Lecture 3: Bayesian Networks

o An example
e DAGs as representations of independence
® |-maps

A Bayes net example

Recall from last time: Conditional independence

Two variables X and Y are conditionally independent given Z if and
only if

PX=z|Y =y, Z=2)=P(X =z|Z = 2),VYz,y,2
We denote this by I(X,Y|Z).

In this lecture we discuss the use of graphical representations to

capture independence properties.
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Using a Bayes net for reasoning (1)

Computing any entry in the joint probability table is easy:

Pb=1)P(e=0)P(a=1b=1,e =0)P(c =1|la=1)P(r =0le =0) & 0
What is the probability that a neighbor calls?

Plc=1)= Y P(c=1,eb,r,a) = 0.0568

e,b,r,a

What is the probability of a call in case of a burglary?

Plec=1,b=1) Y., .Plc=Lb=1er,

0056

Plc=1b=1) = =
(e=1p=1) Pb=1) Y eera Ple,b=1,e,1,0)

This is causal reasoning or prediction
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Using a Bayes net for reasoning (2)

Suppose we got a call. What is the probability of a burglary?
Plc=1b=1)P(b=1)

(b=1lc=1) Pe=1) 0.103
What is the probability of an earthquake?
Ple=1b=1)Pb =1
Ple=1jc=1)= L=W=DPO=1) _ 6

P(c=1)
This is evidential reasoning or explanation
What happens to the probabilities if the radio announces an

earthquake?
Ple=1le=1,r=1)=10.9993 and P(b = 1l|e = 1,r = 1) = 0.02

is is called explaining away. It is a special case of inter-causal reasoni
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Using DAGs to represent independencies

e Graphs have been proposed as models of human memory and
reasoning on many occasions (e.g. semantic nets, inference
networks, conceptual dependencies)

e There are many efficient algorithms that work with graphs, and

efficient data structures

Markov assumption

Given a graph G, what sort of independence assumptions does it
imply?

E.g. Consider the alarm network:

é Burglary

We have I(E, B), I(R,{B, A,C}|E) and I(C, {E, B, R}|A).
How about node A?

In general a variable is independent of its non-descendents given its
parents.

Bayesian network structure

A Bayesian network structure is a directed acyclic graph (DAG) G
whose nodes represent random variables X1, ..., X,. G encodes

the following conditional independence assumptions:
I(X;, Nondescendents(X;)|Parents(X;)),Vi=1,...n

We denote this set of independence assumption by Markov(G).




I-Maps
A Bayesian network structure is an I-map (independence map) of
a distribution P if P satisfies the independence assumptions

Markov(G).
Example: Consider all possible graph structures over 3 variables:

7T

X Y 7 P (X,Y) Y | P2(X,Y)
x=0 y=0 0.08 x=0 y=0 0.4
x=0 y=1 0.32 x=0 y=1 0.3
x=1 y=0 0.32 x=1 y=0 0.2
x=1 y=1 0.48 x=1 y=1 0.1

Which graph is an I-map for P;? How about P>?

Bayesian network definition

A Bayesian network is a Bayesian network structure G together with
a distribution P that factorizes over G, where P is specified as the
set of conditional probability distributions associated with G's nodes.

Example: The Alarm network.
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Factorization

Given that G is an I-map for P, can we simplify the representation
of P?

Example: If G contains two unconnected vertices X and Y, and G
is an I-map for P, then we have I(X,Y’) and we can write
P(X,Y)=P(X)P(Y).

Let G be a Bayesian network structure over variables X1, ..., X,.
We say that a distribution P factorizes according to G if P can be
expressed as a product:

P(X1,...,Xa) = || P(Xi|Parents(X;))
i=1
The individual factors P(X;|Parents(X;)) are called local

probabilistic models or conditional probability distributions
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Factorization theorem

If G is an I-map of P, then P factorizes according to G:

n
P(Xy,...,X,) = : P(X;|Parents(X;))

i=1
Proof: By the chain rule,
P(X1,...,Xn) =]];_, P(Xi|X1,...,Xi-1). Without loss of
generality, we can order the variables X; according to G. From this
assumption, Parents(X;) C {Xi,...,X;—1}. This means that
{X1,...,Xi—1} = Parents(X;) U Z, where
Z C Nondescendents(X;). Since G is an I-map, we have
I1(X;, Nondescendents(X;)|Parents(X;)), so:

P(X;|X1,...,Xi—1 = P(X;|Z, Parents(X;)) = P(X;|Parents(X;))

and the conclusion follows.
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Factorization example

Crred Gy

The factorization theorem allows us to represent P(C, A, R, E, B)

as:

P(C,A R,E,B) = P(B)P(E)P(R|E)P(A|E,B)P(C|A)
instead of:

P(C,A,R, E,B) = P(B)P(E

B)P(R|E, B)P(A|E, B, R)P(C|A, E, B

R)
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Complexity of factorized representations

e If |Parents(X;)| < k, Vi, and we have binary variables, then
every conditional probability distribution will require < 2%
numbers to specify

e The whole joint distribution can then be specified with < n - 2k
numbers, instead of 2™

e The savings are big if the graph is sparse (k < n).
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Converse of the factorization theorem

If P(X1,...,Xn) =[], P(Xi|Parents(X;) the G is an I-map of
P.

Proof: will be on the next homework
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Minimal I-maps

e The fact that a DAG G is an I-map for P might not be very
useful.
E.g. Complete DAGs (where all arcs that do not create a cycle
are present) are I-maps for any distribution (because they do
not imply any independencies).

e A DAG G is a minimal I-map of P if G:
1. Gisanl-mapof P
2. If G' C G then G’ is not an I-map for P
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Constructing minimal I-maps

The factorization theorem suggests an algorithm:
1. Fix an ordering of the variables: Xi,..., X,
2. For each X;, select Parents(X;) to be the minimal subset of
{X1,...,X;_1} such that
I(X;,{Xa,...,Xi_1} — Parents(X;)|Parents(X;)).

This will yield a minimal I-map

Non-uniqueness of the minimal I-map

e Unfortunately, a distribution can have many minimal I-maps,
depending on the variable ordering we choose!
e The initial choice of variable ordering can have a big impact on

the complexity of the minimal I-map:

Ordering: E, B, A,R,C Ordering:C, R, A, E, B
e A good heuristic is to use causality in order to generate an

Example:

ordering.




