Lecture 12: Bayesian Learning

Reading: Mitchell, Sections 6.1 - 6.10.
> Bayes Theorem

Most likely hypotheses

Minimum description length principle

Bayes optimal classifier

ORI S O

Naive Bayes learning



Two Roles for Bayesian Methods

1. Provides practical learning algorithms:

e Naive Bayes learning

e Bayesian belief network learning (this will be presented in 526B next
year)

which combine prior knowledge (prior probabilities) with observed data
2. Provides useful conceptual framework

e Provides “gold standard” for evaluating other learning algorithms

e Additional insight into Occam’s razor



Bayes Theorem in Learning

P(DJh)P(h)
P(D)

P(h|D) =

h) = prior probability of hypothesis h
D) = prior probability of training data D
h|D) = probability of h given D



Choosing Hypotheses

P(hD) =" @M@% (h)

Generally want the most probable hypothesis given the training data

Mazimum a posteriori hypothesis h s 4p:

hyap = argmax P(h|D)

heH

— arg max L PIMPR)
heH P(D)

= arg max P(D|h)P(h)

If assume P(h;) = P(h;) then can further simplify, and choose the Mazi-
BﬁiNsw&SoAvEﬁo;mm_m

harr = arg max P(D|h;)



Basic Formulas for Probabilities

e Product Rule: probability P(A A B) of a conjunction of two events A
and B:

P(ANB)=P(AB)P(B)=P(B|A)P(A)
e Sum Rule: probability of a disjunction of two events A and B:
P(AV B)=P(A)+ P(B)— P(AANB)

o Theorem of total probability: if events Ay, ..., A, are mutually exclu-
sive with =7 ; P(A;) = 1, then

P(B) = £ P(B|A)P(A)



Example: Using Bayes Theorem

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test
returns a correct positive result in only 98% of the cases in which the
disease is actually present, and a correct negative result in only 97%
of the cases in which the disease is not present. Furthermore, .008 of
the entire population have this cancer.

P(cancer) = P(—cancer) =
P(+|cancer) = P(—|cancer) =
P(+|—cancer) = P(—|—cancer) =

P(cancer|+) =



Brute Force MAP Hypothesis Learner

1. For each hypothesis h in H, calculate the posterior probability
P(D|h)P(h)

P(D)
2. Output the hypothesis hj;4p with the highest posterior probability

hyrap = arg ﬁﬁmwggv

P(h|D) =



Relation to Concept Learning

Consider our usual concept learning task: instance space X, hypothesis
space H, training examples . What would Bayes rule produce as the MAP
hypothesis?

Assume a fixed set of instances (1, . . . , ) with classifications {(c(x1), . .., c(xnm)).
Choose P(D|h):

1 if h consistent withD

P(DIH) = 0 otherwise
Choose P(h) to be uniform distribution: P(h) = % for all hin H
Then:
‘ % if h is consistent with D
P(h|D) = |
| 0 otherwise
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Learning A Real Valued Function

Consider any real-valued target function f

The training examples are (x;, d;), where d; is noisy the noisy target value:
di = f(z;) + e,

where e; is random variable (noise) drawn independently for each z; according

to some Gaussian distribution with mean=0

Then the maximum likelihood hypothesis i), is the one that minimizes the
sum of squared errors:

haL = arg WMH% N.WH (d; — iu&vvw

How can we show this?



Learning A Real Valued Function

hur = argmaxp(D|h)

heH
= argmax i p(d;|h) (because the data points are independent)
i=1
1 dj—h(z;) L .
— arg max Il —2(F (because the noise is Gaussian)

—FC€
heH ;—1 )\Mﬁ.Q.w

Maximize natural log of this instead... basic idea used when we deal with
products

1 1 h&. - i.\svuw

hyrr, = arg max W@U In — — -
o

heH i=1  +/2mo? 2

B m 1 ;i \&A.&@v :
= £ 50




Learning to Predict Probabilities

Consider predicting survival probability from patient data (z;,d;), where d;
is1lor0

We want to train neural network to output a probability given x; (not a 0
or 1)

The brute-force approach would be to estimate the probabilities from the
data and then train the network using them... but we want to avoid that.

We will do an analysis of the most likely hypothesis, similar to the previous
one.



Analysis

P(D|h) = _mw@l@_gv - _mw@._?éwg

Since h is our hypothesis about the probability of each classification:

wm&@_bumﬁv =
= Az (1 hla)"™

The ML hypothesis is:

_ i N1 W\ 1-d; .
hyr = @H.m%mmmﬂmiﬁv (1= h(z;)  “P(x;)

The last factor is a constant independent of A so it can be dropped.

And by taking logs, like before, we have:

\5\\@ — arg H%m@\.ww .WH &@ In \@AHNV T AH T &@v wbﬁ o \@AH@VV



Maximizing Likelihood with a Neural Net

We want to maximize the likelihood of a hypothesis G(h,D):

9G(h, D) 9G(h, D) dh(z;)
Ow i, i=1 Oh(z;) Owj
Q\sm&@v @Q&.w

|
M3

]
[N\gE

1

Weight update rule for a sigmoid unit:
Wik < Wik + D\E?

where

M3

Awjp = n. (di — h(xi)) Tiji

1



Minimum Description Length Principle (MDL)

Occam'’s razor: prefer the shortest hypothesis
MDL: prefer the hypothesis h that minimizes

hypr = arg M@% N\QHQ& -+ N\QMAU?&

where L¢(x) is the description length of x under encoding C

Example: H = decision trees, D = training data labels

e Lc,(h) is # bits to describe tree h
o Lc,(DJh) is # bits to describe D given h

—Note L¢,(DJh) = 0 if examples classified perfectly by h. Need only
describe exceptions

e Hence h/py, trades off tree size for training errors



Minimum Description Length Principle

hyap = argmax P(D|h)P(h)

heH
= argmax logy, P(D|h) + logy P(h)
= arg w@% —logy P(D|h) — log, P(h) (1)

We know from information theory that the optimal (shortest expected coding
length) code for an event with probability p is — log, p bits.

So we can interpret (1) as follows:

e —log, P(h) is length of h under optimal code
e —log, P(D|h) is length of D given h under optimal code

So according to MDL, we prefer the hypothesis that minimizes

length(h) + length(misclassi fications)



Most Probable Classification of New Instances

So far we sought the most probable hypothesis given the data D (i.e., hasap)

Given new instance x, what is its most probable classification?

harap(x) (called the Naive Bayes classificationis NOT the most probable
classification!

Example:

Consider three possible hypotheses:
P(hi|D) = 4, P(hy|D) = .3, P(h3|D)=.3
Given a new instance z,

hi(x) =+, ha(x) = —, hs(z) = —

What is the most probable classification of x7



Bayes Optimal Classifier

Bayes optimal classification:

arg max \:Wm P(vj|h;)P(hi| D)

In our example:

Therefore

P(+|h;)P(hi|D) = 4
5, PU+R) P(|D)

P(—|h;)P(h;|D) = .6
3, P(=|n)P(rD)

and the most probably classification is —.



Gibbs Classifier

Bayes optimal classifier provides best result, but can be expensive if many
hypotheses.

Gibbs algorithm:

1. Choose one hypothesis at random, according to P(h|D)

2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn at random from H ac-
cording to priors on H. Then:

Elerrorgims) < 2E|error payesoptimall
Suppose correct, uniform prior distribution over H, then

e Pick any hypothesis from VS, with uniform probability

e |ts expected error no worse than twice Bayes optimal!



Naive Bayes Classifier

Along with decision trees, neural networks, nearest neighbor, it is one of the
most practical learning methods!

When to use it:

e A moderate or large training set is available (need enough data to get
reliable probability estimates)

e The attributes that describe the instances are conditionally independent
given the classification

Successful applications:

e Diagnosis (medical and other)

e Classifying text documents



Naive Bayes Classifier

Assume target function f : X — V', where each instance x described by
attributes (aq,as...ay,).

Most probable value of f(z) is:

vyprap = argmax P(vjlai, az...ap)

@wma\
P(ay,ay...a,|v;)P(v;)
UpAP = arg wwww P(a,as...ap)
= mme@x\UA@r@m . ..@LSVWASV
v;eV

Naive Bayes assumption:

P(ay,as...a,|vj) =11 P(a;|v;)

1

which gives

Naive Bayes classifier: vyp = arg max P(v;) 11 P(a;|v;)
v; )



Naive Bayes Algorithm

Naive Bayes Learn(examples)

For each target value v;

AN

P(v;) ¢ estimate P(v,)
For each attribute value a; of each attribute a
P(as|v;) < estimate P(a;|v;)

It is easy to estimate these probabilities just by counting!

Classify New Instance(x)

vnp = argmax Plv;) 11 Plaifv)



Naive Bayes: Example

Consider PlayTennis again, and new instance

(Outlk = sun, Temp = cool, Humid = high, Wind = strong)

Want to compute:
vyp = arg max P(v;) 11 P(ai|v;)
@mmA\ 7
P(y) P(sunly) P(coolly) P(high|y) P(strong|y) = .005
P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021

— UNB =T



Naive Bayes: Subtleties

. Conditional independence assumption is often violated
P(ay,ay...aylv;) =11 P(a;|v;)
]

But it works surprisingly well anyway! Note that we do not need the
estimated posteriors P(v;|x) to be correct; we need only that

arg max Nw?b E@ELSV = argmax P(v;)P(a; . .., a,|vj)

@wma\ @wma\
Naive Bayes posteriors are often unrealistically close to 1 or 0

. What if none of the training instances with target value v; have attribute
value a;? Then

WAQN._@,Q.V — O. and... @A@uv SWAQLGQV =0



Typical solution is Bayesian estimate for P(a;|v;)

Ne +mMmp

W Ui ) <
(a]v;) ntm

where

e 1 is number of training examples for which v = v;,

e 1. number of examples for which v = v; and a = a;
® p is prior estimate for P(a;|v;)

e /m is weight given to prior (i.e. number of “virtual” examples)



Learning to Classify Text

Why?

e Learn which news articles are of interest

e Learn to classify web pages by topic

Naive Bayes is among most effective algorithms

What attributes shall we use to represent text documents?



Learning to Classify Text

Target concept Interesting? : Document — {+, —}

1. Represent each document by vector of words: one attribute per word
position in document

2. Learning: Use training examples to estimate

QNA )
P(-)
P(doc|+)

oﬁ@o& )

Naive Bayes conditional independence assumption
length(doc)
Pldoclu)) =" 1L Pla; = wxlvy
1=

where P(a; = wy|v;) is probability that word in position @ is wy, given v;

One more assumption: P(a; = wi|v;) = P(a, = wg|v;), Vi,m



Naive Bayes Learning for Text

Input: Ezamples (the set of documents), V' (the appropriate classifications)

1. Collect all words and other tokens that occur in Examples into a Vocabulary

2. calculate the required P(v;) and P(wg|v;) probability terms, as follows:
for each target value v; in V' do

® docs; < subset of Examples for which the target value is v,
|docs |
| Examples|

® wﬁ\ﬁ.v —
e T'ext; < a single document created by concatenating all members of
docs;

e n < total number of words in T'ext; (counting duplicate words mul-
tiple times)
e for each word w;, in Vocabulary

— ny, < number of times word wy, occurs in Text;

+1
a wﬁgw_@uv = §+_<NM@@:N§6_




Using the Naive Bayes Classifier

Input: a new document Doc]

1. positions < all word positions in Doc that contain tokens found in
Vocabulary

2. Return vy g, where

UNB e MWWW A@uv @.mﬁow&w&ozm AQS_QQV



Twenty NewsGroups

Given 1000 training documents from each group, learn to classify new doc-
uments according to which newsgroup they came from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball

comp.windows.x rec.sport.hockey
alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics
talk.politics.mideast sci.med

talk.politics.misc
talk.politics.guns

Naive Bayes: 89% classification accuracy



Learning Curve for 20 Newsgroups
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