Lecture 4: Bayesian Networks - Part Il

D-separation
D-maps

Perfect maps
Markov networks

Knowledge engineering for Bayesian networks

Implied independencies

e Independencies between variables are important because they
can help us answer queries more efficiently.

e So it would be interesting to know what conditional
independencies are implied by a Bayes net structure G, based
on Markov(G):

I(X;, Nondescendents(X;)|Parents(X;)),Vi=1,...n

e Some independencies are trivially implied (e.g.
I(X,Y|Z) - I(Y,X|2)

e We want to know if two sets of variables X and Y are
conditionally independent given evidence about a set of

variables Z

Recall from last time: I-maps

A DAG G is called an I-map of a probability distribution P if P
satisfies the independence assumptions implied by G:

I(X;, Nondescendents(X;)|Parents(X;)),Vi=1,...n

If G is an I-map for a distribution P, then P factorizes according
to GG, which means that we can represent P more compactly, in
terms of local probability models

A Bayes net representation of a distribution P is an I-map of P
together with the local probability models

Ideally, we would like a minimal I-map of P

But some minimal I-maps are smaller than others!

Dependency flow

The intuition is that if we get evidence about a variable in Z, this
evidence will get propagated along paths in the graph, where a path
is a sequence of neighboring variables (not necessarily going in the
direction of the arcs). This might enable or disable flow of
dependency between other nodes
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Dependency and paths in the graph

e We will consider paths from X to Y going through variables in
Z.

e Knowing a value in Z can have two possible effects:
— Enable the flow of influence from X to Y - the path becomes

active

— Disable the flow of influence - the path becomes blocked

e |f paths between X and Y are always blocked, then X and Y
are conditionally independent given Z; we say that X and Y
are d-separated given Z

e \We consider first neighboring nodes

e [f two nodes have an arc between them, obviously they are not

independent

Common cause
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e |f we do not know the value of Z, then knowing X can help us

compute Y and vice versa
e But if we know Z, X and Y are conditionally independent,
because of the Markov assumption about the Bayes net

structure

Indirect connections
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e |f we do not know the value of Z, then knowing X can help us

compute Y and vice versa

e But if we know Z, then knowing X does not influence what we
believe about Y (because we have the more direct influence of
Z)

e So X and Y are conditionally independent given Z

Common effect
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e |f we do not know anything about Z, X and Y are independent

e This is called a v-structure

(see, e.g. Earthquake and Burglary in the alarm network
example

e But if we know Z, then knowing something about X influences
the belief about Y (through “explaining away”)

e In this case, X and Y are not conditionally independent

given Z.




D-separation in general

Let G be a Bayes net structure and let X1 — ... — X, be an
undirected path in G. Let Z be a subset of nodes. The path
X1 — ... — X, is active given evidence 7 if:

e Whenever we have a v-structure X;_1 — X; — X1, then X;

or one of its descendents is in Z

e No other node along the path is in Z.
We say that X and Y are d-separated given Z, denoted
d-sepa(X,Y|Z) = yes, if there is no active path between X and
Y given Z.

Soundness

Theorem: If G is an i-map of P and d-sepa(X,Y|Z) = yes, then
P satisfies I(X,Y|Z).

Informally, any independence reported by d-separation is satisfied
by the underlying distribution.

D-separation algorithm

To determine whether d-sepa (X, Y|Z), we need to enumerate all
paths between X and Y and check that they are all blocked.
This can be done efficiently:

1. Traverse the graph bottom-up and mark all the nodes that are in
Z or have descendents in Z. These can potentially enable
v-structures

2. Do a depth-first search from X to Y, backtracking when a node
is blocked. A node is blocked if either:

(a) Itis the “middle” of a v-structure and is not marked
(b) Itisin Z and it does not satisfy (a)
3. If the depth-first search succeeds, then there is an active path

and d-sepc(X,Y|Z) = no. Otherwise, return yes.
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Completeness

Theorem: If d-sepa (X, Y |Z) = no, then there exists a distribution
P such that G is an i-map of P and P does not satisfy I(X,Y|Z).

Informally, any independence not reported by the d-separation might
be violated by the underlying distribution. The graph structure alone

is not sufficient to determine if this is the case.
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Markov blanket

Consider a node in G = (V, E). Suppose we want the smallest set
of nodes U such that X is independent of all other nodes in the
network given U: I(X,V — {X} — Q_Q What should U be?

e Clearly, at least X's parents and children should be in U
e But this is not enough to clock v-structures; U sill also have to
include X's “spouses” - i.e. the other parents of X's children

The set U consisting of X'’s parents, children and other parents of
his children is called the Markov blanket of X.
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D-maps

e A graph G is a dependency map (d-map) of probability
distribution P if I(X,Y|Z) — Z d-separates X and Y.

e [ntuitively, a d-map guarantees that connected variables are
indeed dependent

e This is the converse of the i-map property, which guarantees
that disconnected variables are indeed independent.

o An empty graph is trivially a d-map for any probability
distribution

e A complete graph is trivially an i-map for any probability
distribution

e Can we get a graph that satisfies both properties?

Moral graphs

Given a DAG G, we define the moral graph of G to be an
undirected graph U over the same set of vertices, such that the
edge (X,Y)isin U if X is in Y's Markov blanket

If G is an i=map of P, then U will also be an i-map of P

e But many independencies are lost when going to a moral graph
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Perfect maps

A DAG G is a perfect map of a distribution P if and only if it is both
an i-map and a d-map. That is:

I(X,Y|Z  d-sep(¢ X, Y |2)

e A perfect map captures all the independencies of a distribution
e Perfect maps are unique, up to DAG equivalence

e How can we construct a perfect map for a distribution?
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Some distributions do not have perfect maps!

Example: We have two independent unbiased coins that we toss. If

both coins come up the same, a bell rings with probability 2/3.

Here, there are three minimal i-maps (which?) but none is a perfect

map.
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Example: Icy road

Note: This is taken from Nir Friedman'’s slides

Inspector Lestrade is awaiting his two colleagues Sherlock Holmes
and Dr. Watson. He also wants to go to lunch. Having heard that
Holmes has been in a car crash, he says: “Good. The road is
probably coated with ice, so Watson will also crash his car.” So he

goes off to lunch.

How do we model this reasoning?
First step: formulate the question in probabilistic terms:

We want P(Watson crash | Holmes crash)

Constructing Bayes nets in practice

Usually, we do not construct Bayes nets based on knowledge of the
joint probability distribution P. We have some vague idea of the
dependencies in the world, and we need to make that precise in a

Bayes net. This involves several steps:

e Formulating the problem

e Choosing random variables

e Choosing independence relations
e Assigning probabilities in the CPDs

19

18

Example: Choosing the variables

We need all random variables relevant to the problem (including
those not in the evidence or the query):

® |ce - is there ice on the road?

e Holmes - has Holmes’ car crashed?

e Watson - has Watson'’s car crashed?
In real life, we would also have to decide if the variables should have

more than two values, or be continuous.

We need to make sure that we include in the Bayes net all variables
that could cause “explaining away’ patterns.

E.g. Could Holmes have been drunk? That would decrease the
probability of the road being icy and of Watson crashing
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Choosing random variables

e Variables must be precise. What are the values, how are they
defined, and how are they measured?
E.g. Heart-attack vs. Risk-of-heart-attack
e |f the variables are continuous and we discretize them, a coarse
discretization may introduce additional dependencies.
E.g. cholesterol example
e There several kinds of variables:
— Observable
— Sometimes observable (e.g. medical tests)
— Hidden - these may or may not be useful to include,

depending on the other independencies that they generate
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Choosing the structure

e Causal connections tend to make the graphs sparser. Note that
causality is judged in the world, not in our inference process.
E.g. Suppose you are drawing a Bayes net for an insurance
company and you have two random variables:
previous-accident and is-good-driver.

In the world, the quality of the driver influences whether he/she
has accidents. But the company would think about the causality
in the other direction

e In general, these models are approximate. There is a trade-off

between precision and the size and sparsity of the graph.

Example: Choosing the structure

e |t seems that I influences both H and W.
e But should there be a more direct connection between H and
w2
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Example: Choosing the probabilities

e The probability of an icy road can be estimated based on local
weather data

e The conditional probabilities should be estimated by someone
who knows their driving skills (e.g. Lestrade)
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Choosing numbers for the CPDs

e Conditional probabilities could come from a few sources:
— An expert
* People hate picking numbers!
* Having a good network structure usually makes it easier to
elicit numbers from people too.
— An approximate analysis (e.g. in card games)
— Guessing
— Learning
e Bad news: In all these cases, the numbers are approximate!
® Good news: the numbers usually do not matter all that much.
e Sensitivity analysis can help in deciding whether certain

numbers are critical or not for the conclusions

Summary

e A Bayes net represents a probability distribution using two
components: a DAG G and a collection of conditional probability
distributions P (X;|Parents(X;)).

e An additional requirement is that G is a minimal i-map of P

e All independencies implied by a Bayes net can be computed
efficiently using the d-separation algorithm

e Perfect maps are (in some sense) the best representation of a

distribution, but some distributions do not have them.
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Important factors when choosing probabilities

e Avoid assigning zero probability to any events

e The relative values (or ordering) of conditional probabilities for
P(X]Y), given different values of Y is important

ies that are orders of magnitude different can

e Having probab
cause problems in the network
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