
Lecture 4: Independence maps. Factorization

� Independence maps
� A more formal definition of Bayes nets
� Factorization theorem
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I-Maps

A directed acyclic graph (DAG)
�

whose nodes represent random

variables �������	�	�	�
��� is an I-map (independence map) of a

distribution  if  satisfies the independence assumptions:

������� Nondescendents ���������Parents ��������������� � �	�	���"!

Example: Consider all possible DAG structures over 2 variables.

Which graph is an I-map for the following distribution?

X Y ��#�$�
%&�
x=0 y=0 0.08
x=0 y=1 0.32
x=1 y=0 0.32
x=1 y=1 0.28
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Factorization

Let
�

be a DAG over variables �'�(�	���	�	�
��� . We say that a

distribution  factorizes according to
�

if  can be expressed as

a product:

����)���	���	�	�
���*�+�
�

�-,.�
��#���/�Parents �����0�

The individual factors ��#���1�2436587�!:9<;8�������<� are called

local probabilistic models or

conditional probability distributions(CPD).
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Bayesian network definition

A Bayesian network is a DAG
�

over variables �'�(�	���	�	�
��� ,

together with a distribution  that factorizes over
�

.  is specified

as the set of conditional probability distributions associated with
�

’s

nodes.
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Factorization theorem
�

is an I-map of  if and only if  factorizes according to
�

:

��#�)�����	�	�	�
���*�+�
�

�-,.�
��#���/� Parents �������
�

Proof: One direction: by the chain rule,
��#� � ���	�	�	�
� � �=� > ��-,.� ���� � �2� � �	�	�	�	�"� �#?.� � . Without loss of
generality, we can order the variables �@� according to

�
. From this

assumption, Parents �#���0�BA C(�)�(���	���	�"���#?.�	D . This means that
C��)�(�	�	���	�
���#?E��DF� Parents �#�����HGJI , where
I A Nondescendents ��� � � . Since

�
is an I-map, we have

������� Nondescendents �����0���Parents ������� , so:
KMLON �/P N ��Q1R/RSR1Q N �#?E�UTEV KWLXN ��PZY Q Parents

LXN ��T0T[V KWLON �\P Parents
LON ��T�T

and the conclusion follows.
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Factorization example

C

E B

R A

The factorization theorem allows us to represent ��^]_�
`a�<bc�<d��1ea�
as:

KWL�f QhgiQ"jiQlkMQ
m THV KWL m T KWL k T KWL j P k T KWL g P kMQ�m T KWL�f P g T
instead of:
KWL�f QhgiQ
jnQlkMQ
m THV KML m T KWL k P m T KWL j P kMQ1m T KWL g P kMQ<mFQ"j T KML#f P giQ
kMQ
m_Q"j T
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Complexity of factorized representations

� If �Parents ��� � �	�po qr����� , and we have binary variables, then

every conditional probability distribution will require o spt
numbers to specify

� The whole joint distribution can then be specified with o !�uvspt
numbers, instead of s �

� The savings are big if the graph is sparse ( qxw ! ).
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Minimal I-maps

� The fact that a DAG
�

is an I-map for  might not be very

useful.

E.g. Complete DAGs (where all arcs that do not create a cycle

are present) are I-maps for any distribution (because they do

not imply any independencies).
� A DAG

�
is minimal I-map of  if

�
:

1.
�

is an I-map of 
2. If

�Fy A �
then

�Fy
is not an I-map for 
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Constructing minimal I-maps

The factorization theorem suggests an algorithm:

1. Fix an ordering of the variables: �����	�	�	���
���
2. For each ��� , select Parents ������� to be the minimal subset of

C�� � �	�	�	���
� �#?E� D such that

������� �0C(�)�(���	�	�	�
����?.�	D{z Parents �#���0�
�[�Parents ������� .
This will yield a minimal I-map
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Non-uniqueness of the minimal I-map
� Unfortunately, a distribution can have many minimal I-maps,

depending on the variable ordering we choose!
� The initial choice of variable ordering can have a big impact on

the complexity of the minimal I-map:

Example:

C

E B

R A

C

E B

R A

Ordering: d��1e��S`a�"b&�\] Ordering: ]_�<bc�S`a�
d��Se
� A good heuristic is to use causality in order to generate an

ordering.
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