Lecture 3: Bayesian Networks

- An example
- DAGs as representations of independence
- I-maps

-

Recall from last time: Conditional independence

Two variables X and Y are conditionally independent given Z if and only if

$$P(X=x|Y=y,Z=z) = P(X=x|Z=z), \forall x,y,z$$

We denote this by I(X, Y|Z).

In this lecture we discuss the use of graphical representations to capture independence properties.

capture independence properties.

(R|E) rº r¹ eº 0.99999 0.00001 0.65 P(E) e⁰ e¹ 0.995 0.005 0.35 P(C|A) c⁰ c¹ A Bayes net example a¹ 0.3 0.7 0.95 0.05 P(A|B,E) | aº a¹ P(B) b⁰ b¹ 0.99 0.01 b¹,e⁰ 0.2 0.8 bº,eº 0.999 0.00 b¹,e¹ 0.05 0.95 bº,e¹ 0.7 0.3

ω

Using a Bayes net for reasoning (1)

Computing any entry in the joint probability table is easy:

$$P(b=1)P(e=0)P(a=1|b=1,e=0)P(c=1|a=1)P(r=0|e=0)\approx 0$$
 0056

What is the probability that a neighbor calls?

$$P(c=1) = \sum_{e,b,r,a} P(c=1,e,b,r,a) = 0.0568$$

What is the probability of a call in case of a burglary?

$$P(c=1|b=1) = \frac{P(c=1,b=1)}{P(b=1)} = \frac{\sum_{e,r,a} P(c=1,b=1,e,r,d)}{\sum_{c,e,r,a} P(c,b=1,e,r,a)}$$

This is causal reasoning or prediction

N

Using a Bayes net for reasoning (2)

Suppose we got a call. What is the probability of a burglary?

$$P(b=1|c=1) = \frac{P(c=1|b=1)P(b=1)}{P(c=1)} = 0.1034$$

What is the probability of an earthquake?

$$P(e=1|c=1) = \frac{P(e=1|b=1)P(b=1)}{P(c=1)} = 0.02688$$

This is evidential reasoning or explanation

What happens to the probabilities if the radio announces an earthquake?

$$P(e=1|c=1,r=1)=0.9993$$
 and $P(b=1|e=1,r=1)=0.0288$

This is called explaining away. It is a special case of inter-causal reasoning

G

Using DAGs to represent independencies

- Graphs have been proposed as models of human memory and reasoning on many occasions (e.g. semantic nets, inference networks, conceptual dependencies)
- There are many efficient algorithms that work with graphs, and efficient data structures

6

Markov assumption

Given a graph G, what sort of independence assumptions does it imply?

E.g. Consider the alarm network:

We have $I(E,B), I(R,\{B,A,C\}|E)$ and $I(C,\{E,B,R\}|A)$.

How about node A?

In general a variable is independent of its *non-descendents* given its parents.

7

Bayesian network structure

A Bayesian network structure is a directed acyclic graph (DAG) G whose nodes represent random variables X_1,\ldots,X_n . G encodes the following conditional independence assumptions:

$$I(X_i, Nondescendents(X_i)|Parents(X_i)), \forall i = 1, \dots n$$

We denote this set of independence assumption by Markov(G).

I-Maps

A Bayesian network structure is an **I-map (independence map)** of a distribution P if P satisfies the independence assumptions Markov(G).

Example: Consider all possible graph structures over 3 variables:

Which graph is an I-map for P_1 ? How about P_2 ?	×=1	×=1	x=0 y	x=0 y	×		
_	<u>y=1</u>	y=0	<u>у</u> =1	y=0	~	_	
	0.48	0.32	0.32	0.08	$P_1(X,Y)$	(Y)	×
-					ī	(<u>~</u>)-	≪ (×)
	×=1	×=1	x=0	x=0	×	(×)	> (×)
)	<u>\=</u> 1	y=0	<u>¥</u> =1	y=0	~		Ü
	0.1	0.2	0.3	0.4	$P_2(X,Y)$	_	

9

Factorization

Given that G is an I-map for P, can we simplify the representation of P?

Example: If G contains two unconnected vertices X and Y, and G is an I-map for P, then we have I(X,Y) and we can write

P(X,Y) = P(X)P(Y).

Let G be a Bayesian network structure over variables X_1,\ldots,X_n . We say that a distribution P factorizes according to G if P can be expressed as a product:

$$P(X_1, ..., X_n) = \prod_{i=1}^{n} P(X_i | Parents(X_i))$$

The individual factors $P(X_i|Parents(X_i))$ are called **local** probabilistic models or conditional probability distributions

Bayesian network definition

A Bayesian network is a Bayesian network structure G together with a distribution P that factorizes over G, where P is specified as the set of conditional probability distributions associated with G's nodes. Example: The Alarm network.

_

Factorization theorem

If G is an I-map of P, then P factorizes according to G:

$$P(X_1,\ldots,X_n)=\prod_{i=1}^n P(X_i|Parents(X_i))$$

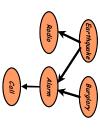
Proof: By the chain rule,

 $P(X_1,\ldots,X_n)=\prod_{i=1}^n P(X_i|X_1,\ldots,X_{i-1}).$ Without loss of generality, we can order the variables X_i according to G. From this assumption, $Parents(X_i)\subseteq \{X_1,\ldots,X_{i-1}\}.$ This means that $\{X_1,\ldots,X_{i-1}\}=Parents(X_i)\cup Z,$ where $Z\subseteq Nondescendents(X_i).$ Since G is an I-map, we have $I(X_i,Nondescendents(X_i)|Parents(X_i)),$ so:

 $P(X_i|X_1,\ldots,X_{i-1}=P(X_i|Z,Parents(X_i))=P(X_i|Parents(X_i))$

and the conclusion follows.

Factorization example



The factorization theorem allows us to represent P(C,A,R,E,B) as:

P(C, A, R, E, B) = P(B)P(E)P(R|E)P(A|E, B)P(C|A)

P(C, A, R, E, B) = P(B)P(E|B)P(R|E, B)P(A|E, B, R)P(C|A, E, B, R)

3

Complexity of factorized representations

- If $|Parents(X_i)| \leq k$, $\forall i$, and we have binary variables, then every conditional probability distribution will require $\leq 2^k$ numbers to specify
- \bullet The whole joint distribution can then be specified with $\leq n \cdot 2^k$ numbers, instead of 2^n
- The savings are big if the graph is sparse $(k \ll n)$.

Converse of the factorization theorem

If $P(X_1,\ldots,X_n)=\prod_i P(X_i|Parents(X_i)$ the G is an I-map of P.

Proof: will be on the next homework

15

Minimal I-maps

- The fact that a DAG G is an I-map for P might not be very useful
- E.g. Complete DAGs (where all arcs that do not create a cycle are present) are I-maps for *any distribution* (because they do not imply any independencies).
- A DAG G is a minimal I-map of P if G:
- 1. G is an I-map of P
- 2. If $G' \subseteq G$ then G' is not an I-map for P

4

Constructing minimal I-maps

The factorization theorem suggests an algorithm:

- 1. Fix an ordering of the variables: X_1,\dots,X_n
- 2. For each X_i , select $Parents(X_i)$ to be the minimal subset of $\{X_1,\ldots,X_{i-1}\}$ such that

 $I(X_i, \{X_1, \ldots, X_{i-1}\} - Parents(X_i)|Parents(X_i)).$

This will yield a minimal I-map

17

Non-uniqueness of the minimal I-map

Unfortunately, a distribution can have many minimal I-maps,

- depending on the variable ordering we choose!

 The initial choice of variable ordering can have a big impact
- The initial choice of variable ordering can have a big impact on the complexity of the minimal I-map:

∃xample

Radio Ala

Ordering: E, B, A, R, C

Ordering:C, R, A, E, B

 A good heuristic is to use causality in order to generate an ordering.