Lecture 12: Bayesian Learning

Reading: Mitchell, Sections 6.1 - 6.10.

- ♦ Bayes Theorem
- Most likely hypotheses
- Minimum description length principle
- ♦ Bayes optimal classifier
- Naive Bayes learning

Two Roles for Bayesian Methods

- Provides practical learning algorithms:
- Naive Bayes learning
- Bayesian belief network learning (this will be presented in 526B next year)

which combine prior knowledge (prior probabilities) with observed data

- 2. Provides useful conceptual framework
- Provides "gold standard" for evaluating other learning algorithms
- Additional insight into Occam's razor

Bayes Theorem in Learning

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- ullet P(h)= prior probability of hypothesis h
- ullet P(D)= prior probability of training data D
- ullet P(h|D)= probability of h given D
- ullet P(D|h)= probability of D given h

Choosing Hypotheses

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Generally want the most probable hypothesis given the training data

 $Maximum\ a\ posteriori\ {\sf hypothesis}\ h_{MAP}$:

$$h_{MAP} = \arg \max_{h \in H} P(h|D)$$

$$= \arg \max_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

$$= \arg \max_{h \in H} P(D|h)P(h)$$

If assume $P(h_i)=P(h_j)$ then can further simplify, and choose the $Maxi-mum\ likelihood\ (ML)$ hypothesis

$$h_{ML} = rg \max_{h_i \in H} P(D|h_i)$$

Basic Formulas for Probabilities

 $Product \ Rule$: probability $P(A \wedge B)$ of a conjunction of two events A

$$P(A \land B) = P(A|B)P(B) = P(B|A)P(A)$$

 $Sum\ Rule$: probability of a disjunction of two events A and B:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Theorem of total probability: if events A_1,\ldots,A_n are mutually exclusive with $\Sigma_{i=1}^n P(A_i) = 1$, then

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Example: Using Bayes Theorem

Does patient have cancer or not?

disease is actually present, and a correct negative result in only 97%the entire population have this cancer. of the cases in which the disease is not present. Furthermore, .008 of returns a correct positive result in only 98% of the cases in which the A patient takes a lab test and the result comes back positive. The test

$$P(cancer) = P(\neg cancer) = P(+|cancer) = P(-|cancer) = P(+|\neg cancer) = P(-|\neg cancer) = P(cancer|+) =$$

Brute Force MAP Hypothesis Learner

1. For each hypothesis h in H, calculate the posterior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2. Output the hypothesis h_{MAP} with the highest posterior probability

$$h_{MAP} = \arg\max_{h \in H} P(h|D)$$

Relation to Concept Learning

space H, training examples D. What would Bayes rule produce as the MAP Consider our usual concept learning task: instance space X, hypothesis hypothesis?

Assume a fixed set of instances $\langle x_1, \ldots, x_m \rangle$ with classifications $\langle c(x_1), \ldots, c(x_m) \rangle$.

Choose P(D|h):

$$P(D|H) = \left\{ egin{array}{ll} 1 & \mbox{if h consistent with} D \\ 0 & \mbox{otherwise} \end{array}
ight.$$

Choose P(h) to be uniform distribution: $P(h) = \frac{1}{|H|}$ for all h in H

I hen:

$$P(h|D) = \left\{ egin{array}{l} rac{1}{|VS_{H,D}|} & ext{if h is consistent with D} \end{array}
ight.$$

otherwise

Evolution of Posterior Probabilities

Learning A Real Valued Function

Consider any real-valued target function f

The training examples are $\langle x_i, d_i
angle$, where d_i is noisy the noisy target value:

$$d_i = f(x_i) + e_i,$$

where e_i is random variable (noise) drawn independently for each x_i according to some Gaussian distribution with mean=0

sum of squared errors: Then the maximum likelihood hypothesis h_{ML} is the one that minimizes the

$$h_{ML} = \arg\min_{h \in H} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

How can we show this?

Learning A Real Valued Function

$$\begin{array}{ll} h_{ML} &= \arg\max_{h\in H} p(D|h) \\ &= \arg\max_{h\in H} \prod_{i=1}^m p(d_i|h) \text{ (because the data points are independent)} \\ &= \arg\max_{h\in H} \prod_{i=1}^m \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{d_i-h(x_i)}{\sigma})^2} \text{ (because the noise is Gaussian)} \end{array}$$

products Maximize natural log of this instead... basic idea used when we deal with

$$h_{ML} = \arg \max_{h \in H} \sum_{i=1}^{m} \ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2} \left(\frac{d_i - h(x_i)}{\sigma} \right)^2$$

$$= \arg \max_{h \in H} \sum_{i=1}^{m} -\frac{1}{2} \left(\frac{d_i - h(x_i)}{\sigma} \right)^2$$

$$= \arg \max_{h \in H} \sum_{i=1}^{m} -(d_i - h(x_i))^2$$

$$= \arg \min_{h \in H} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

Learning to Predict Probabilities

Consider predicting survival probability from patient data $\langle x_i, d_i \rangle$, where d_i is 1 or 0

or 1) We want to train neural network to output a probability given x_i (not a 0

data and then train the network using them... but we want to avoid that. The brute-force approach would be to estimate the probabilities from the

We will do an analysis of the most likely hypothesis, similar to the previous

Analysis

$$P(D|h) = \prod_{i=1}^{m} P(x_i, d_i|h) = \prod_{i=1}^{m} P(d_i|h, x_i) P(x_i)$$

Since h is our hypothesis about the probability of each classification:

$$P(d_i|h, x_i) = \begin{cases} h(x_i) & \text{if } d_i = 1 \\ 1 - h(x_i) & \text{if } d_i = 0 \end{cases}$$

$$= h(x_i)^{d_i} (1 - h(x_i))^{1 - d_i}$$

The ML hypothesis is:

$$h_{ML} = \arg\max_{h \in H} \prod_{i=1}^{m} h(x_i)^{d_i} (1 - h(x_i))^{1 - d_i} P(x_i)$$

The last factor is a constant independent of h so it can be dropped.

And by taking logs, like before, we have:

$$h_{ML} = \arg\max_{h \in H} \sum_{i=1}^{m} d_i \ln h(x_i) + (1 - d_i) \ln(1 - h(x_i))$$

Maximizing Likelihood with a Neural Net

We want to maximize the likelihood of a hypothesis G(h,D):

$$\frac{\partial G(h,D)}{\partial w_{jk}} = \sum_{i=1}^{m} \frac{\partial G(h,D)}{\partial h(x_i)} \frac{\partial h(x_i)}{\partial w_{jk}}$$

$$= \sum_{i=1}^{m} \frac{\partial (d_i \ln h(x_i) + (1-d_i) \ln(1-h(x_i)))}{\partial h(x_i)}$$

$$= \frac{d_i - h(x_i)}{h(x_i)(1-h(x_i))} \frac{\partial h(x_i)}{\partial w_{jk}}$$

Weight update rule for a sigmoid unit:

$$w_{jk} \leftarrow w_{jk} + \Delta w_{jk}$$

where

$$\Delta w_{jk} = \eta \sum_{i=1}^{m} (d_i - h(x_i)) x_{ijk}$$

Minimum Description Length Principle (MDL)

Occam's razor: prefer the shortest hypothesis

MDL: prefer the hypothesis \boldsymbol{h} that minimizes

$$h_{MDL} = \arg\min_{h \in H} L_{C_1}(h) + L_{C_2}(D|h)$$

where $L_C(x)$ is the description length of x under encoding C

Example: H= decision trees, D= training data labels

- ullet $L_{C_1}(h)$ is # bits to describe tree h
- ullet $L_{C_2}(D|h)$ is # bits to describe D given h
- $-\operatorname{\sf Note}\ L_{C_2}(D|h)=0$ if examples classified perfectly by h. Need only describe exceptions
- ullet Hence h_{MDL} trades off tree size for training errors

Minimum Description Length Principle

$$h_{MAP} = \arg \max_{h \in H} P(D|h)P(h)$$

$$= \arg \max_{h \in H} \log_2 P(D|h) + \log_2 P(h)$$

$$= \arg \min_{h \in H} - \log_2 P(D|h) - \log_2 P(h)$$
(1)

length) code for an event with probability p is $-\log_2 p$ bits We know from information theory that the optimal (shortest expected coding

So we can interpret (1) as follows:

- $ullet \log_2 P(h)$ is length of h under optimal code
- $-\log_2 P(D|h)$ is length of D given h under optimal code

So according to MDL, we prefer the hypothesis that minimizes

$$length(h) + length(misclassifications) \\$$

Most Probable Classification of New Instances

So far we sought the most probable hypothesis given the data D (i.e., h_{MAP})

Given new instance x, what is its most probable classification?

classification! $h_{MAP}(x)$ (called the $Naive\ Bayes\ classification$ is ${f NOT}$ the most probable

Example:

Consider three possible hypotheses:

$$P(h_1|D) = .4, P(h_2|D) = .3, P(h_3|D) = .3$$

Given a new instance x,

$$h_1(x) = +, \ h_2(x) = -, \ h_3(x) = -$$

What is the most probable classification of x?

Bayes Optimal Classifier

Bayes optimal classification:

$$\arg\max_{v_j \in V} \sum_{h_i \in H} P(v_j | h_i) P(h_i | D)$$

In our example:

$$P(h_1|D) = .4, P(-|h_1) = 0, P(+|h_1) = 1$$

 $P(h_2|D) = .3, P(-|h_2) = 1, P(+|h_2) = 0$
 $P(h_3|D) = .3, P(-|h_3) = 1, P(+|h_3) = 0$

Therefore

$$\sum_{\substack{h_i \in H \\ h_i \in H}} P(+|h_i)P(h_i|D) = .4$$

$$\sum_{\substack{h_i \in H \\ h_i \in H}} P(-|h_i)P(h_i|D) = .6$$

and the most probably classification is -.

Gibbs Classifier

hypotheses Bayes optimal classifier provides best result, but can be expensive if many

Gibbs algorithm:

- 1. Choose one hypothesis at random, according to $P(\boldsymbol{h}|\boldsymbol{D})$
- 2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn at random from H according to priors on H. Then:

$$E[error_{Gibbs}] \le 2E[error_{BayesOptimal}]$$

Suppose correct, uniform prior distribution over H, then

- Pick any hypothesis from VS, with uniform probability
- Its expected error no worse than twice Bayes optimal!

Naive Bayes Classifier

most practical learning methods! Along with decision trees, neural networks, nearest neighbor, it is one of the

When to use it:

- A moderate or large training set is available (need enough data to get reliable probability estimates)
- The attributes that describe the instances are conditionally independent given the classification

Successful applications:

- ullet Diagnosis (medical and other)
- Classifying text documents

Naive Bayes Classifier

attributes $\langle a_1, a_2 \dots a_n \rangle$. Assume target function f:X o V, where each instance x described by

Most probable value of f(x) is:

$$v_{MAP} = \arg \max_{v_j \in V} P(v_j | a_1, a_2 \dots a_n)$$

$$v_{MAP} = \arg \max_{v_j \in V} \frac{P(a_1, a_2 \dots a_n | v_j) P(v_j)}{P(a_1, a_2 \dots a_n)}$$

$$= \arg \max_{v_j \in V} P(a_1, a_2 \dots a_n | v_j) P(v_j)$$

Naive Bayes assumption:

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

which gives

Naive Bayes classifier: $v_{NB} = \arg \max_{v_j \in V} P(v_j) \prod_i P(a_i|v_j)$

Naive Bayes Algorithm

 $Naive_Bayes_Learn(examples)$

For each target value v_j

$$P(v_j) \leftarrow \text{estimate } P(v_j)$$

For each attribute value a_i of each attribute a

$$P(a_i|v_j) \leftarrow \text{estimate } P(a_i|v_j)$$

It is easy to estimate these probabilities just by counting!

 $\mathsf{Classify_New_Instance}(x)$

$$v_{NB} = \arg\max_{v_j \in V} \hat{P}(v_j) \prod_{a_i \in x} \hat{P}(a_i | v_j)$$

Naive Bayes: Example

Consider PlayTennis again, and new instance

$$\langle Outlk=sun, Temp=cool, Humid=high, Wind=strong \rangle$$

Want to compute:

$$v_{NB} = \arg\max_{v_j \in V} P(v_j) \prod_i P(a_i|v_j)$$

$$P(y)\ P(sun|y)\ P(cool|y)\ P(high|y)\ P(strong|y) = .005$$

$$P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021$$

$$\rightarrow v_{NB} = n$$

Naive Bayes: Subtleties

Conditional independence assumption is often violated

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

estimated posteriors $P(\boldsymbol{v}_j|\boldsymbol{x})$ to be correct; we need only that But it works surprisingly well anyway! Note that we do not need the

$$\arg \max_{v_j \in V} \hat{P}(v_j) \prod_i \hat{P}(a_i | v_j) = \arg \max_{v_j \in V} P(v_j) P(a_1, \dots, a_n | v_j)$$

Naive Bayes posteriors are often unrealistically close to 1 or 0

2. What if none of the training instances with target value v_j have attribute value a_i ? Then

$$\hat{P}(a_i|v_j)=0$$
, and... $\hat{P}(v_j)\prod\limits_i\hat{P}(a_i|v_j)=0$

Typical solution is Bayesian estimate for $\hat{P}(a_i|v_j)$

$$\hat{P}(a_i|v_j) \leftarrow \frac{n_c + mp}{n + m}$$

where

- ullet n is number of training examples for which $v=v_j$,
- ullet n_c number of examples for which $v=v_j$ and $a=a_i$
- ullet p is prior estimate for $\hat{P}(a_i|v_j)$
- ullet m is weight given to prior (i.e. number of "virtual" examples)

Learning to Classify Text

Why?

- Learn which news articles are of interest
- Learn to classify web pages by topic

Naive Bayes is among most effective algorithms

What attributes shall we use to represent text documents?

Learning to Classify Text

Target concept $Interesting?:Document \rightarrow \{+,-\}$

- 1. Represent each document by vector of words: one attribute per word position in document
- 2. Learning: Use training examples to estimate
- $\bullet \ P(+)$
- P(−)
- $\bullet P(doc|+)$
- $\bullet P(doc|-)$

Naive Bayes conditional independence assumption

$$P(doc|v_j) = \prod_{i=1}^{length(doc)} P(a_i = w_k|v_j)$$

where $P(a_i=w_k|v_j)$ is probability that word in position i is w_k , given v_j

One more assumption: $P(a_i = w_k | v_j) = P(a_m = w_k | v_j), \forall i, m$

Naive Bayes Learning for Text

Input: Examples (the set of documents), V (the appropriate classifications)

- 1. Collect all words and other tokens that occur in Examples into a Vocabulary
- 2. calculate the required $P(v_j)$ and $P(w_k | v_j)$ probability terms, as follows: for each target value v_j in V do
- ullet $docs_j \leftarrow$ subset of Examples for which the target value is v_j
- $P(v_j) \leftarrow \frac{|docs_j|}{|Examples|}$
- $Text_j \leftarrow$ a single document created by concatenating all members of
- $m{n} \leftarrow ext{total}$ number of words in $Text_j$ (counting duplicate words multiple times)
- ullet for each word w_k in Vocabulary
- $n_k \leftarrow$ number of times word w_k occurs in $Text_j$

$$-P(w_k|v_j) \leftarrow \frac{n_k+1}{n+|Vocabulary|}$$

Using the Naive Bayes Classifier

Input: a new document Doc

- 1. $positions \leftarrow$ all word positions in Doc that contain tokens found in Vocabulary
- 2. Return v_{NB} , where

$$v_{NB} = \arg\max_{v_j \in V} P(v_j) \prod_{i \in positions} P(a_i | v_j)$$

Twenty NewsGroups

Given 1000 training documents from each group, learn to classify new documents according to which newsgroup they came from

comp.graphics misc.forsale

comp.os.ms-windows.misc rec.autos

comp.sys.ibm.pc.hardware rec.motorcycles

comp.sys.mac.hardware rec.sport.baseball comp.windows.x

alt.atheism sci.space

soc.religion.christian sci.crypt talk.religion.misc sci.electronics

talk.politics.mideast sci.med talk.politics.misc

talk.politics.misc talk.politics.guns

Naive Bayes: 89% classification accuracy

Learning Curve for 20 Newsgroups

