Lecture 6: Inference

Variable elimination revisited
More efficient inference
Coping with loops

— Clustering

— Cutset conditioning
Approximate inference

Example: Sprinkler network

@wéw

How do we make inference with this network more efficient?

e [fitis not a polytree, make it one!

e Pretend the network is indeed a polytree, and use Pearl’s belief
propagation algorithm (loopy belief propagation)
Not well-founded theoretically, but VERY successful in practice
(e.g. turbo-codes for transmitting information over a noisy
channel)

e Approximate the probabilities rather than computing exactly

Recall from last time: Variable elimination

Variable elimination is a general algorithm for exact inference in
Bayes networks

It is a dynamic programming algorithm: it avoid re-computing by
storing intermediate results (called factors)

It can be viewed as performing the summation needed to
compute a likelihood in an efficient way

General variable elimination is NP-hard, and the performance
depends on the ordering of the nodes

Good heuristics for ordering nodes exist

Variable elimination is efficient in polytrees

Today we look at methods for dealing efficiently with networks

that are not polytrees.

Creating a polytree

Main idea: take nodes and collapse them together

WetGrass

=
SR
W)

i
| Q.ﬂ

Ideas for creating polytrees

e Obviously, every network can be collapsed into a polytree with
one node, corresponding to the joint distribution
We would like something more efficient!

e Trivial improvement: we leave the “leaf” nodes alone, collapse
all other nodes
Still can lead to huge tables

e Construct a join tree (junction tree, clique tree)

Example: Induced graph

*_Cloudy

—_—

WetGrass

In the induced graph, we connect all variables that appear in the
same factor in variable elimination. This means that we get at least

all edges in the moral graph, and potentially more

The inference process is exponential in the size of the largest clique

in the graph (which is 3, in our case).

Example: Variable elimination

The initial set of factors is: P(C), P(R|C), P(S|C), P(W|R,S)
Suppose that we want to compute P(W) and choose the ordering
{C, R, S} to eliminate variables
1. Eliminate C: fi(R,S) = >, P(C)P(R|C)P(S5|C)
Now the set of factors remains P(W |R, S), fi(R, S) (the other
factors were used)
2. Eliminate R: fo(S, W) =), fi(R,S)P(W|R, S)
The set of factors is now fo(S, W).
3. Eliminate S: f3(W) =)o f2(S, W)
Convince yourselves that this indeed gives us the correct answer!

What is the induced graph of the network?

Cluster tree

Going back to the variable elimination process, consider what
happens before we eliminate a variable:
e Each factor contributing to the computation is in some table.
e The “ensemble” of tables is a data structure, associated with a
cluster of variables.
E.g. to compute fi we need tables involving C, R, S

o Computing a factor involves information from another factor E.g.

f2 uses f1

Cluster tree

A cluster tree (resulting from variable elimination) is a tree where:
e Each node corresponds to a factor from variable elimination.
e We draw an edge from cluster Cj; to cluster C; if factor f; is

used to compute factor f;. We annotated the edge by the
variables present in f;.

CCLCRS

R,S

S

Ceasw)

Constructing a join tree

1. Moralize the graph
2. Triangulate the graph (Pearl, Sec. 3.2.4)
(a) Find an ordering of the nodes, e.g. through maximum
cardinality search
(b) Starting from n to 1, fill in edges between any two neighbors
of the current node that have lower rank
Finding an optimal triangulation is NP-hard.
3. Find all the cliques in the resulting graph; these will be the
vertices of the tree
4. Draw the edges between the vertices in such a way as to
enforce the running intersection property
There are efficient algorithms for doing inference on clique trees

11

Properties of the cluster tree

e |tis faithful to the Bayes net, i.e. for every variable X,
{X} U Parents(X) appears as a subset of some cluster
e Running intersection property: If X appears in clusters C;
and C}, it also appears in every cluster on the path between C;
and C;
There can be several trees with this property! These are called join

trees, junction trees or clique trees

A join tree or clique tree can be computed outside variable

ination, just by looking at the graph structure of the network

Clique trees vs. Variable elimination

e Both use the same kinds of computation

e The overall complexity is the same

e Clique trees are computed ahead of time and then just used
when we need to do inference
Hence they require more space, but then we can re-use them a
lot

e Inference using clique trees can be incremental and lazy

e The inference algorithm specific to clique trees is designed to
be very efficient on queries involving multiple variables.

10

12

Example: Variable elimination with evidence

Suppose that we want to compute P(W|R = t). This involves
computing P(R = ¢, W) and then normalizing. So we compute

P(R = t, W) using variable elimination. The initial set of factors is:

P(C),P(R=1|C),P(S|C),P(W|R=1t,S)

We choose the o_dmz:@ {C, S} to eliminate variables
1. Eliminate C: f1(S) = Y, P(C)P(R =t|C)P(S|C)
Now the set of qmﬁoﬂw remains P(W|R =, S), f1(S) (the
other factors were cmm&
2. Eliminate S: f>(W) =) s P(W|R =1t,S)f1(S)

13

Example: Bad ordering

The initial set of factors is: P(C), P(R|C), P(S|C), P(W|R,S)
Suppose that we want to compute P(W) and choose the ordering
{R, S, C} to eliminate variables
1. Eliminate R: f{(C,S,W) =3, P(R|C)P(W|R,S)
Now the set of factors remains P(C), P(S|C), fi(C, S, W)
(the other factors were used)
2. Eliminate S: f3(C, W) =3¢ fi(C,S,W)P(S|C)
The set of factors is now f3(C, W), P(C).
3. Eliminate C: f3(W) =3 f2(C, W)
Convince yourselves 5& this indeed gives us the correct answer
again!

What is the induced graph of the network?

Example: Using evidence with the joint tree

=
SR
W)

We plug in R =t everywhere where R appears

15

Tree induced by bad ordering

Some of the nodes are really big. This can happen in some

networks with good orderings too!

14

16

Cutset conditioning

Main idea: Instead of building one polytree with big nodes, we build
a few polytrees, but each one is simple (not more complex than the Bounded cutset conditioning

original network)) . o
e Order the trees in the decreasing order of their likelihood

Cutset conditioning:
e Pick a set of variables that would break the cycles in the

e Evaluate only one of the trees, until satisfied with the results

This is the approach used in the Hugin system (www.hugin.com). It

network. These form the cutset) o
is worth checking it out!

e Substitute all possible values for each variable o . . .
o This is an approximation algorithm
e For each value combination, we get a polytree

e When we have a query, compute the answer in each polytree,

then add up the numbers!

17 19

== P X = X

Approximation algorithms

(
\// \\J \// \\J \// \\¢ N \\J
e e e e e Most of the time, we do not need to know exact probabilities,
just rough values
@ % E.g. When the probabilities are just an intermediate step to

making some decision

Problem: Number of trees is exponential in the size of the

cutset!

18 20

