Lecture 7: Exact inference: Variable Elimination

- Given a Bayes net, what kinds of questions can we ask?
- Complexity of inference
- Variable elimination algorithm

Queries

1

Graphical models (directed or undirected) can answer questions about the underlying probability distribution:

- Conditional or unconditional probability queries:
 - What is the probability of a given value assignment for a subset of variables *Y*?
 - What is the probability of different value assignments for query variables Y given evidence about variables Z? I.e. compute P(Y|Z = z)
- Maximum a posteriori (MAP) queries: given evidence Z = z, find the most likely assignment of values to the query variables Y:

$$MAP(Y|Z = z) = \arg\max_{y} P(Y = y|Z = z)$$

Examples of MAP queries

- In speech recognition, given a speech signal, one can attempt to reconstruct the most likely sequence of words that could have generated the signal.
- In classification, given the training data and a new example, we want to determine the most probable class label of the new example.

3

Complexity of inference

- Given a Bayesian network and a random variable X, deciding whether P(X = x) > 0 is NP-hard.
- This implies that there is no general inference procedure that will work efficiently for all network configurations
- But for particular families of networks, inference can be done efficiently.

and same for computing p(C = t)

A better solution

• Let's re-arrange the sums slighty:

$$p(B, C = t) = \sum_{a,r,e} p(r|e)p(e)p(a|e, B)p(C = t|a)$$
$$= \sum_{a,e} p(e)p(a|e, B)p(C = t|a)\sum_{r} p(r|e)$$

- Notice that $\sum_{r} p(r|e) = 1!$ But let's ignore that for the moment. We can call $\sum_{r} p(r|e) = m_R(e)$ (because it was obtained by summing out over R and only depends on e).
- Now we have:

$$p(B, C = t) = \sum_{a} \sum_{e} p(e)p(a|e, B)p(C = t|a)m_{R}(e)$$

and we can pick another variable (A or E) to do the same again.

• Instead of $O(2^n)$ factors, we have to sum over $O(n \cdot 2^k)$ factors

7

Basic idea of variable elimination

- We impose an ordering over the variables, with the query variable coming *last*
- We maintain a list of "factors", which depend on given variables
- We sum over the variables in the order in which they appear in the list
- We <u>memorize</u> the result of intermediate computations
- This is a kind of *dynamic programming*

A bit of notation

- Let X_i an evidence variable with observed value $\hat{x_i}$
- Let the evidence potential be an indicator function:

$$\delta(x_i, \hat{x_i}) = 1$$
 iff $X_i = \hat{x_i}$

This way, we can turn conditionals into sums as well, e.g.

$$p(r|E=t) = \sum_{e} p(r|e)\delta(e,t)$$

• This is convenient for notation, but in practice we would take "slices" through the probability tables instead.

9

Variable elimination algorithm

- 1. Pick a variable ordering with Y at the end of the list
- 2. Initialize the *active factor list*.
 - with the CPDs in a Bayes net
 - with the potentials in a Markov random field
- 3. Introduce the *evidence* by adding to the active factor list the evidence potentials $\delta(e, \hat{e})$, for all the variables in *E*
- 4. For i = 1 to n
 - (a) Take the next variable X_i from the ordering.
 - (b) Take all the factors that have X_i as an argument off the active factor list, and multiply them, then sum over all values of X_i , creating a new factor m_{X_i}
 - (c) Put m_{X_i} on the active factor list

11

Example (continued)

4. Eliminate $E: m_E(A, B) = \sum_e p(e)p(a|e, b)m_R(e)$ List: $p(B), p(C|A), \delta(C, t), m_E(A, B)$ 5. Eliminate $C: m_C(a) = \sum_c p(c|a)\delta(C, t)$ List: $p(B), m_E(A, B), m_C(A)$ 6. Eliminate $A: m_A(b) = \sum_a m_E(a, b)m_C(a)$ List: $p(B), m_A(B)$ 7. Eliminate $B: m_B = \sum_b p(b)m_A(b)$ List: m_B

This is the answer we needed!

Complexity of variable elimination

- We need at most O(n) multiplications to create one entry in a factor (where *n* is the total number of variables)
- If k is the maximum number of values that a variable can take, a factor depending on k variables will have O(k^m) entries
- So it is important to have *small factors*!
- But the size of the factors depends on the ordering of the variables!
- Choosing an optimal ordering is NP-complete (more on this later)

13