently.
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Example

p(B|C=t)=?"#"#"#"#""#"#"#"#""#"#"#"#""#"#"#"#""#"#"#"#""#"#"#"#"$#$#$#$$#$#$#$$#$#$#$$#$#$#$$#$#$#$
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Naive solution

p(B|C=t)=?1212121121212112121211212121121212112121213232323323232332323233232323323232342424244242424424242442424244242424424242442424245252525525252552525255252525525252552525255252525
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) �+*�0 , � ./
 � 8:9<;/9>= ) �

� ?@0�A � B�0�C � DE0F*�0 , � .�


� 8:9<;/9>= ) �GB � DH
 ) �IDJ
 ) ��? � DE0K*L
 ) � , � . � ?M

and same for computing ) � , � ./
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A better solution� Let’s re-arrange the sums slighty:NPORQTS/U VXWZY V 8:9[;�9-= NPO]\_^a`bYcNdOe`bYfNPOhgP^a`JS�QiYfNPORU VjWk^lgmY
V 8n9>= NPOe`oYcNPOegP^l`JS/QiYfNPORU VXWk^lgmY ; NdO]\_^l`oY

� Notice that p ; ) �GB � DJ
q� r ! But let’s ignore that for the moment.

We can call p ; ) �RB � DJ
s� tvuw�+DJ
 (because it was obtained by

summing out over A and only depends on D ).� Now we have:

) �+*�0 , � .�
s� 8 = ) �IDJ
 ) ��? � DE0�*L
 ) � , � . � ?M
Ztxu �IDJ

and we can pick another variable (


or C ) to do the same again.� Instead of y��+z|{d
 factors, we have to sum over y��G}�~2zm��
 factors
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Basic idea of variable elimination

� We impose an ordering over the variables, with the query

variable coming last� We maintain a list of “factors”, which depend on given variables� We sum over the variables in the order in which they appear in

the list� We memorize the result of intermediate computations� This is a kind of dynamic programming
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A bit of notation

� Let ��� an evidence variable with observed value ����� Let the evidence potential be an indicator function:

� �R�d�/0���d�Z
�� r iff ����� ��d�
This way, we can turn conditionals into sums as well, e.g.

) �GB � C � .�
�� = ) �GB � DJ
 � �IDE0�.�

� This is convenient for notation, but in practice we would take

“slices” through the probability tables instead.
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Variable elimination algorithm

1. Pick a variable ordering with
�

at the end of the list

2. Initialize the active factor list:� with the CPDs in a Bayes net� with the potentials in a Markov random field

3. Introduce the evidence by adding to the active factor list the

evidence potentials
� �+D�0��DH
 , for all the variables in C

4. For �q� r to }
(a) Take the next variable � � from the ordering.

(b) Take all the factors that have ��� as an argument off the

active factor list, and multiply them, then sum over all values

of ��� , creating a new factor t����
(c) Put t���� on the active factor list
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Example

p(B|C=t)=?�2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2�
E B

R A

C

�2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2��2�2�2�

1. Pick a variable ordering: R, E, C, A, B.

2. Initialize the active factor list and introduce the evidence:

List: ) ��A � C�
�0 ) ��C�
�0 ) �I*L
�0 ) �
 � C�0�*L
�0 ) � ,��



�0 � � , 0K.�


3. Eliminate A : take ) ��A � C�
 off the list, compute

txu��+DH
s� p ; ) �GB � DJ
 .
List: ) ��C�
�0 ) �I*L
�0 ) �

 � C�0�*�
�0 ) � ,��


�0 � � , 0K./
�0�tvuw��C�
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Example (continued)

4. Eliminate C : tx���

0�*�
�� p = ) �+DH
 ) ��? � D�0/��
 tvu��IDJ


List: ) �I*L
�0 ) � ,��


�0 � � , 0¡./
�0¡tx���


0�*L


5. Eliminate
,

: t£¢¤��?M
�� p ¥ ) ��¦ � ?M
 � � , 0¡./

List: ) �I*L
�0�t � �


0�*�
�0�t ¢ �





6. Eliminate


: tx§ �+��
�� p 8 tv����?@0F��
 tx¢¤��?M


List: ) �+*�
�0�tv§w�+*L

7. Eliminate * : t£¨ � p © ) �I��
Zt § �+�2


List: t ¨
This is the answer we needed!
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Complexity of variable elimination

� We need at most y��G}�
 multiplications to create one entry in a

factor (where } is the total number of variables)� If ª is the maximum number of values that a variable can take, a

factor depending on ª variables will have y��IªM«¬
 entries� So it is important to have small factors!� But the size of the factors depends on the ordering of the

variables!� Choosing an optimal ordering is NP-complete (more on this

later)
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