
L
ectu

re
15:

M
arkov

D
ecisio

n
P

ro
cesses

(M
D

P
s)

�

D
efinition

ofM
D

P
s

�

P
olicies

and
value

functions

�

B
ellm

an
equations

�

D
ynam

ic
program

m
ing

m
ethods

�

M
onte

C
arlo

m
ethods

1

S
eq

u
en

tiald
ecisio

n
m

akin
g

�

U
tility

theory
provides

a
foundation

for
one-shotdecision

m
aking.

B
uttypically

agents
have

repeated
interaction

w
ith

the

environm
entover

tim
e.

�

G
reedy

agents,w
hich

try
to

m
axim

ize
the

im
m

ediate
utility,are

notnecessarily
optim

al.
A

long-term
view

is
needed

�

M
arkov

D
ecision

P
rocesses

(M
D

P
s)

provide
a

fram
ew

ork
for

m
odeling

sequentialdecision
m

aking

A
gent

E
nvironm

ent

action
a

t
s

t

rew
ard

r
t

r
t+

1

s
t+

1

state

2

M
arkov

D
ecisio

n
P

ro
cesses

(M
D

P
s)

A
ssum

e:

�

F
inite

setofstates�

(w
e

w
illliftthis

later)

�

F
inite

setofactions �
� �
�

available
in

each
state�

�
�

=
discountfactor

for
later

rew
ards

(betw
een

0
and

1,usually

close
to

1)

�

M
arkov

assum
ption:�

�� 	

and
�� 	

depend
only

on�
�� �
�

and

noton
anything

thathappened
before


�

S
im

ilar
to

a
M

arkov
chain,buthas

actions
and

rew
ards

3

M
o

d
els

fo
r

M
D

P
s

�

���

=
expected

value
ofthe

im
m

ediate
rew

ard
ifthe

agentis
in�

and
does

action�
�����
�
� 
�� 	
� �
� �
�
� �
� �
�
�

�
� ��� �

=
probability

ofgoing
from�

to���

w
hen

doing
action�

� ��� � �
�
� �
�� 	 �
� �
� �
� �
�
� �
� �
�
�

T
hese

form
the

m
odelofthe

environm
ent

4



P
o

licies

A
policy

is
a

w
ay

ofbehaving
(choosing

actions:

� �� �
��
� �� �� � �� �
� �
� �
�
� �	 �
�
� �� �
�
�

D
eterm

inistic
policy:� �� �

�

.

�

O
ne

a
policy

is
fixed,the

M
D

P
becom

es
a

M
arkov

chain
w

ith

rew
ards

�

E
very

policy
induces

a
differentM

arkov
chain

�

W
e

w
antto

find
a

policy
thatreceives

a
large

cum
ulated

rew
ard

5

R
etu

rn
s

T
he

retu
rn


�

received
after

tim
e


along
a

system
trajectory

is
a

function
ofallrew

ards

�

E
pisodic

tasks
(e.g.

gam
es,trips

through
a

m
aze

etc)

�� �

�� 	
� 
�� �
�����
� 
	

w
here �

is
the

tim
e

w
hen

a
term

inalstate
is

reached

�

C
ontinuing

tasks:

–
D

iscounted
rew

ard:


� �

�� 	
�
� 
�� �
� ��� �
���
� �	
� �� � �	

�� �

–
A

verage
rew

ard:

� �
���
	��
		� �
	� �	


�� � 

W
e

w
antto

find
a

policy
thatm

axim
izes

the
exp

ected
retu

rn
,! 


6

E
xam

p
le:

M
o

u
n

tain
-C

ar

G
ravity

G
O

A
L

�

S
tates:

position
and

velocity

�

A
ctions:

accelerate
forw

ard,accelerate
backw

ard,coast

�

R
ew

ards:

–
rew

ard
= "

�

for
every

tim
e

step,untilcar
reaches

the
top

–
rew

ard
= �

atthe
top,0

otherw
ise� #

�

�

R
eturn

is
m

axim
ized

by
m

inim
izing

the
num

ber
ofsteps

to
the

top
ofthe

hill

7

E
xam

p
le:

P
o

le
B

alan
cin

g

A
void

failure:
pole

falling
beyond

a
given

angle,or
carthitting

the

end
ofthe

track

�

E
pisodic

task
form

ulation:
rew

ard
=

+
1

for
each

step
before

failure

$

return
=

num
ber

ofsteps
before

failure

�

C
ontinuing

task
form

ulation:
rew

ard
=

-1
upon

failure,0

otherw
ise,� #

�

$

return
= "

� �

ifthere
are%

steps
before

failure

8



V
alu

e
F

u
n

ctio
n

s

T
he

valu
e

o
f

a
state

is
the

expected
return

starting
from

thatstate,
w

hen
follow

ing
the

policy:

���
� �� �
��� ��� �� ��	 �
��


 ��� �	
�
� �	
�� �� �� ���

T
he

value
oftaking

action�

in
state�

and
follow

ing
policy�

afterw
ards

is
the

expected
return

w
hen

starting
in

thatstate,taking
the

action
and

follow
ing�

afterw
ards:

���
� �� �� �
��� ��� �� ��� �
� ��	 �
��


 ��� �	 �
� �	
�� �� �� ��� �

� ���
9

B
ellm

an
E

q
u

atio
n

fo
r

P
o

licy�


� �

�� 	
�
� 
�� �
�
� �

�� �
�����

�


�� 	
�
�
� 
�� �
�
� 
�� �
�����
�

�


�� 	
�
� 

�� 	

B
ased

on
this

observation,� �

becom
es:

� �
� �
� �
��
� 

�� �
� �
�
� �
��
� 
�� 	
�
� � �
� �
�� 	
�� �
� �
�
�

W
ithoutthe

expectation:

� �
� �
� �
��
�� �
� �
�� 
 �� �
��� �
� ��� �� �
� � �
��

T
his

is
a

system
oflinear

equations
w

hose
unique

solution
is� �

.

10

Iterative
P

o
licy

E
valu

atio
n

M
ain

idea:
turn

B
ellm

an
equation

into
an

update
rule.

1.
S

tartw
ith

som
e

initialguess��

2.
D

uring
every

iteration% ,perform
a

fu
llb

acku
p

o
f

th
e

valu
e

fu
n

ctio
n

:

��� 	
� �
� �
��
�� �
� �
�� 
��� �
��� �
� ��� ���� � �
��

3.
S

top
w

hen
the

m
axim

um
change

betw
een

tw
o

iterations
is

sm
aller

than
a

desired
threshold

(the
values

stop
changing)

K
ey

id
ea:

b
o

o
tstrap

p
in

g
!

T
he

value
ofone

state
is

updated
based

on
the

values
ofthe

other

states

11

O
p

tim
alV

alu
e

F
u

n
ctio

n
s

�

P
olicies

can
be

partially
ordered:�� � �

iff� �
� �
� � � �

�
� �
� ! �

�

In
an

M
D

P
there

alw
ays

exists
atleastone

policy
better

than
all

others.
T

his
is

called
the

o
p

tim
alp

o
licy,���

.
�

T
he

o
p

tim
alstate-valu

e
fu

n
ctio

n
is

the
value

function
shared

by
alloptim

alpolicies:

� �
� �
� �
�
�  � � �
� �
� � ! �!
�

�

S
im

ilarly,w
e

can
define

the
o

p
tim

alactio
n

-valu
e

fu
n

ctio
n

:

" �
� �
� �
� �
�
�  � " �
� �
� �
� � ! �!
�� ! �!
�

T
his

is
the

expected
value

for
taking

action�

in
state�

and

follow
ing

an
optim

alpolicy
afterw

ards

12



B
ellm

an
O

p
tim

ality
E

q
u

atio
n

fo
r���

T
he

value
ofa

state
under

the
optim

alpolicy
m

ustbe
equalto

the

expected
return

for
the

bestaction
in

the
state:

� �
� �
� �

�
�  �
" �
� �
� �
�

�

�
�  �
�
� 
�� 	
�
� � �
� �
�� 	
�� �
� �
�
� �
� �
�
�

�

�
�  �
� 
 �� �
��� �
� ��� �� �
� � �
��

� �

is
the

u
n

iq
u

e
so

lu
tio

n
ofthis

system
ofnon-linear

equations

13

B
ellm

an
O

p
tim

ality
E

q
u

atio
n

fo
r� �

" �
� �
� �
� �

�� 
�� 	
�
� �
�  � �
" �
� �
�� 	
� � �
�� �
� �
�
� �
� �
�

�

�


��� �
��� �
� ��� �

���  �
" �
� � �
� � �
�

" �

is
the

u
n

iq
u

e
so

lu
tio

n
ofthis

system
ofnon-linear

equations.

14

W
hy

O
p

tim
alV

alu
e

F
u

n
ctio

n
s

are
U

sefu
l

A
ny

policy
thatis

greedy
w

ith
respectto� �

is
an

optim
alpolicy!

�

Ifw
e

know� �

and
the

m
odelofthe

environm
ent,one

step
of

look-ahead
w

illtellus
w

hatthe
optim

alaction
is

�

Ifw
e

know" �

,look-ahead
is

noteven
needed!

� �
� �
� �
� �� �
�  �
" �
� �
� �
� � ! �

15

Illu
stratio

n
:

A
D

eterm
in

istic
G

rid
w

o
rld

G
100

100

0

0

0

0

0

0

0

0

0
0

0

G
100

90

100

81

90

81
81

90
81

72

72
81

0


� �
� �
�

(im
m

ediate
rew

ard)
values

" �
� �
� �
�

values
(� �

� �
� )

G
100

100
90

9081

0
G

� �
� �
�

values
O

ne
optim

alpolicy

16



P
o

licy
Im

p
rovem

en
t

S
uppose

w
e

have
com

puted� �
for

som
e

determ
inistic

policy�

W
hen

is
itbetter

to
do

an
action�

�
�
�� �
� ?

" �
� �
� �
�

� � �
� �
�

Ifw
e

m
ake

the
change

atallstates,w
e

geta
policy� �

w
hich

is

g
reed

y
w

ith
respectto" �

:

� �
� �
� �
� �� �
�  �
" �
� �
� �
� �
� �� �
�  �

 �� �
��� �
� ��� �� �
� � �
�

T
hen� �

�
� �
� � � �
� �
� � ! �

17

P
o

licy
Im

p
rovem

en
t

(co
n

tin
u

ed
)

W
hatifatsom

e
point� �

��
� �

?

T
hen

w
e

have:� �
� �
� �
�
�  �

 �� �
��� �
� ��� �� �
� � �
�

B
utthis

is
the

B
ellm

an
optim

ality
equation!

S
o

ifthe
value

does
notchange

atsom
e

point,both�

and� �

are

optim
al.

18

P
o

licy
Iteratio

n

1.
S

tartw
ith

an
initialpolicy��

2.
R

epeat:

(a)
C

om
pute� �

�

using
policy

evaluation

(b)
C

om
pute

a
new

policy�
�� 	

thatis
greedy

w
ith

respectto

� �
�

until� �
��
� �

�� �

19

G
en

eralized
P

o
licy

Iteratio
n

A
ny

com
bination

ofpolicy
evaluation

and
policy

im
provem

entsteps,

even
ifthey

are
notcom

plete

π
V

evaluation

im
provem

ent

V
 →

V
π

π→
greedy(V

)

*
V

π
*

20



V
alu

e
Iteratio

n

M
ain

idea:
Turn

the
B

ellm
an

optim
ality

equation
into

an
update

rule

(sam
e

as
done

in
policy

evaluation):

1.
S

tartw
ith

an
arbitrary

initialapproxim
ation��

2.��� 	
� �
� �
�
�  �

 �� �
��
� �
� ��� ���� �
� � ! �

21

Illu
stratio

n
:

R
o

o
m

s
E

xam
p

le

F
our

actions,fail30%
ofthe

tim
e

N
o

rew
ards

untilthe
goalis

reached,� �
� �
� .

Iteration #1
Iteration #2

Iteration #3

22

W
h

at
if

th
e

m
o

d
elis

u
n

kn
o

w
n

?

�

O
bserve

transitions
in

the
environm

ent,learn
an

approxim
ate

m
odel

�
 ���
�

� ��� �

W
e

already
discussed

m
ethods

for
approxim

ating
probabilities

�

P
retend

the
approxim

ate
m

odelis
correctand

use
itfor

any

dynam
ic

program
m

ing
m

ethod

�

T
his

approach
is

called
m

o
d

el-b
ased

rein
fo

rcem
en

tlearn
in

g

�

M
any

believers,especially
in

the
robotics

com
m

unity

23

A
syn

ch
ro

n
o

u
s

d
yn

am
ic

p
ro

g
ram

m
in

g

�
A

llthe
m

ethods
described

so
far

require
sw

eeps
over

the
entire

state
space

�

A
m

ore
efficientidea:

repeatedly
pick

states
atrandom

,and

apply
a

backup,untilsom
e

convergence
criterion

is
m

et

�

H
ow

should
states

be
selected?

B
ased

o
n

th
e

ag
en

t’s
exp

erien
ce!

I.e.
along

trajectories.

�

S
tillneeds

lots
ofcom

putation,butdoes
notgetlocked

into
very

long
sw

eeps

24



E
ffi

cien
cy

o
f

D
P

�

G
ood

new
s:

finding
an

optim
alpolicy

is
polynom

ialin
the

num
ber

ofstates

�

B
ad

new
s:

finding
an

optim
alpolicy

is
polynom

ialin
the

num
ber

ofstates!

N
um

ber
ofstates

is
often

astronom
ical;typically

num
ber

of

states
is

exponentialin
the

num
ber

ofstate
variables

�

In
practice,classicalD

P
can

be
applied

to
problem

s
w

ith
a

few

m
illions

states

�

A
synchronous

D
P

can
be

applied
even

to
larger

problem
s,and

is
appropriate

for
parallelcom

putation

�

B
utitis

surprisingly
easy

to
find

problem
s

for
w

hich
D

P

m
ethods

are
notfeasible

25

M
o

n
te

C
arlo

M
eth

o
d

s

�

S
uppose

w
e

have
an

episodic
task

(trials
term

inate
atsom

e

point)

�

T
he

agentbehave
according

to
som

e
policy�

for
a

w
hile,

generating
severaltrajectories.

H
ow

can
w

e
com

pute� �

?

�

C
om

pute� �
� �
�

by
averag

in
g

th
e

o
b

served
retu

rn
s

after�

on

the
trajectories

in
w

hich�

w
as

visited.

�

Tw
o

m
ain

approaches:

–
E

very-visit:
average

returns
for

every
tim

e
a

state
is

visited
in

a
trial

–
F

irst-visit:
average

returns
only

for
the

firsttim
e

a
state

is

visited
in

a
trial

26

Im
p

lem
en

tatio
n

o
f

M
o

n
te

C
arlo

P
o

licy
E

valu
atio

n

�
�� 	
�

��� �
�� 	�� �	



� �

��� �
�

�
�� �	



� � 

�� 	
�

�

�

�� � �
�

�
�� �	



� �
��� � 


�� 	

�

�

�� � �
� �
��� � 


�� 	

Ifw
e

do
notw

antto
keep

counts
ofhow

m
any

tim
es

states
have

been
visited,w

e
can

use
a

learning
rate

version:

�
� �
�� �
�
� �
�� �

�� 
� "
�
� �
���

27

M
o

n
te

C
arlo

E
stim

atio
n

o
f

Q
valu

es

�
W

e
use

the
sam

e
idea:" �

� �
� �
�

is
the

average
ofthe

returns

obtained
by

starting
in

state�

,doing
action�

and
then

follow
ing

��

Like
the

state-value
version,itconverges

asym
ptotically

ifevery

state-action
pair

is
visited

�

B
ut�

m
ightnotchoose

every
action

in
every

state!

�

E
xploring

starts:
E

very
state-action

pair
has

a
non-zero

probability
ofbeing

the
starting

pair

28



D
yn

am
ic

P
ro

g
ram

m
in

g
vs.

M
o

n
te

C
arlo

D
P

M
C

N
eed

m
odel

yes
no

(+
)

B
ootstrapping

yes
(+

)
no

Im
prove

directly
w

ith
interaction

no
yes

(+
)

F
ocus

on
visited

states
no

yes
(+

)

C
an

w
e

com
bine

the
advantages

ofboth
m

ethods?
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