Lecture 13: Naive Bayes. Instance-based learning

- ♦ Naive Bayes learning
- \diamondsuit k-Nearest Neighbor
- \diamondsuit Locally weighted regression
- ♦ Case-based reasoning
- ♦ Lazy and eager learning

Naive Bayes Classifier

most practical learning methods! Along with decision trees, neural networks, nearest neighbor, it is one of the

When to use it:

- A moderate or large training set is available (need enough data to get reliable probability estimates)
- The attributes that describe the instances are conditionally independent given the classification

Successful applications:

- Diagnosis (medical and other)
- Classifying text documents

Naive Bayes Classifier

attributes $\langle a_1, a_2 \dots a_n \rangle$. Assume target function f:X o V, where each instance x described by

Most probable value of f(x) is:

$$v_{MAP} = \arg \max_{v_j \in V} P(v_j | a_1, a_2 \dots a_n)$$

$$v_{MAP} = \arg \max_{v_j \in V} \frac{P(a_1, a_2 \dots a_n | v_j) P(v_j)}{P(a_1, a_2 \dots a_n)}$$

$$= \arg \max_{v_j \in V} P(a_1, a_2 \dots a_n | v_j) P(v_j)$$

Naive Bayes assumption:

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

which gives

Naive Bayes classifier: $v_{NB} = \arg \max_{v_j \in V} P(v_j) \prod_i P(a_i|v_j)$

Naive Bayes Algorithm

 $Naive_Bayes_Learn(examples)$

For each target value v_{j}

$$P(v_j) \leftarrow \text{estimate } P(v_j)$$

For each attribute value a_i of each attribute a

$$P(a_i|v_j) \leftarrow \text{estimate } P(a_i|v_j)$$

It is easy to estimate these probabilities just by counting!

 $\mathsf{Classify_New_Instance}(x)$

$$v_{NB} = \arg\max_{v_j \in V} \hat{P}(v_j) \prod_{a_i \in x} \hat{P}(a_i | v_j)$$

Naive Bayes: Example

Consider PlayTennis again, and new instance

$$\langle Outlk=sun, Temp=cool, Humid=high, Wind=strong \rangle$$

Want to compute:

$$v_{NB} = \arg\max_{v_j \in V} P(v_j) \prod_i P(a_i|v_j)$$

$$P(y) \ P(sun|y) \ P(cool|y) \ P(high|y) \ P(strong|y) = .005$$

$$P(n) \ P(sun|n) \ P(cool|n) \ P(high|n) \ P(strong|n) = .021$$

$$\rightarrow v_{NB} = n$$

Naive Bayes: Subtleties

Conditional independence assumption is often violated

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

estimated posteriors $P(\boldsymbol{v}_j|\boldsymbol{x})$ to be correct; we need only that But it works surprisingly well anyway! Note that we do not need the

$$\arg \max_{v_j \in V} \hat{P}(v_j) \prod_i \hat{P}(a_i | v_j) = \arg \max_{v_j \in V} P(v_j) P(a_1, \dots, a_n | v_j)$$

Naive Bayes posteriors are often unrealistically close to 1 or 0

2. What if none of the training instances with target value v_j have attribute value a_i ? Then

$$\hat{P}(a_i|v_j)=0$$
, and... $\hat{P}(v_j)\prod\limits_i\hat{P}(a_i|v_j)=0$

Typical solution is Bayesian estimate for $\hat{P}(a_i|v_j)$

$$\hat{P}(a_i|v_j) \leftarrow \frac{n_c + mp}{n + m}$$

where

- ullet n is number of training examples for which $v=v_j$,
- ullet n_c number of examples for which $v=v_j$ and $a=a_i$
- ullet p is prior estimate for $\hat{P}(a_i|v_j)$
- ullet m is weight given to prior (i.e. number of "virtual" examples)

Learning to Classify Text

Why?

- Learn which news articles are of interest
- Learn to classify web pages by topic

Naive Bayes is among most effective algorithms

What attributes shall we use to represent text documents?

Learning to Classify Text

Target concept $Interesting?:Document \rightarrow \{+,-\}$

- Represent each document by vector of words: one attribute per word position in document
- 2. Learning: Use training examples to estimate
- $\bullet \ P(+)$
- P(−)
- $\bullet P(doc|+)$
- ullet P(doc|-)

Naive Bayes conditional independence assumption

$$P(doc|v_j) = \prod_{i=1}^{length(doc)} P(a_i = w_k|v_j)$$

where $P(a_i=w_k|v_j)$ is probability that word in position i is w_k , given v_j

One more assumption: $P(a_i=w_k|v_j)=P(a_m=w_k|v_j), \forall i,m$

Naive Bayes Learning for Text

Input: Examples (the set of documents), V (the appropriate classifications)

- 1. Collect all words and other tokens that occur in Examples into a Vocabulary
- 2. calculate the required $P(v_j)$ and $P(w_k | v_j)$ probability terms, as follows: for each target value v_j in V do
- ullet $docs_j \leftarrow$ subset of Examples for which the target value is v_j
- $P(v_j) \leftarrow \frac{|docs_j|}{|Examples|}$
- $Text_j \leftarrow$ a single document created by concatenating all members of
- $ullet n \leftarrow$ total number of words in $Text_j$ (counting duplicate words multiple times)
- ullet for each word w_k in Vocabulary
- $n_k \leftarrow$ number of times word w_k occurs in $Text_i$

$$-P(w_k|v_j) \leftarrow \frac{n_k+1}{n+|Vocabulary|}$$

Using the Naive Bayes Classifier

Input: a new document Doc

- 1. $positions \leftarrow$ all word positions in Doc that contain tokens found in Vocabulary
- 2. Return v_{NB} , where

$$v_{NB} = \arg\max_{v_j \in V} P(v_j) \prod_{i \in positions} P(a_i|v_j)$$

Twenty NewsGroups

Given 1000 training documents from each group, learn to classify new documents according to which newsgroup they came from

comp.graphics misc.forsale

comp.os.ms-windows.misc rec.autos

comp.sys.ibm.pc.hardware rec.motorcycles

comp.sys.mac.hardware rec.sport.baseball

comp.windows.x rec.sport.hockey

alt.atheism sci.space

soc.religion.christian sci.crypt

talk.religion.misc sci.electronics talk.politics.mideast sci.med

talk.politics.misc talk.politics.guns

Naive Bayes: 89% classification accuracy

Learning Curve for 20 Newsgroups

Instance-Based Learning

Key idea: just store all training examples $\langle x_i, f(x_i) \rangle$

example x_n , then estimate $f(x_q) \leftarrow f(x_n)$ $Nearest\ neighbor:$ Given query instance x_q , first locate nearest training

k-Nearest neighbor:

- Take vote among its k nearest neighbours (if discrete-valued target function)
- Take mean of f values of k nearest neighbours (if real-valued)

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k f(x_i)}{k}$$

When To Consider Nearest Neighbor

- ullet Instances map to points in \Re^n
- Less than 20 attributes per instance
- Lots of training data

Advantages:

- Training is very fast
- Learn complex target functions
- Don't lose information

Disadvantages:

- Slow at query time
- Easily fooled by irrelevant attributes

Voronoi Diagram

Behavior in the Limit

versus 0 (negative). Consider p(x) defines probability that instance x will be labeled 1 (positive)

Nearest neighbor:

As number of training examples $ightarrow \infty$, approaches Gibbs Algorithm Gibbs: with probability $p(\boldsymbol{x})$ predict 1, else 0

k-Nearest neighbor:

As number of training examples $ightarrow \infty$ and k gets large, approaches Bayes optıma

Bayes optimal: if p(x) > .5 then predict 1, else 0

Note Gibbs has at most twice the expected error of Bayes optimal

${\bf Distance\text{-}Weighted}\ k{\bf NN}$

Might want weight nearer neighbors more heavily...

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

where

$$w_i \equiv \frac{1}{d(x_q,x_i)^2}$$

and $d(x_q,x_i)$ is distance between x_q and x_i

Note now it makes sense to use all training examples instead of just k(Shepard's method)

Curse of Dimensionality

function Imagine instances described by 20 attributes, but only 2 are relevant to target

 ${\it dimensional}\,\,X$ $Curse\ of\ dimensionality$: nearest neighbour is easily mislead when high-

One approach (Moore & Lee, 1994):

- Stretch jth axis by weight z_j , where z_1,\ldots,z_n chosen to minimize prediction error
- Use cross-validation to automatically choose weights z_1, \dots, z_n

Note setting z_j to zero eliminates this dimension altogether

Locally Weighted Regression

Note $k{\sf NN}$ forms local approximation to f for each query point x_q

Why not form an explicit approximation $\hat{f}(x)$ for region surrounding x_q

- ullet Fit linear function to k nearest neighbors
- Fit quadratic, ...
- ullet Produces "piecewise approximation" to f

Error functions

ullet Squared error over k nearest neighbors

$$E_1(x_q) \equiv \frac{1}{2} \sum_{x \in \ k \ nearest \ nbrs \ of \ x_q} (f(x) - \hat{f}(x))^2$$

Distance-weighted squared error over all neighbours

$$E_2(x_q) \equiv \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^2 \ K(d(x_q, x))$$

Other schemes are possible too

mations Note that Radial Basis functions (RBFs) are also locally weighted approxi-

Case-Based Reasoning

different "distance" metric Can apply instance-based learning even when $X
eq \Re^n$, we just need a

symbolic logic descriptions Case-Based Reasoning is instance-based learning applied to instances with

```
(user-complaint error53-on-shutdown)
(likely-cause ???))
                               (disk 1gig)
                                                                                               (memory 48meg)
                                                             (installed-applications Excel Netscape VirusScan)
                                                                                                                                (network-connection PCIA)
                                                                                                                                                               (operating-system Windows)
                                                                                                                                                                                                 cpu-model PowerPC)
```

Case-Based Reasoning in CADET

CADET: 75 stored examples of mechanical devices

ullet each training example: \langle qualitative function, mechanical structureangle

new query: desired function,

target value: mechanical structure for this function

Distance metric: match qualitative function descriptions

Case-Based Reasoning in CADET

A stored case: T-junction pipe

Structure:

T = temperatureQ = waterflow

 Q_{3}, T_{3} Q_{3}, T_{3}

Function:

A problem specification: Water faucet

Structure:

Function:

Case-Based Reasoning in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Bottom line:

- Simple matching of cases useful for tasks such as answering help-desk queries
- Area of ongoing research

Lazy and Eager Learning

Lazy: wait for query before generalizing

E.g. k-Nearest Neighbor, Case based reasoning

Eager: generalize before seeing query

Bayes, ... E.g. Radial basis function networks, Decision trees, Backpropagation, Naive

Does it matter?

- Eager learner must create global approximation
- Lazy learner can create many local approximations
- ullet If they use same hypothesis space H, a lazy learner can represent more complex functions (e.g., consider $H={\sf linear}$ functions)