Lecture 7: Approximate Inference: Sampling

e Random sampling from a Bayes net

Logical (rejection) sampling

Likelihood weighting
Gibbs sampling and MCMC

Example: Sprinkler network
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Random sampling

Main idea:
e Use the Bayes net as a model of the world, and generate
samples
A sample is a tuple where every random variable is instantiated
to some value
e Then approximate the required probability distribution using
counts
Two main kinds of methods:
e Forward sampling

o Monte Carlo Markov Chain

Example: Forward sampling

Sample C according to its probability distribution. Say C' = 1.
Sample R according to P(R|C =1). Say R = 1.

Sample S according to P(S|C = 1). Say S = 0.

Sample W accordingto P(W|R=1,5=0). Say W = 1.
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Now we have a complete sample: (C =1,R=1,S=0,W =1)
We repeat the steps above to generate a new sample.
Eg.C=0,R=0,S=1,W =1

This process is called logic sampling




Example (continued)

Suppose we generate N samples using the above technique.
How do we compute P(W)?
n(W =1)
N
How do we compute P(W = 1|C = 1)?
P(C=1,W=1)
P(C=1)

PW=1)=

PW=1C=1) =

n(C=1,W=1) N n(C=1,W =

~ =

N n(C =1) n(C =1)
Note that we did not use all the samples in this computation!

Only the samples in which C' = 1 were used.

Rejection sampling

e Generate samples by forward sampling of the network:
— Let X1,...X, be an ordering of the variables consistent
with the arc direction in the Bayes net structure
- Fori=1,...,n, sample X; from P(X;|Parents(X;)).
Note that all the parents of X; are surely instantiated when we
get to sample X;.
e Throw away the samples inconsistent with the evidence
Problem: If the evidence is unlikely, then we will throw away most
samples, and it takes a long time to gather enough data for a

reliable estimate.

Becoming more efficient

Suppose we want to estimate P(W = 1|C = 1). Before, we threw
away the samples in which C' = 0. So why generate them in the
first place?
Main idea: Fix the values for the evidence variables, sample only
the other variables. Then we can use all the samples.
In our case, set C = 1, then:

1. Sample R from P(R|C = 1)

2. Sample S from P(S|C =1)

3. Sample W from P(W|R, S)

Now if we approximate P(W = 1|C = 1) by

w=1)
=~ we should

be all set.

Downstream evidence

Suppose we want to compute P(C|W = 1). We fix W = 1 and we
need to sample C, R, S.
e We would like to sample R from P(R|W = 1).
But we do not have these probabilities! We could do arc
reversal on the network, but that can lead to much larger tables.
e |dea: sample the network top-down like before, but fix the
values of the evidence variables. E.g.
1. Sample C according to P(C). Say C = 0.
2. Sample R according to P(R|C =0). Say R=10
3. Sample S according to P(S|C = 0). Say S = 0.
4. W =1 (since it is the evidence)

But now we generated a sample that has 0 probability!




A simple case

Consider a very simple network: X — Y.
We want to compute P(X|Y = 1).
1. Sample X from P(X)
2. SetY =1
Problem: These samples come from P(X), not P(X,Y = 1). So
we have:
n(X=1,Y=1)

5 P(X =1), not P(X =1,Y =1)
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Likelihood weighting

Let X1, ... X, be an ordering of the variables consistent with the
arc direction in the Bayes net structure
1. Repeatfors =1,..., N times:
@ w=1
(b) Forj=1,...,ndo:
e If X; has been observed (as evidence),
w + w - P(X; = z;j|Parents(X;))
e Else sample X; from P(X;|Parents(X;))
2. Plale) sy

>
w;
i=1 °

A simple case (continued)

To see the fix to this problem, let us consider how we would
compute P(X =1,Y = 1) exactly:

P(X=1Y=1)=P¥ =1X=1)P(X =1)

Since our sample count approximates P(X = 1), all we have to do
is multiply the estimate by the weight P(Y = 1|X = 1).

We do the same thing to estimate P(Y = 1, X = 0). Then we can

approximate the conditional as usual.

This is called likelihood weighting
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Importance sampling

Likelihood weighting is a special case of a more general procedure,
called importance sampling
e Suppose we want to estimate the expected value of a random
variable X drawn according to the probability distribution p(X).
e But instead, we have only samples drawn according to p’(X).
e \We do a simple trick:

_ LX) — iy — oy PX =)
e So we will average each sample x; weighted by the ratio of its
probability under the target and the sampling distribution.

We will use this idea again in Markov Decision Processes.
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Error of likelihood weighting

e Intuitively, the weights reflect the probabilities of the samples.
So to get a good approximation, we require a certain “mass”

e Several bounds exist, all specifying the total mass as a function
of the error guarantees and the “extremeness” of the CPDs

e Hence, we might still need a lot of samples before we can make

good estimates!
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Gibbs sampling

1. Initialization
e For each evidence variable X, set it to the observed value
Tj

e Set all other variables to random values (e.g. by forward

sampling)
This gives us a sample z1,...,Zn.
2. Repeat
e Pick a variable X; uniformly randomly
e Sample z} from P(X;|T1, ..., Ti—1,Tit1, .- - Tn, €).
e For all other variables, preserve the existing values:
x; =x;,Vj #i
e The new sampleis z7, ...,z

MCMC methods

Another quite different idea is to generate a “random walk” over
variable assignments that are consistent with the evidence.
e View the sampling process as a Markov Chain
e \We always generate a new sample by “perturbing” a previously
generated sample
o In the limit, if we are careful, the samples will approximate the
desired distribution
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Why Gibbs works in Bayes nets

The key step is sampling according to

P(X;|z1,...,Zi—1,Zit1,- - -, Zn, €). Butin Bayes nets, we know
that: P(X;|z1,...,%i—1,Zitl,--.,Tn) = P(X;|MB(X5))
where M B(X;) is the Markov blanket of X; (parents, children and
spouses). So we only need to figure out P(X;|M B(X;)).

LetY;,j =1,...,k be the children of X;
We can show (problem set 3) that:

k
i1 P(Y;j|Parents(Y;))

Mua\. P(xz}|Parents(X;)) :wHH P(Y;|Parents(Y;))

P(zi|Parents(X;)) [ |

P(z;|MB(X;))
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Example

1. Generate afirstsample: C =0,R=0,S=0,W = 1.

2. Pick R, sample it from P(R|C = 0,W =1,5 = 0). Suppose
we get R = 1.

3. OurnewsampleisC =0,R=1,S=0,W =1

Analyzing Gibbs sampling

e Consider the variables X1, ..., X,,. Each possible assignment
of values to these variables is a state of the world, {z1, ..., Zxs).

e |n Gibbs sampling, we start from a given state
s ={z1,...,Tn). Based on this, we generate a new state,

s = (xh,... ).
The new state only depends on the previous state, not on any
state that could have happened before!

e Forany s, s, there is a well-defined probability of generating s’
if we are in s (what is that?)

Gibbs sampling constructs a Markov chain over the Bayes net

17

19

Implementing Gibbs sampling

e Note that the samples we get in the beginning of the sampling
are “unlikely”. We need to run Gibbs sampling for a while before
we start getting “good” samples. This stage is called “burn in”

e Ways of implementing:

— Run M times starting from different states. Each time, run
for N steps, for some fairly large IV, then take just one
resulting sample. Has a good chance of covering the space
of possible samples

— Start just from one sample, run for a really long time, then
take M samples. In this case, the samples will not be
independent (but the correlation is weak)

— A hybrid of the two

Markov chains

A Markov chain is defined by:
e A set of states S

e A starting distribution over the set of states p(s) = P(so
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S0 —> 81— ... > S8t > St4+1 > ...

e A stationary transition proba
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Steady-state (stationary) distribution

What is P(s; = j|so =1)?

P(s1=jlso=1) = pg

i) = Muixt = jlse = k)P(s¢ = k|so = 4)

P(st+1=jlso

k
= ) ok Plse = klso = i)
k

Under reasonable assumptions, this process converges to a unique
solution, called the steady-state distribution:

E*QV = lim NUANw = s_;NOV

t— o0

Note that p* (i) does not depend at all on the start state distribution
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Markov Chain Monte Carlo

e Construct a Markov Chain corresponding to the Bayes net
e Make sure that the chain has the right stationary distribution
e Simulate the chain for N steps to get a sample

Gibbs sampling is the simplest illustration of this idea.

Sampling the steady-state distribution

The MC theory suggests a way of sampling the stationary
distribution:
e Set X; = 1 for some arbitrary ¢
e Fort=1,...,M,if sy = s, sample a value s’ for s;1 based
oN P!
® Return sas.

If M is large enough, this will be a sample from p*
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Designing Markov Chains

How do we ensure that the Markov Chain has the “right” probability
distribution?

Look again at:

p () =Y pip (i) =D piiv" ()

If Pid — 2*()

Py” FEOR this equality is satisfied.

This gives us a condition that we can check locally!
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