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–
J.P

earl,P
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R
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n
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–
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–
A
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T

B
A
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–
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–
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U
n
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U
ncertainty

is
inherentin

m
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tasks
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W
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hom
e

�

m
inutes
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e
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state
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notknow
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oisy

observations
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reports
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lattires,accidents

etc.

�

P
henom

ena
thatare
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possible
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uild
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Iplanning
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ethods
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from
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A
purely

logicalapproach
either:

1.
risks

falsehood

E
.g.
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25
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early
w

illgetm
e

to
the
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tim

e

2.
leads

to
conclusions

thatare
too
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decision

m
aking:
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illgetm
e
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tim

e
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and
itdoes
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and
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–
P
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from
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effi
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tly

�

N
aive

representations
ofprobability

are
hopelessly

inefficient

E
.g.

consider
patients

described
by

severalattributes:

–
background:

age,gender,m
edicalhistory,...

–
S

ym
ptom

s:
fever,blood

pressure,headache,...

–
D

iseases:
pneum

onia,hepatitis,...

�

A
probability

distribution
needs

to
assign

a
num

ber
to

each

com
bination

ofvalues
ofthese

attributes!
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involve

hundreds
ofattributes

�

K
ey

id
ea:

exploitregularities
and

structure
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and
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efficiently
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a
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to
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orks

from
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properties
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W
hich

action
should

Ichoose?

D
epends

on
m

y
preferences

for
m

issing
flightvs.

airport

cuisine,etc.

U
tility

th
eo

ry
is

used
to

representand
infer

preferences

12



D
ecisio
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–
M

edicaldiagnosis
(e.g.

P
athfinder)

–
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(e.g.
jet-engines)

�

M
onitoring

–
S
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shuttle

engines
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project)
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–
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p
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,1991)
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M
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Large
net!
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testresults,14000

probabilities
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N
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m
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determ
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35
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for

netw
ork

topology

–
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for
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table

values
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found
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and
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