,ecture 8: VC Dimension. Alternative NN architectures

> VC Dimension for linear decision surfaces
{»> VC Dimension for neural networks

{» Sparse Distributed Memories



Recall from last time: Shattering a Set of Instances

Definition: A dichotomy of a set S is a partition of .S into two
disjoint subsets.

Definition: A set of instances S is shattered by hypothesis space
H if and only if for every dichotomy of S there exists some hypothesis
in A consistent with this dichotomy.



The Vapnik-Chervonenkis (VC) Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H),
of hypothesis space H defined over instance space X is the size of the
largest finite subset of X shattered by H. If arbitrarily large finite sets
of X can be shattered by H, then VC(H) = oc.



VC Dimension of Linear Decision Surfaces
o
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For an n-dimensional space, VC' dimension of linear estimators is n + 1.



Sample Complexity from VC Dimension

A lower and upper bound on the number of examples m have been estab-
lished. Both depend on log(3, and L.

The upper bound depends on VC(H) (the VC dimension of the hypothesis
space) and has an additional factor of log W

This 1s a lot tighter than the previous bound that we had, which de-
pended on log |H|! Why?

If VC(H) = d, then H can shatter d instances, which requires 27 distinct
hypotheses. Hence d < log, |H|.

The lower bound depends on VC(C) (the VC dimension of the concept
space).



VC Dimension of Neural Networks

Let G be a directed layered graph with n input nodes, s internal nodes and
1 output node, with each internal node having at most r inputs. Let C' be a
concept class of VC dimension d, corresponding to what can be represented
by the internal nodes. Let C's be the set of unfctions that can be represented

by D.
Then VC(Cq) < 2dslog(es).

Immediate consequence: for networks of perceptrons, the VV'C dimension is:

VC(Cgq) < 2(r + 1)slog(es).



And the bad news...

Sigmoid-like functions can have infinite VC dimension! E.g.
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(see Macintyre and Sontag, 1993).
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However: the usual sigmoid function, as well as the hyperbolic tangent, have
finite VC dimension! :-)

But: it is doubly exponential... :-(

However, in practice, neural networks seem to approximate well even with a
lot fewer examples (sometimes fewer than the number of weights).

Alternative analyses (see, e.g. Bartlett, 1996) suggest that the error may be
related to the magnitude of the weights, rather than the number of weights,
if the nodes are kept in their linear regions.



Associative Memories

e Studied since the beginning of neural nets (e.g. Hopfield nets) as mech-
anisms for storing and retrieving data (rather than approximating a func-
tion)

e Trying to mimic the way in which the human memory has very large

capacity, and fast access, but “inexact” memory

e Main idea: the inputs are used as an “address” in a memory, to retrieve
more data (could be the class label, other data items that are related,
etc)



Sparse Distributed Memories (Kanerva coding)

e The address space is far larger than the number of locations that we can
afford

e Therefore, we will sample the address space and only have locations for
a few samples

e When we need to retrieve something, we go to all locations within a” small”
Hamming distance, retrieve all their contents, and cumulate them; then
we ake just the sign of each location

e When we need to store something, we go to all “close” locations, and
add a -1 for every 0 in our pattern and a +1 for every 1.

e Why does it work?
— high-dimensional space, so data is very spread out

— but at the same time, it is “close”to intermediate points

— when data is retrieved, the desired item will be at every location, plus
some other items (a lot fewer)

e It also seems to eliminate noise...



SDMs as feed-forward neural networks

e The address matrix corresponds to the input weights (which go into the
hidden units)

e The content matix corresponds to the output weights (which link the
hidden units to the output units)

e The hidden units are thresholded by the Hamming distance
e The output units use the signum of what is computed

e But the wnput weights are decided upon once, and then they are

fized!

o And the threshold is chosen such that just a few locations get acti-
vated at once

e This means that training is fast, but less flexible

e Which one is mor believable to you as a model of human memory?



CMACGCs

e CMACs were proposed by Albus as a model for the cerebellum (1971)

e Used widely today especially in robotics, where problems are in continuous
state spaces of few dimensions

Can achieve much finer discretization than with a fixed grid of the same size!



SDMs as CMACs

The addresses in a CMAC are NOT placed randomly, but systematically
according to the discretization

This makes activation computation efficient

Also, CMACs are trained by error correction for the weights (which is a
gradient-based mechanism)



