Lecture 20: Approximation Methods in MDPs

General principle
Gradient descent methods
Using linear function approximation

Control methods with linear function approximation

Why function approximation?

® In general, state spaces are continuous or too large to represent
as a table
e |f every state has a separate entry in the table, and if we use
learning, then every state has to be visited at least a few times
before having a good approximation; in the limit every state
should be visited infinitely often, which is not feasible
Main idea: Use a function approximator to generalize from the seen

states to unseen ones

Representation

e Each state (or state-action pair) is represented as a feature

vector (@1, ...¢Mh)

e [eatures are usually chosen a priori, and their range is typically

known
e Today we assume no model regarding how features evolve

individually over time, but we do assume the Markov property at

the state level

Value-based methods

We will use a function approximator to represent the value function
e The input is the feature vector of the state (or state-action pair)
e The output is the predicted value of the state (or state-action

pair)
e The target (desired) output comes from the MDP/RL algorithm
E.g. for TD(0), the target would be rt4+1 + YW (S+1)

What kind of function approximator can we use?

In principle, there are lots of options:

e A table where several states are mapped to the same location -
state aggregation

e Gradient-based methods:
— Linear approximators
— Artificial neural networks
— Radial Basis Functions

e Memory-based methods:
— Nearest-neighbor

— Locally weighted regression

Special requirements

e Allow incremental updates
e Ability to handle non-stationary target functions

e Fast adaptation

State aggregation

Map the state space Sinto a finite number of partitions

P1,--- Pn.

Compute a value function pretending that the partitions are
states in an MDP

Note that if the policy is fixed, we have indeed a Markov process
over partitions, so all algorithms for policy evaluation work

But if we change the policy, the partition MDP changes! So
control is not so easy... but still works

The partition function determines how good a value function we

can get over partitions

Memory-based methods

Key idea: just store all examples (S,V(S))
Nearest neighbor: Given state S, first locate “nearest” state seen, §
then estimate V (S) < V ($)

K-Nearest neighbor: Take mean of V values of K nearest neighbors:

/Vva y M"AH”_._M\ Am_v

Locally weighted regression: form an explicit approximation /w@ for

region surrounding S
e Fit linear function to K nearest neighbors
e Fit quadratic, ...

e Produces “piecewise approximation” to V

Pros and ons of memory-based methods

Advantages:
e Training is very fast
e Learn complex target functions
® Do not lose any information

e Local' Hence have good convergence properties

Disadvantages:
e Slow at query time
e Easily fooled by irrelevant attributes

e Need lots of data (but this is true of RL in general)

Gradient Descent Methods

Consider the policy evaluation problem: learning V' for a given

policy Tt

The approximate value function V (§) = f(0,@), where @ are the
attributes (features) describing &, and 0 is a parameter vector

E.g. O could be the connection weights in a neural network

We will update B based on the errors computed by the

reinforcement learning algorithm

Performance measure

e We want to find a parameter vector O that minimizes the mean

squared error:

MSE(8) = 5 5 P(9) (V79 ~V/(5)°

What should P be?
e In our case P is the on-policy distribution: distribution of

states created when the agent acts according to Tt

Gradient descent update

Works like in the supervised learning case:

6 «— 0—allgMSE(0)
— mloﬁmw M_u@ (VT(9) —V(9))°
— 8403 POV9-V(9) TV(9

To do this incrementally, we use the sample gradient:
0+ 0+a(VT(s)—V(s)) OgV(s)

The sample gradient is an unbiased estimate of the true gradient.
The rule would converge to a local minimum of the error function, if
X is decreased appropriately over time

But where do we get V''?

Using TD targets

Instead of V™', we will use the targets that come from the TD(A)

algorithm:

0 < Ba (vi(s) —V(s)) UgV(9)

If we use Monte Carlo, then Vi = R is an unbiased estimate of the
true value function, and the algorithm still converges to a local

minimum, provided O is decreased appropriately

If Vi = _&, with A < 1, Vt is not an unbiased estimate, and we
cannot say anything about the convergence in general

But the algorithm is well defined, and used in practice

On-line gradient descent TD(A)

In addition to the weight vector B, we will have an eligibility trace
vector €, with one eligibility for every weight
1. Initialize the weight vector 8 arbitrarily, and €= 0.
2. Pick a start state S
3. Repeat for every time step 1{:
(a) Choose action a based on policy Ttand the current state S
(b) Take action &, observe immediate reward I and new state S’

(c) Compute the TD error: & <— I +W (S') —V(s)
(d) Compute the eligibility of every weight vector to be updated:

e+ yAe+ UgV(s)

(e) Update the weight vector: 0 < 0+ ade
f) S« S

Linear methods

Each state represented by feature vector @(S) = (@1(S)...@h(s))’
The value function is a linear combination of the features:

V(S =0-99 = 3 B

So the gradient is very simple: [lgV (S) = @(S)
The error surface is quadratic with a single global minimum

Tsitsiklis and Van Roy: Linear gradient-descent TD(A) converges
w.p.1 to a parameter vector B in the “vicinity” of the best parameter

vector 0*: \
MSE (B.,) < mzmmaj

Coarse coding

Main idea: we want linear function approximators, but with lots of

features, so they can represent complex functions

(8

A
<

o e
BB\

OO

a) Narrow generalization

M
s

b) Broad generalization

c) Asymmetric generalization

Speed of learning with coarse coding

desired approx-
#Examples -<— function \ _Bm:_o:/
10 VAN X > T
40 /S U\ > >
160 J\\J\r > >
640 L; > >
2560 ij\ %\\<///7)ﬁ\vli/)\
10240 bﬁl b« «,>\(|/r§
-_ — feature
width
Narrow Medium Broad
features features features

The width of the cells affects the speed, not the precision of the learner

Discretizing the state space

Suppose we have a continuous state space with two continuous
variable (e.g. like in the Mountain-Car task)
The simplest tile coding approximator would be just a grid
discretizing the state space:
e The features are all 0O except for the cell holding the current
state, which is 1 (like a 1-of-n encoding)
e All states in the same cell have the same value (given by the

weight of the cell)

Pros and cons of discretizations

Pros:
e Easy to compute the value function of a state
e Easy to update as well (more like the table lookup case).
Cons:
e To get good precision, we need a very fine grid - going back to
the table lookup case?
e States in the vicinity of a separation line could have radically

different values (approximation is discontinuous)

Tile coding (continued)

Main idea: Overlap several tilings!
tiling #1 —

tiling #2 —

2D state Shape of tiles [Generalization

space T~

#Tilings O Resolution of final approximation

Characteristics of tile coding

e Each tile is a binary feature

e The number of features that are activated at any time is
constant, equal to the number of tilings

® |tis easy to compute the indices of the features activated, and
easy to compute the weighted sum

e The overall discretization is very fine, and at the same time the
discontinuities are smoothed out

e The shape of the tiles reflects prior domain knowledge

Cf. CMAC (Albus, 1971)

Control with function approximation

Input: a description of the state-action pair (S, &)
Output: an action-value function OAm:mt

The general gradient descent rule:

0+« 0+ a(vi—Q(s,a)) DeQ(s, &)

Example: Sarsa(A)
0+ 0+ ade

where

O =rt+1+YQ(S+1,a+1) — Q(S,a) and & = yAa + e Q(s, &)

tain
. Moun
llustration: M
_

Car task

_
Goa
AR

N C

NTAI

Mou

T
e 0
PR RS
ST

46

N
,,%%M,.mw..,.
.4...,,% e

f,‘»léfﬂ..
4 :.2.....
i o&.....

N

=
s

=72
Z2

27

27

oy
o
=

S,

275
Yoy
':0

i

o
<L

..0?
S
0y 5}.: S

e
i

g

o4

7
o,

(s

P

e
27
i

7
!
o

L7
7
2
Foo s
Y,
2

S
L
o,
T

f L
i
i

7
2,

Episode 12

u.-nmwwu.»ﬂfa,
i o
e \‘_—\’/ 27 l&of&&fo%ﬁ_.mb@
\\.wmfalé——.—-—\maﬁ.-,// A A .hcuoo.%t S
,_.-h-o"/ 4-.-‘5\%%’//?@. Q e :4._44'”.'0.3’.-"..
2 e i IR
i i_.........._. 3
ﬁ....w..........:?,, s R i
: e -
.\.\&_‘\‘_‘................ B - f Pos
.“..“.....u“.\.\.___..__.....z.............ﬁ >
...n.......m..\.......n........... X
0
)n...n......
. . e
Dow%.o&

120

L
I
L
et
L
i
TR
L7

ﬁwﬂﬁ

v

Theory of control algorithms

® Sarsa proven to converge to a region of policy space (Gordon,
2001)

® Q-learning shown to diverge in extremely simple examples

e A few off-policy evaluation algorithms that might shed light into
Q-learning behavior (Precup et al, 2000, 2001)

e One of the convergence problems is bootstrapping

Baird’'s counterexample

terminal
state

B

Bk(@) - B(5)

.

rm

HOHo\
10°7]
Parameter 08(6)
values, 6y (i) _ A)
107/ -10
(log scale, /C
broken at 1)
10”7
.“_.Opo\. .
0 1000

2000 3000

Iterations (k)

4000

5000

Steps per
episode

Cost per
episode

Should we bootstrap?

MoOUNTAIN CAR

RaNDOM WALK

0.5

700

650

600

550

500

450

| T

accumulating+
traces £

replacing £
traces

400

0 0.2 0.4 0.6 0.8 1

A

PubpbDLE WORLD

°
6

accumulating |
traces %

replacing
traces

0.4

RMS error

0.2

0 0.2 04 06 0.8 1

CART AND POLE

300

240
230 .
220 §
210 .
200 §
190 |
180
170 -
160 -

replacing
traces

_|

N\

e

il

+o4

accumulating
traces

101
1

ol

’
7
\
101

’
FOA- -

- 250

200 Failures per

100,000 steps
150

100

50

150

Policy-based methods

Main idea: Instead of approximating the value function,
approximate the policy directly
e A function approximator which outputs the probability of taking
an action
e Parameters are updated in the direction of the gradient of the
return
e \We can compute this if the policy has special forms (e.g.
softmax)
e Much better theoretical guarantees!
The policy changes smoothly

e But initial empirical evidence suggests slow in practice

