Lecture 5: Exact inference

e Queries

e Inference in chains

e Variable elimination
— Without evidence
— With evidence

e Complexity of variable elimination



Queries

Bayesian networks can answer questions about the underlying
probability distribution:

e Likelihood: what is the probability of a given value assignment
for a subset of variables Y ?

e Conditional probability query: what is the probability of different
value assignments for query variables Y given evidence about
variables Z? l.e. compute P(Y|Z = z)

e Most probable evidence (MPE): given evidence Z = z, find an
instantiation of all other variables in the network, W = X — Z,

which has the highest probability:

MPE(W|Z = z) = argmax P(W = w|Z = z)



Queries (continued)

Maximum a posteriori (MAP) query: given evidence Z = z, and
given a subset of variables Y, find the most likely assignment of

values to the variables in Y given that Z = z:
MAP(Y|Z = z) = argmax P(Y = y|Z = z2)
Y

Examples of MAP queries:
® |n speech recognition, given a speech signal, one can attempt
to reconstruct the most likely sequence of words that could have
generated the signal.
® |n classification, given the training data and a new example, we

want to determine the most probable class label of the new

example.



Complexity of inference

Given a Bayesian network and a random variable X, deciding
whether P(X = z) > 0is NP-hard (see Friedman and Koller’s
notes for details).
e This implies that there is no general inference procedure that
will work efficiently for all network configurations
e But for particular families of networks, inference can be done

efficiently.



Likelihood inference in simple chains

Consider a simple chain of nodes:

A—-B—->C—=D

How do we compute P(B)?

P(B)=) P(A=a)P(B|A=a)

All the numbers required are in the CPTs. If A has k possible values
and B has m possible values, this requires O (km) operations: k

multiplications and £ — 1 additions for each of the m values of B.



Inference in simple chains (2)

A—-B—->C-—=D

Now how do we compute P(C)?

Muw b)(C|B = b)

= ) | P(A=a)P(B=blA=a) | P(C|B =)

P(C)

We use P(B), which is already computed, and the local CPT of
node C.



Inference in simple chains (3)

X1 —> Xo—...=> X,

How do we compute P(X,,)?

We compute P(X2),... P(X,) iteratively. Each step only takes
O(|X:| - | Xi+1]|) operations (where | X | is the number of possible
values of variable X'), and the algorithm is linear in the number of
variables.

If we would have generated the whole joint distribution and summed

out, we would have needed O((max; | X;|)") operations!



Elimination of variables in chains

Let us examine the chain example again: A - B — C — D.
Suppose we want to compute P(D):

P(D) = » P(A,B,C,D)
A,B,C
— MU P(A)P(B|A)P(C|B)P(D|C)
A.B,C

= Y P(I0)) P(CIB)Y P(BA)P(A)
C B A

The innermost summation depends only on the value of B. So we
can compute a factor f1(B), with one entry for each value of B.
Then we can use this to compute a factor f5(C') etc.

This is a form of dynamic programming



Pooling

Consider the case when a node has more than one parent, e.g.:

Earthquake Burglary

How do we compute P(C)?

P(C) = MU P(C|A)P(A) = MU P(C|A) MU P(A|B, E)P(E)P(B)
A A E.B

A Bayes network is called a polytree if the underlying undirected

graph is a tree.



What if the network is not a polytree?

Suppose we want to compute P(W).
P(W) = MU P(W,R,S,C) = MU P(W|R, S)P(R|C)P(S|C)P(C)
R,S,C R,S,C

- MU P(W|R, S) MU P(R|C)P(S|C)P(C)
R,S C

Note that in this case we have a more complex factor, which

depends on two variables.



Variable elimination without evidence

Given: A Bayes network and a set of query variables Y7, ... Y%
1. Initialize the set of factors: F' = {P(X;|Parents(X;))}, Vi.
2. Let{Z1... Zp} =4{X1,... X} —{Y1... Y}

3. For:=1...mdo:
(a) Extract from F' all factors f1, ... f, mentioning Z;
(b) Let f' =TT'_,
(c) Let f" = MN& 1!
(d) Insert " in F
4. Return :,NﬁmNﬂ f
Steps (a) and (b) eliminate variable Z;; this is where the

computations actually take place.



Example: Asia network

This example is taken from Koller and Friedman’s notes:

Abnormality
in Chest

Xerap

Suppose we want to compute P(D). So
Z ={V,X,5,T,L,B, A}.

Note that we can use any ordering of the variables during

elimination



Predictive inference with evidence in chains

Suppose we know that A = a. How do we compute P(C|A = a)?
wAQu\w” Qv o MW wAQ“mv\w” @v
P(A=a) P(A =a)
> 5 P(C|B)P(B|A =a)P(A=a)
P(A =a)

= ) P(C|B)P(B|A=a)
B

P(C|A = a)

Without knowing A, computing P(C, A) required another factor:
P(C, A) = MU P(C, B, A) = MU P(C|B) MU P(B|A)P(A)
B B A

Computing P(C, A = a) requires using P(B|A = a)P(A = a)
instead of ) . P(B|A)P(A). We eliminated the factor inconsistent

with the evidence.



Causal inference with evidence in chains

Again the chain example: A —+ B — C' — D. Suppose we know
that B = b. How do we compute P(A|B = b)?

We apply Bayes rule:

P(A,B =1b)
P(B =b)

P(A|B =b) =

We do not need to compute P(B = b), that comes out of summing
the numerators for all values of A.

P(A, B = b) can be computed using Bayes rule:
P(A,B=0b)=P(B=0bA)P(A).

This can be viewed as a message passing from B to A.



Causal inference with evidence in chains (2)

A—-B—->C—=D

Suppose we know that C' = ¢. How do we compute P(B|C = ¢)?

. _ P(B,C=c¢) P(C=cB)P(B)
PBIC=)="pG=0 = PC=0

P(C = ¢|B) is known from the CPT of node C. P(B) can be

computed using forward inference, just like before.

B receives some information from C' (backward pass) and some

from A (forward pass), and performs the computation.



Inference with evidence in polytrees

Earthquake Burglary

How do we compute P(E|C = t)? We need P(E,C =1t).

P(E,C=t) = » P(E,A,C=t,B)

R?
R?

P(A|E, B)



Example: Asia network

Suppose we observe that the person smokes and that the X-ray
comes out negative. How does this change the variable elimination

we did before?

Abnormality
in Chest

First we reduce all factors to eliminate the parts inconsistent with

the evidence



Variable elimination with evidence

Given: A Bayes network, a set of query variables Y7, ... Y%, and
evidence u, . .. u;.
1. Initialize the set of factors: F' = {P(X;|Parents(X;))}, Vi.
2. For each factor, if it contains w;, retain only the appropriate
portion (to be consistent with the evidence)
3. Let{Z1... Zp} ={X1,.. X} —{V1... Y} —{U:1...U;}
4. Foriz = 1...m do:
(a) Extract form F' all factors f1, ... f mentioning Z;
(b) Let f' =TT’_, f;
(c) Let f" = Mum& 1!
(d) Insert f" in F
5. Return :xmw f




Complexity of variable elimination

e We need at most O(n) multiplications to create one entry in a
factor f

e The size of a factor f containing m variables is k™, where k is
the maximum arity of a variable

e We need O(n) additions

So to be efficient, it is important to have small factors.



Induced graph

We will try to understand the size of the factors in terms of the graph

structure.

Given a Bayes net structure (G and an elimination ordering
Y1, ... Y%, the induced graph H is an undirected graph over
X1...Xn where X; and X; are connected by an edge if they both

appear in an intermediate factor f generated by variable elimination.



Example: Asia network

For our previous example, let us construct the induced graph:

Abnormality
in Chest

Note that the moralized graph is always a subgraph of the induced

graph.



Cligues

Abnormality N\~ é !

in Chest

e A complete subgraph of H is a subset of vertices such that

each vertex is connected to every other vertex
e A cligue is a maximal complete subgraph (one to which no

vertices can be added)



Complexity of variable elimination

Theorem:
1. Every clique in the induced graph corresponds to an

iIntermediate factor in the computation

2. Every factor generated during variable elimination is a subset of

some maximal clique.

See Koller and Friedman notes for the proof details.

Therefore, complexity is exponential in the size of the largest clique



Consequence: Polytree inference

For the class of polytree networks, the problem of computing
P(X,y) for any X can be solved in time linear in the size of the

network (which includes all the CPTs).

Proof. We can order the nodes from the leaves inward. The
iInduced graph is exactly the moral graph of the tree. So the largest

cligue is the largest family in the graph. The conclusion follows.



Heuristics for node ordering

e Maximum cardinality: Number the nodes from 1 to n, always
assigning the next number to the vertex having the largest set of
previously numbered neighbors. Then eliminate nodes from n
to 1.

e Minimum discrepancy: Always eliminate the node that causes
the fewest edges to be added to the induced graph

e Minimum size/weight: Eliminate the node that causes the
smallest cligue to be created (either in terms of number of

nodes, or in terms of number of entries).



Summary

e General exact inference in Bayesian networks is NP-hard
e Variable elimination is a general algorithm for exact inference
e By analyzing variable elimination we can see the “easy” cases
for inference:
— when the net is a polytree
— when the maximum cligue of the induced graph is small

e Heuristics for ordering work pretty well in practice



