Probabilistic Reasoning in AI - Problem set 1

Due Wednesday, January 16, 2002, in class This assignment is worth 5% of the final grade

1. [20 points]

- (a) Prove that the two different ways of stating the third axiom of probability are equivalent.
- (b) If P(B) = 1, then P(A|B) = P(A).
- (c) If $A \to B$, then P(B|A) = 1 and $P(A|B) = \frac{P(A)}{P(B)}$
- (d) Given P(A), P(B) > 0, if A and B are disjoint (i.e. $P(A \vee B) = P(A) + P(B)$, then they cannot be independent, and if A and B are independent, then they cannot be disjoint.)
- 2. [10 points] Express the statement that X and Y are conditionally independent given Z as a constraint on the joint distribution entries for P(X,Y,Z).
- 3. [10 points] Pearl, pg. 73, problem 2.1
- 4. [20 points] Pearl, pg. 73, problem 2.3
- 5. [10 points] Pearl, pg. 75, problem 2.6
- 6. (a) [5 points] Prove the conditionalized version of the product rule:

$$P(A, B|E) = P(A|B, E)P(B|E)$$

(b) [5 points] Prove the conditionalized version of Bayes rule:

$$P(A|B,C) = \frac{P(B|A,C)P(A|C)}{P(B|C)}$$

- 7. [10 points] This exercise investigates the way in which conditional indep3endence relationships affect the amount of information needed for probabilistic calculations.
 - (a) Suppose we wish to compute $P(H|E_1, E_2)$ and we have no conditional independence information. Which of the following sets of numbers are sufficient for the calculation?
 - i. $P(E_1, E_2), P(H), P(E_1|H), P(E_2|H)$
 - ii. $P(E_1, E_2), P(H), P(E_1, E_2|H)$
 - iii. $P(H), P(E_1|H), P(E_2|H)$
 - (b) Suppose that we know that $P(E_1|H, E_2) = P(E_1|H)$ for all values of H, E_1, E_2 . Now which of the above sets is sufficient?
 - (c) Assuming H, E_1, E_2 are all Boolean, how many numbers are sufficient to represent the joint distribution in the two cases?
- 8. [10 points] Which of the following properties are satisfied by the probabilistic independence relation? Prove formally or disprove with a counterexample.
 - (a) If $I(X, Y \wedge Z)$ then I(X, Y) and I(X, Z).
 - (b) If I(X,Y) and I(X,Z) then $I(X,Y \wedge Z)$.