Lecture 4: Independence maps. Factorization

- Independence maps
- A more formal definition of Bayes nets
- Factorization theorem

I-Maps

1

A directed acyclic graph (DAG) G whose nodes represent random variables X_1, \ldots, X_n is an **I-map (independence map)** of a distribution P if P satisfies the independence assumptions:

 $X_i \perp \text{Nondescendents}(X_i) | \text{Parents}(X_i), \forall i = 1, \dots n$

Example: Consider all possible DAG structures over 2 variables. Which graph is an I-map for the following distribution?

Х	Y	P(X,Y)
x=0	y=0	0.08
x=0	y=1	0.32
x=1	y=0	0.32
x=1	y=1	0.28

Factorization

Let *G* be a DAG over variables X_1, \ldots, X_n . We say that a distribution $\underline{P \text{ factorizes according to } G}$ if *P* can be expressed as a product:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i | \mathsf{Parents}(X_i))$$

The individual factors $P(X_i | Parents(X_i))$ are called

local probabilistic models or

conditional probability distributions(CPD).

Bayesian network definition

3

A Bayesian network is a DAG G over variables X_1, \ldots, X_n , together with a distribution P that factorizes over G. P is specified as the set of conditional probability distributions associated with G's nodes.

Factorization theorem

G is an I-map of P if and only if P factorizes according to G:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i | \mathsf{Parents}(X_i))$$

Proof: One direction: by the chain rule, $P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i | X_1, \ldots, X_{i-1})$. Without loss of generality, we can order the variables X_i according to G. From this assumption, Parents $(X_i) \subseteq \{X_1, \ldots, X_{i-1}\}$. This means that $\{X_1, \ldots, X_{i-1}\} = \text{Parents}(X_i) \cup Z$, where $Z \subseteq \text{Nondescendents}(X_i)$. Since G is an I-map, we have $X_i \perp \text{Nondescendents}(X_i) | \text{Parents}(X_i)$, so:

$$P(X_i|X_1,\ldots,X_{i-1}) = P(X_i|Z, \mathsf{Parents}(X_i)) = P(X_i|\mathsf{Parents}(X_i))$$

and the conclusion follows.

Complexity of factorized representations

- If $|Parents(X_i)| \le k, \forall i$, and we have binary variables, then every conditional probability distribution will require $\le 2^k$ numbers to specify
- The whole joint distribution can then be specified with $\leq n \cdot 2^k$ numbers, instead of 2^n
- The savings are big if the graph is sparse ($k \ll n$).

Minimal I-maps

7

• The fact that a DAG *G* is an I-map for *P* might not be very useful.

E.g. Complete DAGs (where all arcs that do not create a cycle are present) are I-maps for *any distribution* (because they do not imply any independencies).

- A DAG G is minimal I-map of P if G:
 - 1. G is an I-map of P
 - 2. If $G' \subseteq G$ then G' is not an I-map for P

Constructing minimal I-maps

The factorization theorem suggests an algorithm:

- 1. Fix an ordering of the variables: X_1, \ldots, X_n
- 2. For each X_i , select Parents (X_i) to be the minimal subset of

```
\{X_1,\ldots,X_{i-1}\} such that
```

```
X_i \perp (\{X_1, \ldots, X_{i-1}\} - \operatorname{Parents}(X_i)) | \operatorname{Parents}(X_i).
```

This will yield a minimal I-map

