Lecture 15: Markov Decision Processes (MDPSs)

Definition of MDPs

Policies and value functions

Bellman equations

e Dynamic programming methods

Monte Carlo methods

Markov Decision Processes (MDPSs)

Assume:
e Finite set of states S (we will lift this later)

e Finite set of actions A(s) available in each state s

~ = discount factor for later rewards (between 0 and 1, usually
close to 1)

e Markov assumption: s¢4+1 and r;+1 depend only on s¢, a; and

not on anything that happened before ¢

Similar to a Markov chain, but has actions and rewards

Sequential decision making

e Utility theory provides a foundation for one-shot decision
making. But typically agents have repeated interaction with the
environment over time.

e Greedy agents, which try to maximize the immediate utility, are
not necessarily optimal. A long-term view is needed

e Markov Decision Processes (MDPs) provide a framework for
modeling sequential decision making

™| Agent __

state reward action
I
S 9

PRI _
' S+ | Environment _n
1

Models for MDPs

e ¢ = expected value of the immediate reward if the agent is in s

and does action a
re = E{ri+1| st = s,ar = a}
e pi., = probability of going from s to s’ when doing action a

a /
Doy = mﬁmwt =5 |st=s,at = @w

These form the model of the environment

Policies
A policy is a way of behaving (choosing actions:
m:SxA—0,1], w(s,a) = P{ar = a|s; = s}

Deterministic policy: w : S — A.
e One a policy is fixed, the MDP becomes a Markov chain with
rewards
e Every policy induces a different Markov chain

e \We want to find a policy that receives a large cumulated reward

Example: Mountain-Car

GOAL

&
/ Tmé

e States: position and velocity

e Actions: accelerate forward, accelerate backward, coast

® Rewards:
— reward = —1 for every time step, until car reaches the top
— reward = 1 at the top, 0 otherwise v < 1

e Return is maximized by minimizing the number of steps to the
top of the hill

Returns

The return R; received after time ¢ along a system trajectory is a
function of all rewards
e Episodic tasks (e.g. games, trips through a maze etc)

Ri=ryp1+riqo+---+rp

where T’ is the time when a terminal state is reached
e Continuing tasks:
— Discounted reward:
Ry =11 +yrig42+ ... = MmoHH AR
. 1 T
— Average reward: R; = limr_, T AMU\OHH Stav

We want to find a policy that maximizes the expected return, Vi

Example: Pole Balancing

— —

Avoid failure: pole falling beyond a given angle, or cart hitting the
end of the track
e Episodic task formulation: reward = +1 for each step before
failure
= return = number of steps before failure
e Continuing task formulation: reward = -1 upon failure, 0
otherwise, vy < 1

= return = —y" if there are k steps before failure

Value Functions

The value of a state is the expected return starting from that state,
when following the policy:

oo
V7™(s) = Ex{Ri | st = s} = Ex M{_@IHQtO | st =s
k=1

The value of taking action a in state s and following policy 7
afterwards is the expected return when starting in that state, taking
the action and following 7 afterwards:

o0
Q7 (s,a) = Ex{Ry | st = s,a; = a} = By MU&T:,I» | st =s,a¢
k=1

Bellman Equation for Policy 7

Ry = 711 +yrige+ Qmﬂi.w + .-

rep1 +y (Peg2 +yregs + -)

41 + YR+
Based on this observation, V™ becomes:

V7(s) = Ex{R: | st = s} = Ex{rit1 + V" (st41) | 5¢ = s}
Without the expectation:

VT(s) =Y w(s,a) [15+ D V(s

a

This is a system of linear equations whose unique solution is V™.

10

Iterative Policy Evaluation

Main idea: turn Bellman equation into an update rule.
1. Start with some initial guess Vo
2. During every iteration k, perform a full backup of the value

function:
Vii(s) « Y m(s,a) {1847 > peaVils)

3. Stop when the maximum change between two iterations is
smaller than a desired threshold (the values stop changing)
Key idea: bootstrapping!
The value of one state is updated based on the values of the other

states

11

Optimal Value Functions

e Policies can be partially ordered: m >« iff V™ (s) > v (s)Vs

e |In an MDP there always exists at least one policy better than all
others. This is called the optimal policy, 7*.

e The optimal state-value function is the value function shared
by all optimal policies:

V*(s) = maxV7"(s),Vs € S
e Similarly, we can define the optimal action-value function:
Q" (s,a) = maxQ"(s,a),Vs € S,Ya € A

This is the expected value for taking action a in state s and

following an optimal policy afterwards

12

Bellman Optimality Equation for V*

The value of a state under the optimal policy must be equal to the
expected return for the best action in the state:

V*(s) = maxQ’(s,a)
= maxE{ri41 + Qa*ﬁm»+_v | st = s,at =a}

= max(rl +7)_ 9l V()

8

V™ is the unique solution of this system of non-linear equations

13

Why Optimal Value Functions are Useful

Any policy that is greedy with respect to V™ is an optimal policy!
e |f we know V* and the model of the environment, one step of
look-ahead will tell us what the optimal action is

e If we know Q*, look-ahead is not even needed!

7w (s) = argmax Q*(s,a), Vs

Bellman Optimality Equation for Q*

Q" (s,a) = mﬁ:t +ymax Q" (si41,a’) | 81 = 5,0, = @w
a

=) plymaxQ (s, d)
m\

Q@™ is the unique solution of this system of non-linear equations.

15

14

Illustration: A Deterministic Gridworld

- Ol
o

r(s,a) (immediate reward) values Q" (s, a) values (y = 0.9)

90 o~ 100 IVo G T TG
A A A A
Iy] I I
g1 - 0 700 - T
V*(s) values One optimal policy

16

Policy Improvement

Suppose we have computed V™ for some deterministic policy m

When is it better to do an action a # w(s)?
Q"(s,a) > V7 (s)

If we make the change at all states, we get a policy 7’ which is
greedy with respect to Q" :

7' (s) = argmax Q" (s,a) = arg maxry + QMU%NL\:?J
a a]

8

Then V™ (s) > V™ (s),Vs

17

Policy Iteration

1. Start with an initial policy 7o
2. Repeat:
(a) Compute V™ using policy evaluation
(b) Compute a new policy 7;+1 that is greedy with respect to
a\q:
until Vi = Vit

Policy Improvement (continued)

What if at some point V™ =VT?

Then we have:

V7 (s) = maxr{ +7 Y plaV'(s')

8

But this is the Bellman optimality equation!

So if the value does not change at some point, both 7 and 7’ are

optimal.

19

18

Generalized Policy Iteration

Any combination of policy evaluation and policy improvement steps,

even if they are not complete
evaluation

(VaRvA

T greedy(V)

(

improvement

20

Value lteration

Main idea: Turn the Bellman optimality equation into an update rule
(same as done in policy evaluation):

1. Start with an arbitrary initial approximation Vj
2. Viqa(s) <~ maxa rs +v >, pig Vi(s),Vs

21

What if the model is unknown?

Observe transitions in the environment, learn an approximate
model 7§, P

We already discussed methods for approximating probabilities
Pretend the approximate model is correct and use it for any
dynamic programming method

This approach is called model-based reinforcement learning

Many believers, especially in the robotics community

lllustration: Rooms Example

Four actions, fail 30% of the time

No rewards until the goal is reached, v = 0.9.

Iteration #1 Iteration #2 Iteration #3

23

22

Asynchronous dynamic programming

All the methods described so far require sweeps over the entire
state space

A more efficient idea: repeatedly pick states at random, and
apply a backup, until some convergence criterion is met

How should states be selected?

Based on the agent’s experience! |.e. along trajectories.

Still needs lots of computation, but does not get locked into very

long sweeps

24

Efficiency of DP

Good news: finding an optimal policy is polynomial in the
number of states

Bad news: finding an optimal policy is polynomial in the number
of states!

Number of states is often astronomical; typically number of
states is exponential in the number of state variables

In practice, classical DP can be applied to problems with a few

ns states

Asynchronous DP can be applied even to larger problems, and
is appropriate for parallel computation

But it is surprisingly easy to find problems for which DP
methods are not feasible

25

Implementation of Monte Carlo Policy Evaluation

n+1 n
1 1
Va1 = P M H R; = aﬁ M H R; + Ruy1)
1= 1=

n
n 1 1
= |:+§.Mwm@+a|i§t
P

n 1
- :+H§+:+Hmz+u

If we do not want to keep counts of how many times states have
been visited, we can use a learning rate version:

«\Amwv <~ d\ﬁmwv + Qﬁmw — a\Ava

Monte Carlo Methods

Suppose we have an episodic task (trials terminate at some

point)

The agent behave according to some policy 7 for a while,

generating several trajectories. How can we compute V™ ?

Compute V™ (s) by averaging the observed returns after s on

the trajectories in which s was visited.

Two main approaches:

— Every-visit: average returns for every time a state is visited in
a trial

— First-visit: average returns only for the first time a state is
visited in a trial

27

26

Monte Carlo Estimation of Q values

e We use the same idea: Q" (s, a) is the average of the returns
obtained by starting in state s, doing action a and then following
T

e Like the state-value version, it converges asymptotically if every
state-action pair is visited

e But 7w might not choose every action in every state!

e Exploring starts: Every state-action pair has a non-zero

probability of being the starting pair

28

Dynamic Programming vs. Monte Carlo

DP MC
Need model yes no (+)
Bootstrapping yes (+) no
Improve directly with interaction no yes (+)
Focus on visited states no yes (+)

Can we combine the advantages of both methods?

29

