Lecture 2. Conditional independence. Belief networks

e Conditional probability and Bayes rule

e Independence of random variables

e Using Bayes rule for inference

e Conditional independence

e Bayes nets: a graphical representation for conditional

independence
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Conditional probability

The basic statements in the Bayesian framework talk about

conditional probabilities. p(A|B) is the belief in event A given

that event B is known with absolute certainty:
p(AN B)
p(B)
Note that we can use either the set intersection or the logical “and”
notation (p(A A B), or p(A, B)).

The product rule gives an alternative formulation:

p(A|B) = i p(B) # 0

p(AN B) = p(A|B)p(B) = p(B|A)p(A)

Bayes rule

Bayes rule is another alternative formulation of the product rule:

p(BJ]A)p(A)
p(B)

The complete probability formula states that:

p(A|B) =

p(A) = p(A|B)p(B) + p(A[-B)p(—B)

or more generally,
p(A) = ZP(A|bi)p(bi),

where b; form a set of exhaustive and mutually exclusive events.




Chain rule

Chain rule is derived by successive application of product rule:

p(Xl, BN ,Xn) =
= p(Xl,...,Xn—l)p(Xn|X17---7Xn—1)

= p(Xl, NP ,Xn_g)p(Xn_1|X1, .. ,Xn_g)p(Xn|X1, ce ,Xn—l)

n

= J[r(XilXs, ..., Xi)

=1

Simpson’s paradox (Pearl)

The following table describes the effectiveness of a certain drug on

a population:
Male Female Overall
Recovered Died Recovered Died Recovered Died
Drug used 15 40 90 50 105 90
No drug 20 40 20 10 40 50

Good news: the ratio of recovery for the whole population increases
from 40/50 to 105/90

But the ratio of recovery decreases for both males and females!




Simpson’s paradox (2)

The paradox lies in ignoring the context in which the results are
given.

If we derive correct conditional probabilities based on this data

(assuming 50% males in the population) we get:

15,190
215+40 ' 290+ 50

120 +1 20 05
220440 2204+10

p(recovery | drug) =

~~ 0.46

p(recovery | no drug) =
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Using Bayes rule for inference

Often we want to form a hypothesis about the world based on
observable variables. Bayes rule is fundamental when viewed in
terms of stating the belief given to a hypothesis H given evidence e:

o(H]e) — PEFIP(ED)

p(e)

p(H |e) is sometimes called posterior probability
e p(H) is called prior probability
p(e|H) is called likelihood

® p(e) is just a normalizing constant, that can be computed from
the requirement that p(H |e) + p(—H|e) =

p(e) = p(e|H)p(H) + p(e|-H)p(-H)

Sometimes we write p(H |e) = ap(e|H)p(H)
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Example: Medical Diagnosis

A doctor knows that SARS causes a fever 95% of the time. She
knows that if a person is selected randomly from the population,
there is a 10~ 7 chance of the person having SARS. 1 in 100 people
suffer from fever.

You go to the doctor complaining about the symptom of having a
fever (evidence). What is the probability that meningitis is the cause
of this symptom (hypothesis)?

Let S be SARS, I’ be fever:

p(F|S)p(S)  0.95x 1077

p(SIEF) = =7 0.01

= 0.95 x 107°

Computing conditional probabilities

Typically, we are interested in the posterior joint distribution of some

guery variables Y given specific values e for some

evidence variables F

Let the hidden variablesbe Z =X —Y — F

If we have a joint probability distribution, we can compute the

answer by “summing out” the hidden variables:
p(Yle) =ap(Y,e) =« Zp(Y, e,z)

Big problem: the joint distribution is too big to handle!
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Example

Suppose we consider medical diagnosis, and there are 100 different
symptoms and test results that the doctor could consider. A patient
comes in complaining of fever, dry cough and chest pains. The
doctor wants to compute the probability of SARS.

e The probability table has >= 21°° entries!

e For computing the probability of a disease, we have to sum out

over 97 hidden variables!
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Independence of random variables

Two random variables X and Y are independent, denoted X 1LY,

if knowledge about X does not change the uncertainty about Y and

vice versa.
p(z|y) = p(x) (and vice versa), Vx € Sx,y € Sy

or equivalently, p(z,y) = p(x)p(y) If n Boolean variables are

independent, the whole joint distribution can be computed as:
p(e1,...wn) = [ [ p(:)

Only n numbers are needed to specify the joint, instead of 2™
But absolute independence is a very strong requirement, seldom

met
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Conditional independence

Two variables X and Y are conditionally independent given 7 if:

p(zly, z) = p(z|2), VT, Yy, 2

This means that knowing the value of Y does not change the

prediction about X if the value of Z is known.

We denote this by X 1L Y| Z.
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Example

Consider the SARS diagnosis problem with three random variables:
S, F', C (patient has a cough)

The full joint distribution has 235 _1=7 independent entries

If someone has SARS, we can assume that, the probability of a
cough does not depend on whether they have a fever:

p(C|S, F) = p(C|S) (1)
l.e., C' is conditionally independent of F' given S
Same independence hold if the patient does not have SARS.

p(C[=S, F) = p(C|=5) (2)
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Example (continued)

Full joint distribution can now be written as:

p(C,F,S) =
= p(C, F|S)p(9)
= p(C|S)p(F|S)p(S)

l.e., 2 + 2 + 1 =5 independent numbers (equations 1 and 2 remove

two numbers)
Much more important savings happen if the system has lots of

variables!
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Naive Bayesian model

A common assumption in early diagnosis is that the symptoms are
independent of each other given the disease
® Letsy,...s, bethe symptoms exhibited by a patient (e.g. fever,
headache etc)
e Let D be the patient’s disease

e Then by using the naive Bayes assumption, we get:

p(D7817' . 'S’fl) :p(D)p(81|D) T p(8n|D)
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Recursive Bayesian updating

The naive Bayes assumption allows also for a very nice, incremental
updating of beliefs as more evidence is gathered

Suppose that after knowing symptoms sy, . .. s, the probability of
D is:

p(Dls1...sn) = p(D) Hp(SiID)

What happens if a new symptom s,,+1 appears?

n+1
p(Dlsi - sn,8n41) = p(D) [ [ p(s:1D) = p(Dls1 .. 80 )p(s0s
=1

An even nicer formula can be obtained by taking logs:

logp(D|s1...8n,Sn+1) = logp(D|s1...sn)+ logp(sn+1|D)
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A graphical representation of the naive Bayesian model

e The nodes represent random variables

e The arcs represent “influences”

This is a simple Bayes network!
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A Bayes net example

p(E) p(B)

E=1 E=0 B=1|B=0
0.005 0.995 (B) o010

P(RIE) p(A|B,E)
R=1 R=0 A=1
E=0| 0.0001 |0.9999 B=0,E=0 0.001
E=1 065 |0.35 B=0,E=1 0.3
pcA)  (c)  B=1E=0 08
Cc=1 C=0 B=1E=1 0.95
A=0|0.05| 0.95
A=1107 103
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