Lecture 7: More on Artificial Neural Networks

{» Variations on backpropagation
> RBF networks

¢ PAC learning theory in infinite spaces: the VC dimension



Recall from last time: Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do
For each training example, Do

1. Input the training example to the network and compute the network out-
puts

2. For each output unit &
%w — Owﬁ — va@w — va
3. For each hidden unit A

op < op(l —on) X wply
k€outputs

4. Update each network weight w;;
Wij < Wiy + d&..&.&.
;; is the input from unit ¢ into unit j (so for the output neurons, the x's
are the signals received from the hidden layer neurons)



Adding momentum

On the n-th training sample, instead of the update:
Aw;; < 1d;T4;
let’s do:
Aw;;i(n) <= nd;xi; + aAw;;(n — 1)
The second term is called momentum
Advantages: gets us past small local minima and lets us go on flat surfaces;
Also Makes us go fast in regions where the gradient stays unchanged

Disadvantage: with too much momentum we could go past a nice global
minimum and into the next local one

Also one other parameter to tune, and more chances to get divergence



Overfitting in ANNSs

Error versus weight updates (example 1)
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Error versus weight updates (example 2)
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Use a validation set to decide when to stop training!

Sometimes pruning is done too.



Alternative Error Functions

Penalize large weights:
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E(w)
Used to avoid overfitting.

Train on target slopes as well as values:
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Tie together weights: Train each weight individually, but then replace the
value of a weight with the mean of the weights obtained by backpropagation.



Constructive methods for Neural Networks

Meiosis networks (Hanson):

e Start with just one hidden unit, train using backprop
e The variance of each weight is maintained in addition to the magnitude

e If a unit has one or more weights of high variance, it is split into two
units, and the weights are perturbed

Cascade correlation (Fahlman & Lebiere):

e Start with outputs only and train using backprop

e Add a neuron connected to all inputs, and train it to correlate to the
residual error

e Connect the enuron to the output node, then freeze its weights and train
the output again

e Continue adding units while the residual error is above a threshold



Radial Basis Function (RBF) Networks

e Many parts of the brain have neurons which are “locally tuned” to respond
only if the input is within a certain range

e E.g. neurons in the auditory part of the brain are tuned to respond to
different frequencies

e But sigmoid neurons do not have this characteristic!



Structure of an RBF Network

e [here are a number of hidden units of the form:
|| — |

2
20

e |.e. every unit is a Gaussian of mean u; and standard deviation o;, which
will get “activated” if the input vector x is close to the mean p;

2i(x) = exp(—

e The outputs are just linear combinations of the hidden units:
Y; = Wo + X w;zi(X)
1

e Other choices of z; are possible besides the Gaussian



Training RBF networks

e \We want to find good values for the weights w;, the centers u; and the
widths o;

e Main idea: gradient descent!

e We can compute the derivative of the error function with respect to each
parameter and get a learning rule that way

e The performance of this procedure is similar to that of sigmoid multi-
layered networks. But one would hope for a faster learning process...

e |dea: Train the hidden units first, then it will be easy to determine wieghts
for them

e Heuristics for determining means: choose randomly a number of training
examples; use clustering

e Heuristic to determine widths: choose the distance to the closest other
unit as a width

e These ensure fast training, but generalization performance is worse



ablishing PAC-like results for feed-forward neural networks

Recall from previous lectures:
1
m > —(In |H| + In(1/9))
€

is lower bound on the number of examples

What if |H| is infinite?



Shattering a Set of Instances

Definition: A dichotomy of a set S is a partition of .S into two
disjoint subsets.

Definition: A set of instances S is shattered by hypothesis space
H if and only if for every dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.



Three Instances Shattered

Instance space X




The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H),
of hypothesis space H defined over instance space X is the size of the
largest finite subset of X shattered by H. If arbitrarily large finite sets
of X can be shattered by H, then VC(H) = oc.



VC Dimension of Linear Decision Surfaces
o
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For an n-dimensional space, V'C' dimension of linear estimators is n + 1.



