Lecture 6: Markov random fields

e Structure of a Markov random field
e Potentials

e Relationship to directed models

Undirected graphical models

e So far we have used directed graphs as the underlying structure
of a Bayes net

e \Why not use undirected graphs as well?
E.g., variables might not be in a “causality” relation, but they can
still be correlated, like the pixels in a neighborhood in an image

e An undirected graph over a set of random variables

{X1,...X,} is called a undirected graphical model or

Markov random field or Markov network




Conditional independence

We need to be able to specify, for a given graph, if X 1L Z|Y, for
any disjoint subsets of nodes X, Y, Z.

In directed graphs, we did this using the Bayes Ball algorithm

In undirected graphs, independence can be established by a
simple notion of separation: if every path from a node in X to a
node in Z goes through a node in Y, we conclude that

XU Z|Y

Hence, independence can be established by removing the
nodes in the conditioning set then doing reachability on the
remaining graph.

What is the Markov blanket of a node in an undirected model?
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How expressive are undirected models?

Example 1: an undirected graph
X

va Q\ w
Y
Can we find a directed graph that satisfies the same

independence relations?

Example 2: our friend the v-structure
X Zz

Ao

Can we find an undirected graph that satisfies the same

independence relations?




Local parameterization

e |n directed models, we had local probability models (CPDs)
attached to every node, giving the conditional probability of the
corresponding random variable given its parents

e Can we do something similar in undirected models?

e More specifically, we want the joint probability distribution to
factorize over the graph

e This means that the joint can be written as a product of “local”
factors, which depend on subsets of the variables.

e Unfortunately, conditional probabilities are not adequate for this

case...

What about local marginal parameterizations?

® Suppose we express the joint as:

p(X1,...X,) = | [ p(Xi, Neighbors (X))

e |tis local and has a nice interpretation

® So let's consider using it for an example:

X Z

O—O—0




Local parameterizations: Try 2

Consider a pair of nodes X and Y that are not directly
connected through an arc
According to the conditional independence interpretation, X

and Y are independent given all the other nodes in the graph
XULY|{X1,...Xpn}—X-Y

Hence, there must be a factorization in which they do not
appear in the same factor

This suggests that we should define factors on cliques

Recall that a clique is a fully connected subset of nodes (i.e.,

there is an arc between every pair of nodes)

Example: what are the cliques?

A B




Cligue potentials

e \We will represent the joint distribution as a
product of clique potentials:

p(Xl,...Xn):% H Yo (xco)

cligues ¢

where x¢ are values assignments for the variables that
participate in the cliqgue and Z is a normalization constant, to
make probabilities sum to 1:

z=3, ]I oo
x cliques C
e \Without loss of generality, we can consider only maximal cliques

These are the cliques that cannot be extended with other nodes
without losing the fully connected property
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Example

A B
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Normalizing constant

e The normalizing constant Z can be ugly to compute, since we
have to sum over all possible assignments of values to variables

e Depending on the shape of the graph, the summation could be
done efficiently

e However, if we are interested in conditional probabilities, we do

not even need to compute it! (why?)
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Interpretation of clique potentials

e Potentials are NOT probabilities (conditional or marginal)
e But they do have a natural interpretation as “agreement” or
“energyﬂ

e Example: spin glass model
Xi_1 Xi Xis1

@

Xi Xi+1

Xi—1 : : X

(b)
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A real example: Texture synthesis

® You are given a small patch of texture and want to produce a
“similar” larger patch

e \We can define a Markov random field over pixels, e.g:

e The “potentials” favor certain configurations of pixels over others
e \We get the texture by doing inference (and sometimes learning)

for this model
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Boltzmann distribution

e The fact that potentials must be non-negative is annoying
e \We can escape from that by using the exponential function,

which is non-negative:

Yo(xo) = e~ Hec(xc)

e Now we have to define Hc(x¢ ), which can be anything!

e Moreover, the joint also has a nice form:

1 - X I _ x 1 _
p(X) = EHe Ho( C):Ee 2cHcl C):Ee H(X)
C

where H(X) = >, Hc(xc) is the “free energy”

e Hence, p is represented using a Boltzmann distribution
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Ising Model

e Nodes are arranged in a regular fashion and connected only to
geometric neighbors.
e E.g., Spin glass in 2D:

e Energy has the form”

H(X)= Z,Bz’ja?ia?j + Zaz’ivz’

1,9 1
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Important result

e Consider the family of probability distributions that respect all
the conditional independencies implied by an undirected graph
G

e Consider the family of probability distributions defined by
ranging over all possible maximal clique potential functions.

e The Hammersley-Clifford theorem shows that these two families
are identical.

e This is a similar result to the “soundness and completeness” of

d-separation which we discussed for directed models.
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