Multi-arm Bandits

Sutton and Barto, Chapter 2

The simplest
reinforcement learning problem

Recall: Sequential Decision Making

- At time t, agent receives an observation from set \mathcal{X} and can choose an action from set \mathcal{A} (think finite for now)
- Goal of the agent is to maximize long-term return

Simple case: One step!

- No x, take an action, observe a reward immediately
- So, a degenerate tree (not truly sequential)
- This is what we call a simple bandit problem
- No credit assignment, only exploration / exploitation
- Later: contextual bandits (there's x, feedback still immediate)
- Lots of applications in ad placement, more recently in large language models

What is a bandit?

- The simplest kind of structure: every node is a copy of every other node, and they are not connected!
- Which means there are no delayed action effects, simplifying credit assignment!
- Therefore, the main problem in bandits is exploration
- Vanilla multi-arm bandits: nodes do not have any observation
- Contextual bandits have observations (more on that later)

Let's play a bandit!

- Imagine you have two actions
- You play action I and get a reward of 0
- You play action 2 and get a reward of I
- Which action should you prefer?
- Which action should you try next?

Let's play a bandit!

- Imagine you have two actions
- You played action I three times and got rewards of $0, \mathrm{I},-\mathrm{I}$
- You played action 2 three times and got a rewards of I, IO, -IO
- Which action should you prefer?
- Which action should you try next?

Let's play a bandit!

- Imagine you have two actions
- You played action I for 300 times and got rewards of 0 (200 times), I (50 times), -I (50 times)
- You played action 2 for 300 times and got a rewards of I (200 times), I0 (50 times), - I0 (50 times)
- Which action should you prefer?
- Which action should you try next?

Let's play a bandit!

- Imagine you have two actions
- You played action I for 3000 times and got rewards of 0 (300 times), I (2000 times), -1 (600 times), +10 (100 times)
- You played action 2 for 3000 times and got a rewards of I (2000 times), I0 (I000 times), - 10 (I000 times)
- Which action should you prefer?
- Which action should you try next?

Main Principles

- Optimize Expected Value
- Other criteria are possible, eg conditional value at risk (CVaR)
- Need to balance exploration (trying all actions) vs exploitation
- Reduce uncertainty in the mean of each action

You are the algorithm! (bandit I)

- Action I — Reward is always 8
- value of action \mathbf{I} is $q_{*}(1)=$
- Action 2 - 88% chance of $0,12 \%$ chance of 100 !
- value of action 2 is $\quad q_{*}(2)=.88 \times 0+.12 \times 100=$
- Action 3 - Randomly between -I 0 and 35 , equiprobable

- Action 4 - a third 0 , a third 20 , and a third from $\{8,9, \ldots, I 8\}$

$q_{*}(4)=$

The k-armed Bandit Problem

- On each of an infinite sequence of time steps, $t=I, 2,3, \ldots$, you choose an action A_{t} from k possibilities, and receive a realvalued reward R_{t}
- The reward depends only on the action taken; it is identically, independently distributed (i.i.d.):

$$
q_{*}(a) \doteq \mathbb{E}\left[R_{t} \mid A_{t}=a\right], \quad \forall a \in\{1, \ldots, k\} \quad \text { true values }
$$

- These true values are unknown. The distribution is unknown
- Nevertheless, you must maximize your total reward
- You must both try actions to learn their values (explore), and prefer those that appear best (exploit)

The Exploration/Exploitation Dilemma

- Suppose you form estimates

$$
Q_{t}(a) \approx q_{*}(a), \quad \forall a \quad \text { action-value estimates }
$$

- Define the greedy action at time t as

$$
A_{t}^{*} \doteq \arg \max _{a} Q_{t}(a)
$$

- If $A_{t}=A_{t}^{*}$ then you are exploiting If $A_{t} \neq A_{t}^{*}$ then you are exploring
- You can't do both, but you need to do both
- You can never stop exploring, but maybe you should explore less with time. Or maybe not.

Action-Value Methods

- Methods that learn action-value estimates and nothing else
- For example, estimate action values as sample averages:
$Q_{t}(a) \doteq \frac{\text { sum of rewards when } a \text { taken prior to } t}{\text { number of times } a \text { taken prior to } t}=\frac{\sum_{i=1}^{t-1} R_{i} \cdot \mathbf{1}_{A_{i}=a}}{\sum_{i=1}^{t-1} \mathbf{1}_{A_{i}=a}}$
- The sample-average estimates converge to the true values If the action is taken an infinite number of times

$$
\lim _{N_{t}(a) \rightarrow \infty} Q_{t}(a)=q_{*}(a)
$$

ε-Greedy Action Selection

- In greedy action selection, you always exploit
- In ε-greedy, you are usually greedy, but with probability ε you instead pick an action at random (possibly the greedy action again)
- This is perhaps the simplest way to balance exploration and exploitation

A simple bandit algorithm

Initialize, for $a=1$ to k :

$$
\begin{aligned}
& Q(a) \leftarrow 0 \\
& N(a) \leftarrow 0
\end{aligned}
$$

Repeat forever:

$$
\begin{aligned}
& A \leftarrow\left\{\begin{array}{ll}
\arg \max _{a} Q(a) & \text { with probability } 1-\varepsilon \\
\operatorname{arandom} \text { action } & \text { with probability } \varepsilon
\end{array} \quad\right. \text { (breaking ties randomly) } \\
& R \leftarrow \operatorname{bandit}(A) \\
& N(A) \leftarrow N(A)+1 \\
& Q(A) \leftarrow Q(A)+\frac{1}{N(A)}[R-Q(A)]
\end{aligned}
$$

One Bandit Task from

The 10 -armed Testbed

ε-Greedy Methods on the 10 -Armed Testbed

Averaging \longrightarrow learning rule

- To simplify notation, let us focus on one action
- We consider only its rewards, and its estimate after $n-1$ rewards:

$$
Q_{n} \doteq \frac{R_{1}+R_{2}+\cdots+R_{n-1}}{n-1}
$$

- How can we do this incrementally (without storing all the rewards)?
- Could store a running sum and count (and divide), or equivalently:

$$
Q_{n+1}=Q_{n}+\frac{1}{n}\left[R_{n}-Q_{n}\right]
$$

- This is a standard form for learning/update rules:

NewEstimate \leftarrow OldEstimate + StepSize $[$ Target - OldEstimate $]$

Derivation of incremental update

$$
\begin{aligned}
Q_{n} \doteq & \frac{R_{1}+R_{2}+\cdots+R_{n-1}}{n-1} \\
Q_{n+1} & =\frac{1}{n} \sum_{i=1}^{n} R_{i} \\
& =\frac{1}{n}\left(R_{n}+\sum_{i=1}^{n-1} R_{i}\right) \\
& =\frac{1}{n}\left(R_{n}+(n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i}\right) \\
& =\frac{1}{n}\left(R_{n}+(n-1) Q_{n}\right) \\
& =\frac{1}{n}\left(R_{n}+n Q_{n}-Q_{n}\right) \\
& =Q_{n}+\frac{1}{n}\left[R_{n}-Q_{n}\right]
\end{aligned}
$$

Averaging \rightarrow learning rule

- To simplify notation, let us focus on one action
- We consider only its rewards, and its estimate after $n+1$ rewards:

$$
Q_{n} \doteq \frac{R_{1}+R_{2}+\cdots+R_{n-1}}{n-1}
$$

- How can we do this incrementally (without storing all the rewards)?
- Could store a running sum and count (and divide), or equivalently:

$$
Q_{n+1}=Q_{n}+\frac{1}{n}\left[R_{n}-Q_{n}\right]
$$

- This is a standard form for learning/update rules:

NewEstimate \leftarrow OldEstimate + StepSize $[$ Target - OldEstimate $]$

Tracking a Non-stationary Problem

- Suppose the true action values change slowly over time
- then we say that the problem is non-stationary
- In this case, sample averages are not a good idea (Why?)
- Better is an "exponential, recency-weighted average":

$$
\begin{aligned}
Q_{n+1} & \doteq Q_{n}+\alpha\left[R_{n}-Q_{n}\right] \\
& =(1-\alpha)^{n} Q_{1}+\sum_{i=1}^{n} \alpha(1-\alpha)^{n-i} R_{i}
\end{aligned}
$$

where α is a constant step-size parameter, $\alpha \in(0,1]$

- There is bias due to Q_{1} that becomes smaller over time

Standard stochastic approximation

convergence conditions

- To assure convergence with probability I:

$$
\sum_{n=1}^{\infty} \alpha_{n}(a)=\infty \quad \text { and } \quad \sum_{n=1}^{\infty} \alpha_{n}^{2}(a)<\infty
$$

- e.g., $\alpha_{n} \doteq \frac{1}{n}$
- not $\alpha_{n} \doteq \frac{1}{n^{2}}$

$$
\text { if } \alpha_{n} \doteq n^{-p}, \quad p \in(0,1)
$$

then convergence is at the optimal rate:

$$
O(1 / \sqrt{n})
$$

Optimistic Initial Values

- All methods so far depend on $Q_{1}(a)$, i.e., they are biased. So far we have used $Q_{1}(a)=0$
- Suppose we initialize the action values optimistically $\left(Q_{1}(a)=5\right)$, e.g., on the 10 -armed testbed (with $\alpha=0.1$)

Upper Confidence Bound (UCB) action selection

- A clever way of reducing exploration over time
- Estimate an upper bound on the true action values
- Select the action with the largest (estimated) upper bound

$$
A_{t} \doteq \underset{a}{\arg \max }\left[Q_{t}(a)+c \sqrt{\frac{\log t}{N_{t}(a)}}\right]
$$

Gradient-Bandit Algorithms

- Let $H_{t}(a)$ be a learned preference for taking action a

$$
\operatorname{Pr}\left\{A_{t}=a\right\} \doteq \frac{e^{H_{t}(a)}}{\sum_{b=1}^{k} e^{H_{t}(b)}} \doteq \pi_{t}(a)
$$

Note that this allows us to work with unnormalized preferences and turn them into probabilities!

Same idea as using potentials in graphical models

Gradient-Bandit Algorithms

- Let $H_{t}(a)$ be a learned preference for taking action a

$$
\begin{aligned}
& \operatorname{Pr}\left\{A_{t}=a\right\} \doteq \frac{e^{H_{t}(a)}}{\sum_{b=1}^{k} e^{H_{t}(b)}} \doteq \pi_{t}(a) \\
& H_{t+1}\left(A_{t}\right) \doteq H_{t}\left(A_{t}\right)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(1-\pi_{t}\left(A_{t}\right)\right) \\
& \bar{R}_{t} \doteq \frac{1}{t} \sum_{i=1}^{t} R_{i}
\end{aligned}
$$

Gradient-Bandit Algorithms

- Let $H_{t}(a)$ be a learned preference for taking action a

$$
\operatorname{Pr}\left\{A_{t}=a\right\} \doteq \frac{e^{H_{t}(a)}}{\sum_{b=1}^{k} e^{H_{t}(b)}} \doteq \pi_{t}(a)
$$

$$
H_{t+1}(a) \doteq H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(\mathbf{1}_{a=A_{t}}-\pi_{t}(a)\right), \quad \forall a
$$

$$
\bar{R}_{t} \doteq \frac{1}{t} \sum_{i=1}^{t} R_{i}
$$

Gradient-Bandit Algorithms

- Let $H_{t}(a)$ be a learned preference for taking action a

$$
\begin{aligned}
& \operatorname{Pr}\left\{A_{t}=a\right\} \doteq \frac{e^{H_{t}(a)}}{\sum_{b=1}^{k} e^{H_{t}(b)}} \doteq \pi_{t}(a) \\
& H_{t+1}(a) \doteq H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(\mathbf{1}_{a=A_{t}}-\pi_{t}(a)\right), \quad \forall a,
\end{aligned}
$$

$$
\bar{R}_{t} \doteq \frac{1}{t} \sum_{i=1}^{t} R_{i}
$$

Derivation of gradient-bandit algorithm

In exact gradient ascent:

$$
\begin{equation*}
H_{t+1}(a) \doteq H_{t}(a)+\alpha \frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathbb{E}\left[R_{t}\right] \doteq \sum_{b} \pi_{t}(b) q_{*}(b) \\
& \frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)}=\frac{\partial}{\partial H_{t}(a)}\left[\sum_{b} \pi_{t}(b) q_{*}(b)\right] \\
&=\sum_{b} q_{*}(b) \frac{\partial \pi_{t}(b)}{\partial H_{t}(a)} \\
&=\sum_{b}\left(q_{*}(b)-X_{t}\right) \frac{\partial \pi_{t}(b)}{\partial H_{t}(a)},
\end{aligned}
$$

where X_{t} does not depend on b, because $\sum_{b} \frac{\partial \pi_{t}(b)}{\partial H_{t}(a)}=0$.

$$
\begin{aligned}
\frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} & =\sum_{b}\left(q_{*}(b)-X_{t}\right) \frac{\partial \pi_{t}(b)}{\partial H_{t}(a)} \\
& =\sum_{b} \pi_{t}(b)\left(q_{*}(b)-X_{t}\right) \frac{\partial \pi_{t}(b)}{\partial H_{t}(a)} / \pi_{t}(b) \\
& =\mathbb{E}\left[\left(q_{*}\left(A_{t}\right)-X_{t}\right) \frac{\partial \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} / \pi_{t}\left(A_{t}\right)\right] \\
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right) \frac{\partial \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} / \pi_{t}\left(A_{t}\right)\right]
\end{aligned}
$$

where here we have chosen $X_{t}=\bar{R}_{t}$ and substituted R_{t} for $q_{*}\left(A_{t}\right)$, which is permitted because $\mathbb{E}\left[R_{t} \mid A_{t}\right]=q_{*}\left(A_{t}\right)$.
For now assume: $\frac{\partial \pi_{t}(b)}{\partial H_{t}(a)}=\pi_{t}(b)\left(\mathbf{1}_{a=b}-\pi_{t}(a)\right)$. Then:

$$
\begin{aligned}
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right) \pi_{t}\left(A_{t}\right)\left(\mathbf{1}_{a=A_{t}}-\pi_{t}(a)\right) / \pi_{t}\left(A_{t}\right)\right] \\
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right)\left(\mathbf{1}_{a=A_{t}}-\pi_{t}(a)\right)\right] .
\end{aligned}
$$

$$
H_{t+1}(a)=H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(\mathbf{1}_{a=A_{t}}-\pi_{t}(a)\right),(\text { from (1), QED) }
$$

Thus it remains only to show that

$$
\frac{\partial \pi_{t}(b)}{\partial H_{t}(a)}=\pi_{t}(b)\left(\mathbf{1}_{a=b}-\pi_{t}(a)\right)
$$

Recall the standard quotient rule for derivatives:

$$
\frac{\partial}{\partial x}\left[\frac{f(x)}{g(x)}\right]=\frac{\frac{\partial f(x)}{\partial x} g(x)-f(x) \frac{\partial g(x)}{\partial x}}{g(x)^{2}} .
$$

Using this, we can write...

Quotient Rule: $\quad \frac{\partial}{\partial x}\left[\frac{f(x)}{g(x)}\right]=\frac{\frac{\partial f(x)}{\partial x} g(x)-f(x) \frac{\partial g(x)}{\partial x}}{g(x)^{2}}$

$$
\begin{align*}
\frac{\partial \pi_{t}(b)}{\partial H_{t}(a)} & =\frac{\partial}{\partial H_{t}(a)} \pi_{t}(b) \\
& =\frac{\partial}{\partial H_{t}(a)}\left[\frac{e^{H_{t}(b)}}{\sum_{c=1}^{k} e^{H_{t}(c)}}\right] \\
& =\frac{\frac{\partial e^{H_{t}(b)}}{\partial H_{t}(a)} \sum_{c=1}^{k} e^{H_{t}(c)}-e^{H_{t}(b) \frac{\partial \sum_{c=1}^{k} e^{H_{t}(c)}}{\partial H_{t}(a)}}}{\left(\sum_{c=1}^{k} e^{H_{t}(c)}\right)^{2}} \tag{Q.R.}\\
& =\frac{\mathbf{1}_{a=b} e^{H_{t}(a)} \sum_{c=1}^{k} e^{H_{t}(c)}-e^{H_{t}(b)} e^{H_{t}(a)}}{\left(\sum_{c=1}^{k} e^{H_{t}(c)}\right)^{2}} \quad\left(\frac{\partial e^{x}}{\partial x}=e^{x}\right) \\
& =\frac{\mathbf{1}_{a=b} e^{H_{t}(b)}}{\sum_{c=1}^{k} e^{H_{t}(c)}}-\frac{e^{H_{t}(b)} e^{H_{t}(a)}}{\left(\sum_{c=1}^{k} e^{H_{t}(c)}\right)^{2}} \\
& =\mathbf{1}_{a=b} \pi_{t}(b)-\pi_{t}(b) \pi_{t}(a) \\
& =\pi_{t}(b)\left(\mathbf{1}_{a=b}-\pi_{t}(a)\right) \tag{Q.E.D.}
\end{align*}
$$

Softmax (Boltzmann) Exploration

- Let $H_{t}(a)$ be a learned preference for taking action a

$$
\operatorname{Pr}\left\{A_{t}=a\right\} \doteq \frac{e^{H_{t}(a)}}{\sum_{b=1}^{k} e^{H_{t}(b)}} \doteq \pi_{t}(a)
$$

Consider $\quad H_{t}(a)=Q_{t}(a) / T$
This is Boltzmann or softmax exploration!
If the temperature T is very large (towards infinity) - same as uniform
If temperature T goes to 0 , same as greedy

Summary Comparison of Bandit Algorithms

