Lecture 2: Bayesian Inference

Random variables and probabilities
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Conditional probability and Bayes rule
Independence of random variables
Using Bayes rule for inference

Conditional independence



Random variables and probability

A random variable X describes an outcome that cannot be
determined in advance (e.g. the roll of a die)

The sample space .S of a random variable X is the set of all possible
values of the variable

E.g. Foradie, S ={1,2,3,4,5,6}

An event is a subset of S. E.g. e = {1} corresponds to a die roll of 1
Usually, random variables are still governed by some law of nature,
described as a probability function p defined on S. p(x) defines the
chance that variable X takes value x € S.

E.g. for a die roll with a fair die, p(1) = p(2) = ... = p(6) = ¢
Note: We still cannot determine the value of X, just the chance of

encountering a given value



Discrete random variables

If X is a discrete variable, then a probability space p(x) has the

following properties:

0<p(x) <1,Vz€Sand » p(z) =1

rES



Continuous random variables

e If X is a continuous random variable, its probability density

function p(z) has the following properties:

0 <p(x),Vxre Sand [ p(x)dr =1

Note that in this case p(x) can be greater than 1, because it is
not a probability value
e [or continuous variables, we can also define a cumulative

distribution function, ¢, which takes values between 0 and 1:

a

c(a) = p(z)dx

c(a) is the probability that random variable X has value less

than or equal to a.



Terminology

e The n-th moment of a random variable X is defined as:
M, = M z"p(x)
€S
e The first moment is called the expectation or mean:
E{z} = M=) ap(x)
€S
E.g. for a roll with a fair die, the expectation is:
1
Mi= Y o =3.5
r€{1,2,3,4,5,6}

Note: As illustrated above, the expectation is not the value we

expect to see the most.



And more terminology...

® The variance is defined as:

Var{z} = My — M; = E{z’} — E{z}’

® The standard deviation o = /\a\@li evaluates the

“spread” of x with respect to its mean



Beliefs

e We will use probability in order to describe the world and the
existing uncertainties

e Beliefs (also called Bayesian or subjective probabilities) relate
logical propositions to the current state of knowledge

e Beliefs are subjective assertions about the world, given one’s
state of knowledge
E.g. P(Some day Al agents will rule the world) = 0.1 reflects a
personal belief, based on one’s state of knowledge about
current Al, technology trends, etc.

e Different agents may hold different beliefs

e Prior (unconditional) beliefs denote belief prior to the arrival

of any new evidence.



Axioms of probability

Beliefs satisfy the axioms of probability.
For any propositions A, B:

1. 0<P(A) <1

2. P(True) =1

3. P(AV B) = P(A) + P(B) — P(A N B), or equivalently,

P(AV B) = P(A) + P(B) if A and B are mutually exclusive

The axioms of probability limit the class of functions that can be
considered probability functions.
Using functions that disobey these laws as probabilities can force

suboptimal decisions (de Finetti, 1931).



Defining probabilistic models

e We define the world as a set of random variables
Q={X1...X.}.

e A probabilistic model is an encoding of probabilistic
Information that allows us to compute the probability of any
event in the world

A simple probabilistic model:

e We divide the world into a set of elementary, mutually events,
called states
E.g. If the world is described by two Boolean variables A, B, a
state will be a complete assignment of truth values for A and B.

e A joint probability distribution function assigns non-negative

weights to each event, such that these weights sum to 1.



Inference using joint distributions

E.g. Suppose T'oothache and Cavity are the random variables:

Toothache = true Toothache = false

Clavity = true 0.04 0.06
Cavity = false 0.01 0.89

The unconditional probability of any proposition is computable as
the sum of entries from the full joint distribution

E.g. P(Cavity) =

P(Cavity, Toothache) + P(Cavity, =T oothache) = 0.1



Conditional probability

The basic statements in the Bayesian framework talk about
conditional probabilities. P(A|B) is the belief in event A given
that event B is known with absolute certainty:

P(AN B)
P(B)

P(A|B) = if P(B) # 0

Note that we can use either the set intersection or the logical “and”

notation above.

The product rule gives an alternative formulation:

P(AN B) = P(A|B)P(B) = P(B|A)P(A)



Bayes rule

Bayes rule is another alternative formulation of the product rule:

P(B|A)P(A)
P(B)

P(A|B) =
The complete probability formula states that:
P(A) = P(A|B)P(B) + P(A|-B)P(—B)
or more generally,

P(A) =) P(AJb:))P(by),

where b; form a set of exhaustive and mutually exclusive events.



Chain rule

Chain rule is derived by successive application of product rule:

P(X1,...,X,) =
— P(X1,...,Xn_1)P(Xn|X1,..., Xn_1)
— wANHu 9N3\|MvaN3\|H7NHQ QN\3\|MVwAN§_NHu QN3\|HV



Simpson’s paradox (Pearl, p.495)

The following table describes the effectiveness of a certain drug on

a population:
Male Female Overall
Recovered Died Recovered Died Recovered Died
Drug used 15 40 90 50 105 90
No drug 20 40 20 10 40 50

Good news: the ratio of recovery for the whole population increases
from 40/50 to 105/90

But the ratio of recovery decreases for both males and females!



Using Bayes rule for inference

Often we want to form a hypothesis about the world based on
observable variables. Bayes rule is fundamental when viewed in
terms of stating the belief given to a hypothesis H given evidence e:
P(e|H)P(H)

P(e)

P(Hle) =

le) is sometimes called posterior probability
) is called prior probability
e|H) is called likelihood

) is just a normalizing constant, that can be computed from
the requirement that P(H |e) + P(—H|e) = 1:

(H
(H
(
P(e

P(e) = P(e|H)P(H) + P(e|-H)P(—H)

Sometimes we write P(H|e) = aP(e|H)P(H)



Example: Medical Diagnosis

A doctor knows that meningitis causes a stiff neck 80% of the time.
She knows that if a person is selected randomly from the
population, there is a 1/10000 chance of the person having
meningitis. 1 in 100 people suffer from a stiff neck.

You go to the doctor complaining about the symptom of having a
stiff neck. What is the probability that meningitis is the cause of this
symptom?

Let M be meningitis, S be stiff neck:

P(S|M)P(M) 0.8 x 0.0001
P(S) B 0.1

= 0.0008

P(M|S) =



Combining predictive and diagnhostic support

It is convenient to re-write Bayes rule in terms of odds and
likelihood ratios:
P(Hle) _ P(e|lH) P(H)

P(-Hle) P(e|-H) P(~H)
Define the prior odds (predictive support) as :

__PH) _  P(H)
 1-P(H) 1-P(H)

O(H)

Define the likelihood ratio (diagnostic support) as:

P(elH)
P(e|-H)

L(e|H) =
Then the posterior odds are:

O(Hl|e) = L(e|H)O(H)



Computing conditional probabilities

Typically, we are interested in the posterior joint distribution of some
query variables Y given specific values e for some evidence

variables F
Let the hidden variablesbe Z =X — Y — FE

If we have a joint probability distribution, we can compute the

answer by “summing out” the hidden variables:

P(Yle) = aP(Y,e) =a ) P(Y,e,z)

Big problem: the joint distribution is too big to handle!



Example

Suppose we consider medical diagnosis, and there are 100 different
symptoms and test results that the doctor could consider. A patient
comes in complaining of fever, stiff neck and nausea. The doctor
wants to compute the probability of meningitis.

2100 antries!

e The probability table has >=
e For computing the probability of a disease, we have to sum out

over 97 hidden variables!



Independence of random variables

Two random variables X and Y are independent (denoted
I(X,Y)) if knowledge about X does not change the uncertainty

about Y and vice versa.
P(X|Y) = P(X) (and vice versa)

or equivalently, P(X,Y) = P(X)P(Y) If n Boolean variables are

Independent, the whole joint distribution can be computed as:
P(xi,...xn) = E P(x;)

Only n numbers are needed to specify the joint, instead of 2"
But absolute independence is a very strong requirement, seldom

met



Conditional independence

Two variables X and Y are conditionally independent given Z if:
P(xly, z) = P(z|z),V,y, 2

This means that knowing the value of Y does not change the

prediction about X is the value of Z is known.
We denote this by I(X,Y|Z).

Note that Pearl uses the notation (X, Z,Y")



Example

Consider the dentist problem with three random variables:

T'oothache, Cavity, Catch (steel probe catches in my tooth)
The full joint distribution has 22 — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it does not

depend on whether | have a toothache:
P(Catch|Toothache, Cavity) = P(Catch|Cavity) (1)

l.e., C'atch is conditionally independent of T'oothache given

Cavity
The same independence holds if | do not have a cauvity:

P(Catch|Toothache, -Cavity) = P(Catch|-Cavity) (2)



Example (continued)

Full joint distribution can now be written as:

P(Toothache, Catch, Cavity) =
= P(Toothache,Catch|Cavity) P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

l.e., 2 + 2 + 1 =5 independent numbers (equations 1 and 2 remove

two numbers)

Much more important savings happen if the system has lots of

variables!



Naive Bayesian model

A common assumption in early diagnosis is that the symptoms are
Independent of each other given the disease
® Letx,...x, bethe symptoms exhibited by a patient (e.g.
fever, headache etc)
e Let H be the patient’s health status

e Then by using the naive Bayes assumption, we get:
P(H,z1,...zn) = P(H)P(z1|H) --- P(xn|H)

® The odds of health state given the symptoms is also easy to

compute:

n

O(Hlz1,...x) = O(H) | [ L(x:i| H)

2=1



Recursive Bayesian updating

The naive Bayes assumption allows also for a very nice, incremental
updating of beliefs as more evidence is gathered

Suppose that after knowing symptoms x4, ...z, the odds of H are:
O(Hlz1...wn) = O(H) | | L(z:|H)
i=1

What happens if a new symptoms x,,+1 appears?

n—+1
O(Hlz1 ... %n,2nt1) = O(H) | | L(z:|H) = O(Hl|z1 ... 2n) L(n 1| H)
=1

An even nicer formula can be obtained by taking logs:

logO(H|x1...Zn,Tnt1) =logO(H|x1 ... 2n)+]1og L(xp41|H)



Application: Learning to classify text

Target concept Interesting? : Document — {+, —}
1. Represent each document by vector of words: one attribute per
word position in document
2. Learning: Use training examples to estimate P(+), P(—),
P(doc|+), P(doc|—)
Naive Bayes conditional independence assumption

length(doc)
P(doc|v;) = E P(a; = wg|v;)
=1

where P(a; = wy|v;) is probability that word in position ¢ is wy,
given v;

One more assumption: P(a; = wk|v;) = P(am = wk|v;), Vi, m



Naive Bayes Learning for Text

Input: Examples (the set of documents), V' (the appropriate
classifications)
1. Collect all words and other tokens that occur in Examples into
a Vocabulary
2. For each target value v; in V' do

® docs; contains the documents with target value v;

o wA@mv . |docs |

| Examples|

e 1 is the total number of words in docs; (counting duplicate

words multiple times)
e For each word wg in Vocabulary

— ny, is the number of times word wy, occurs in docs;

+1
— NUA\E»W_S.V < 3+_<Nw9@§3ﬁ@_




Using the Naive Bayes Classifier

Input: a new document Doc
1. positions <— all word positions in Doc that contain tokens
found in Vocabulary
2. Return vy g, where
vnp = arg max P(v;) z P(a;|v;)

v; EV
1Epositions



Twenty NewsGroups

Given 1000 training documents from each group, learn to classify
new documents according to which newsgroup they came from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball

comp.windows.x rec.sport.nockey
alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics
talk.politics.mideast sci.med
talk.politics.misc talk.politics.guns

Naive Bayes: 89% classification accuracy
For text classification, Naive Bayes obtains results comparable

to any other learning algorithm



Three prisoners dilemma

Three prisoners, A, B and C' have been tried for murder. One of
them has been found guilty and will be executed tomorrow, the
others will be released. The identity of the condemned prisoners is
revealed to the guard, but not the prisoners themselves. Prisoner A
calls the guard and asks: “Please give this letter to one of my
friends who will be released.” The guard agrees to do it. An hour
later, A calls the guard and asks whom he gave the letter to. The
guard answers: “l gave itto B”.

Now A is thinking: “Before | talked to the guard, my chance of begin

executed was 1/3, now it dropped to 1/2! What did | do wrong?



