
L
ectu

re
4:

B
ayesian

N
etw

o
rks

-
P

art
II

�

D
-separation

�

D
-m

aps

�

P
erfectm

aps

�

M
arkov

netw
orks

�

K
now

ledge
engineering

for
B

ayesian
netw

orks

1

R
ecallfro

m
last

tim
e:

I-m
ap

s

�

A
D

A
G�

is
called

an
I-m

ap
ofa

probability
distribution�

if�

satisfies
the

independence
assum

ptions
im

plied
by�

:

�� �
�� �

	

��

��

��

�
� �

��� ����

�
� �

��� � � �
�

�� ���


�

If�

is
an

I-m
ap

for
a

distribution�

,then�

factorizes
according

to�

,w
hich

m
eans

thatw
e

can
represent�

m
ore

com
pactly,in

term
s

oflocalprobability
m

odels

�

A
B

ayes
netrepresentation

ofa
distribution�

is
an

I-m
ap

of�

together
w

ith
the

localprobability
m

odels

�

Ideally,w
e

w
ould

like
a

m
inim

alI-m
ap

of�

�

B
utsom

e
m

inim
alI-m

aps
are

sm
aller

than
others!

2

Im
p

lied
in

d
ep

en
d

en
cies

�

Independencies
betw

een
variables

are
im

portantbecause
they

can
help

us
answ

er
queries

m
ore

efficiently.

�

S
o

itw
ould

be
interesting

to
know

w
hatconditional

independencies
are

im
plied

by
a

B
ayes

netstructure�

,based

on �
���
	�

� �� :

�� �
�� �

	

��

��

��

�
� �

��� ����

�
� �

��� � � �
�

�� ���


�

S
om

e
independencies

are
trivially

im
plied

(e.g.

�� �
� �

� �� �
�� �

� �
� ��

�

W
e

w
antto

know
iftw

o
sets

ofvariables�

and�

are

conditionally
independentgiven

evidence
abouta

setof

variables�

3

D
ep

en
d

en
cy

fl
o

w

T
he

intuition
is

thatifw
e

getevidence
abouta

variable
in�

,this

evidence
w

illgetpropagated
along

paths
in

the
graph,w

here
a

path

is
a

sequence
ofneighboring

variables
(notnecessarily

going
in

the

direction
ofthe

arcs).
T

his
m

ightenable
or

disable
flow

of

dependency
betw

een
other

nodes

E
xam

ple:
(
D
UWK

T
XD

N
H

5
D
G
LR

%
X
UJ
OD
U\

$
OD
UP

&
D
OO

(
D
UWK

T
XD

N
H

5
D
G
LR

%
X
UJ
OD
U\

$
OD
UP

&
D
OO

��  
!�
" 
#

�$  
" 
!�

�

4



D
ep

en
d

en
cy

an
d

p
ath

s
in

th
e

g
rap

h

�

W
e

w
illconsider

paths
from�

to�

going
through

variables
in

�

.

�

K
now

ing
a

value
in �

can
have

tw
o

possible
effects:

–
E

nable
the

flow
ofinfluence

from�
to�

-
the

path
becom

es

active

–
D

isable
the

flow
ofinfluence

-
the

path
becom

es
b

lo
cked

�

Ifpaths
betw

een�

and�

are
alw

ays
blocked,then�

and�

are
conditionally

independentgiven �

;w
e

say
that �

and �
are

d
-sep

arated
g

iven �

�

W
e

consider
firstneighboring

nodes

�

Iftw
o

nodes
have

an
arc

betw
een

them
,obviously

they
are

not

independent

5

In
d

irect
co

n
n

ectio
n

s

X

Z

Y

X

Z

Y

�

Ifw
e

do
notknow

the
value

of�

,then
know

ing�

can
help

us

com
pute�

and
vice

versa

�

B
utifw

e
know�

,then
know

ing�

does
notinfluence

w
hatw

e

believe
about�

(because
w

e
have

the
m

ore
directinfluence

of

�

)

�

S
o�

and�

are
conditionally

independentgiven�

6

C
o

m
m

o
n

cau
se

X

Z

Y

�

Ifw
e

do
notknow

the
value

of�

,then
know

ing�

can
help

us

com
pute�

and
vice

versa

�

B
utifw

e
know�

,�

and�

are
conditionally

independent,

because
ofthe

M
arkov

assum
ption

aboutthe
B

ayes
net

structure

7

C
o

m
m

o
n

effect

X

Z

Y

�
T

his
is

called
a

v-stru
ctu

re

�

Ifw
e

do
notknow

anything
about �

, �

and �

are
independent

(see,e.g.!����
� �

���

and#��
� ���
�

in
the

alarm
netw

ork

exam
ple

�

B
utifw

e
know�

,then
know

ing
som

ething
about�

influences

the
beliefabout �

(through
“explaining

aw
ay”)

�

In
this

case,�

and�
are

n
o

t
co

n
d

itio
n

ally
in

d
ep

en
d

en
t

given �

.

8



D
-sep

aratio
n

in
g

en
eral

Let�

be
a

B
ayes

netstructure
and

let �
�

����
��

�

be
an

undirected
path

in�

.
Let�

be
a

subsetofnodes.
T

he
path

�
�

����
��

�

is
active

given
evidence �

if:

�

W
henever

w
e

have
a

v-structure�
� �

�
��

�
��

��
� ,then�

�

or
one

ofits
descendents

is
in �

�

N
o

other
node

along
the

path
is

in�

.

W
e

say
that �

and �

are
d

-sep
arated

g
iven �

,denoted

� -
�
� �

� �
� �

� �� �
� �


,ifthere
is

no
active

path
betw

een�
and

�

given �

.

9

D
-sep

aratio
n

alg
o

rith
m

To
determ

ine
w

hether� -
�
� �

� �
� �

� �� ,w
e

need
to

enum
erate

all

paths
betw

een�

and�

and
check

thatthey
are

allblocked.

T
his

can
be

done
efficiently:

1.
Traverse

the
graph

bottom
-up

and
m

ark
allthe

nodes
thatare

in

�

or
have

descendents
in�

.
T

hese
can

potentially
enable

v-structures

2.
D

o
a

depth-firstsearch
from �

to �

,backtracking
w

hen
a

node

is
blocked.

A
node

is
blocked

ifeither:

(a)
Itis

the
“m

iddle”
ofa

v-structure
and

is
notm

arked

(b)
Itis

in �

and
itdoes

notsatisfy
(a)

3.
Ifthe

depth-firstsearch
succeeds,then

there
is

an
active

path

and� -
�
� �

� �
� �

� �� �

	 .

O
therw

ise,return
yes.

10

S
o

u
n

d
n

ess

T
heorem

:
If�

is
an

i-m
ap

of �

and� -
�
� �

� �
� �

� �� �
� �


,then

�

satisfies�� �
� �

� �� .
Inform

ally,any
independence

reported
by

d-separation
is

satisfied

by
the

underlying
distribution.

11

C
o

m
p

leten
ess

T
heorem

:
If� -
�

� �
� �

� �
� �� �


	 ,then
there

exists
a

distribution

�

such
that�

is
an

i-m
ap

of�

and�

does
notsatisfy�� �

� �
� �� .

Inform
ally,any

independence
notreported

by
the

d-separation
m

ight

be
violated

by
the

underlying
distribution.

T
he

graph
structure

alone

is
notsufficientto

determ
ine

ifthis
is

the
case.

12



M
arkov

b
lan

ket

C
onsider

a
node

in�
�

� �� !� .
S

uppose
w

e
w

antthe
sm

allestset

ofnodes

�

such
that�

is
independentofallother

nodes
in

the

netw
ork

given

�

:�� �
� �

�
� �
�

�
�� �� .

W
hatshould

�

be?
���������������������������������������������������������������
�������������������������������������������������

�

C
learly,atleast �

’s
parents

and
children

should
be

in
�

�

B
utthis

is
notenough

to
clock

v-structures;

�

sillalso
have

to

include �

’s
“spouses”

-
i.e.

the
other

parents
of �

’s
children

T
he

set

�

consisting
of�

’s
parents,children

and
other

parents
of

his
children

is
called

the
M

arko
v

b
lan

ket
of�

.

13

M
o

ralg
rap

h
s

G
iven

a
D

A
G

�

,w
e

define
the

m
o

ralg
rap

h
o

f�

to
be

an

undirected
graph

�

over
the

sam
e

setofvertices,such
thatthe

edge� �
� �

�

is
in

�

if�

is
in�

’s
M

arkov
blanket

�

If�

is
an

i=
m

ap
of �

,then

�

w
illalso

be
an

i-m
ap

of �

�

B
utm

any
independencies

are
lostw

hen
going

to
a

m
oralgraph

14

D
-m

ap
s

�

A
graph�

is
a

d
ep

en
d

en
cy

m
ap

(d
-m

ap
)ofprobability

distribution �

if �� �
� �

� �� �
�

d-separates �

and �

.

�

Intuitively,a
d-m

ap
guarantees

thatconnected
variables

are

indeed
dependent

�

T
his

is
the

converse
ofthe

i-m
ap

property,w
hich

guarantees

thatdisconnected
variables

are
indeed

independent.

�

A
n

em
pty

graph
is

trivially
a

d-m
ap

for
any

probability

distribution

�

A
com

plete
graph

is
trivially

an
i-m

ap
for

any
probability

distribution

�

C
an

w
e

geta
graph

thatsatisfies
both

properties?

15

P
erfect

m
ap

s

A
D

A
G�

is
a

p
erfect

m
ap

ofa
distribution�

ifand
only

ifitis
both

an
i-m

ap
and

a
d-m

ap.
T

hatis:

�� �
� �

� �
�

� -
�
�� � �
� �

� ��

�

A
perfectm

ap
captures

allthe
independencies

ofa
distribution

�

P
erfectm

aps
are

unique,up
to

D
A

G
equivalence

�

H
ow

can
w

e
constructa

perfectm
ap

for
a

distribution?

16



S
o

m
e

d
istribu

tio
n

s
d

o
n

o
t

h
ave

p
erfect

m
ap

s!

E
xam

ple:
W

e
have

tw
o

independentunbiased
coins

thatw
e

toss.
If

both
coins

com
e

up
the

sam
e,a

bellrings
w

ith
probability

2/3.

H
ere,there

are
three

m
inim

ali-m
aps

(w
hich?)

butnone
is

a
perfect

m
ap.

17

C
o

n
stru

ctin
g

B
ayes

n
ets

in
p

ractice

U
sually,w

e
do

notconstructB
ayes

nets
based

on
know

ledge
ofthe

jointprobability
distribution�

.
W

e
have

som
e

vague
idea

ofthe

dependencies
in

the
w

orld,and
w

e
need

to
m

ake
thatprecise

in
a

B
ayes

net.
T

his
involves

severalsteps:

�

F
orm

ulating
the

problem

�

C
hoosing

random
variables

�

C
hoosing

independence
relations

�

A
ssigning

probabilities
in

the
C

P
D

s

18

E
xam

p
le:

Icy
ro

ad

N
ote:

T
his

is
taken

from
N

ir
Friedm

an’s
slides

Inspector
Lestrade

is
aw

aiting
his

tw
o

colleagues
S

herlock
H

olm
es

and
D

r.
W

atson.
H

e
also

w
ants

to
go

to
lunch.

H
aving

heard
that

H
olm

es
has

been
in

a
car

crash,he
says:

“G
ood.

T
he

road
is

probably
coated

w
ith

ice,so
W

atson
w

illalso
crash

his
car.”

S
o

he

goes
offto

lunch.

H
ow

do
w

e
m

odelthis
reasoning?

F
irststep:

form
ulate

the
question

in
probabilistic

term
s:

W
e

w
ant�� W

atson
crash� H

olm
es

crash�

19

E
xam

p
le:

C
h

o
o

sin
g

th
e

variab
les

W
e

need
allrandom

variables
relevantto

the
problem

(including

those
notin

the
evidence

or
the

query):

�
Ice

-
is

there
ice

on
the

road?
�

H
olm

es
-

has
H

olm
es’car

crashed?
�

W
atson

-
has

W
atson’s

car
crashed?

In
reallife,w

e
w

ould
also

have
to

decide
ifthe

variables
should

have

m
ore

than
tw

o
values,or

be
continuous.

W
e

need
to

m
ake

sure
thatw

e
include

in
the

B
ayes

netallvariables

thatcould
cause

“explaining
aw

ay’patterns.

E
.g.

C
ould

H
olm

es
have

been
drunk?

T
hatw

ould
decrease

the

probability
ofthe

road
being

icy
and

ofW
atson

crashing

20



C
h

o
o

sin
g

ran
d

o
m

variab
les

�

V
ariables

m
ustbe

precise.
W

hatare
the

values,how
are

they

defined,and
how

are
they

m
easured?

E
.g.

H
eart-attack

vs.
R

isk-of-heart-attack

�

Ifthe
variables

are
continuous

and
w

e
discretize

them
,a

coarse

discretization
m

ay
introduce

additionaldependencies.

E
.g.

cholesterolexam
ple

�

T
here

severalkinds
ofvariables:

–
O

bservable

–
S

om
etim

es
observable

(e.g.
m

edicaltests)

–
H

idden
-

these
m

ay
or

m
ay

notbe
usefulto

include,

depending
on

the
other

independencies
thatthey

generate

21

E
xam

p
le:

C
h

o
o

sin
g

th
e

stru
ctu

re

�

Itseem
s

that�

influences
both

�

and

�

.

�

B
utshould

there
be

a
m

ore
directconnection

betw
een

�

and

�

?

22

C
h

o
o

sin
g

th
e

stru
ctu

re

�

C
ausalconnections

tend
to

m
ake

the
graphs

sparser.
N

ote
that

causality
is

judged
in

the
w

orld,notin
our

inference
process.

E
.g.

S
uppose

you
are

draw
ing

a
B

ayes
netfor

an
insurance

com
pany

and
you

have
tw

o
random

variables:

previous-accidentand
is-good-driver.

In
the

w
orld,the

quality
ofthe

driver
influences

w
hether

he/she

has
accidents.

B
utthe

com
pany

w
ould

think
aboutthe

causality

in
the

other
direction

�

In
general,these

m
odels

are
approxim

ate.
T

here
is

a
trade-off

betw
een

precision
and

the
size

and
sparsity

ofthe
graph.

23

E
xam

p
le:

C
h

o
o

sin
g

th
e

p
ro

b
ab

ilities
�

T
he

probability
ofan

icy
road

can
be

estim
ated

based
on

local

w
eather

data

�

T
he

conditionalprobabilities
should

be
estim

ated
by

som
eone

w
ho

know
s

their
driving

skills
(e.g.

Lestrade)

24



C
h

o
o

sin
g

n
u

m
b

ers
fo

r
th

e
C

P
D

s

�

C
onditionalprobabilities

could
com

e
from

a
few

sources:

–
A

n
expert

�

P
eople

hate
picking

num
bers!

�

H
aving

a
good

netw
ork

structure
usually

m
akes

iteasier
to

elicitnum
bers

from
people

too.

–
A

n
approxim

ate
analysis

(e.g.
in

card
gam

es)

–
G

uessing

–
Learning

�

B
ad

new
s:

In
allthese

cases,the
num

bers
are

approxim
ate!

�

G
ood

new
s:

the
num

bers
usually

do
notm

atter
allthatm

uch.

�

S
ensitivity

analysis
can

help
in

deciding
w

hether
certain

num
bers

are
criticalor

notfor
the

conclusions

25

Im
p

o
rtan

t
facto

rs
w

h
en

ch
o

o
sin

g
p

ro
b

ab
ilities

�

A
void

assigning
zero

probability
to

any
events

�

T
he

relative
values

(or
ordering)

ofconditionalprobabilities
for

�� �
� �
� ,given

differentvalues
of�

is
im

portant

�

H
aving

probabilities
thatare

orders
ofm

agnitude
differentcan

cause
problem

s
in

the
netw

ork26

S
u

m
m

ary

�

A
B

ayes
netrepresents

a
probability

distribution
using

tw
o

com
ponents:

a
D

A
G�

and
a

collection
ofconditionalprobability

distributions�� �
�� ����


�
� �
��� .

�

A
n

additionalrequirem
entis

that�

is
a

m
inim

ali-m
ap

of �

�

A
llindependencies

im
plied

by
a

B
ayes

netcan
be

com
puted

efficiently
using

the
d-separation

algorithm

�

P
erfectm

aps
are

(in
som

e
sense)

the
bestrepresentation

ofa

distribution,butsom
e

distributions
do

nothave
them

.
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