
Lecture 6: Exact inference in Bayes nets. Variable elimination

• What is inference?

• Complexity of exact inference

• Variable elimination
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Queries

Graphical models (directed or undirected) can answer questions

about the underlying probability distribution:

• Conditional or unconditional probability queries:

– What is the probability of a given value assignment for a

subset of variables Y ?

– What is the probability of different value assignments for

query variables Y given evidence about variables Z? I.e.

compute p(Y |Z = z)

• Maximum a posteriori (MAP) queries: given evidence Z = z,

find the most likely assignment of values to the query variables

Y :

MAP (Y |Z = z) = arg max
y

p(Y = y|Z = z)
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Examples of MAP queries

• In speech recognition, given a speech signal, one can attempt

to reconstruct the most likely sequence of words that could have

generated the signal.

• In classification, given the training data and a new example, we

want to determine the most probable class label of the new

example.
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Complexity of inference

• Given a Bayesian network and a random variableX , deciding

whether P (X = x) > 0 is NP-hard.

• This implies that there is no general inference procedure that

will work efficiently for all network configurations

• But for particular families of networks, inference can be done

efficiently.

• In other cases, instead of exact inference (computing the

probabilities exactly) we will use approximate inference

(computing the probabilities with reasonable precision)
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Example of exact inference

p(B|C=1)=?

E B

R A

C

p(B|C = 1) =
p(B, C = 1)

p(C = 1)
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Naive solution

p(B|C=1)=?

E B

R A

C

p(B, C = 1) =
X

a∈{0,1}

X

r∈{0,1}

X

e∈{0,1}

p(A = a, R = r, E = e, B, C = 1)

=
X

a,r,e

p(r|e)p(e)p(a|e, B)p(C = 1|a)

and same for computing p(C = 1)
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A better solution

• Let us re-arrange the sums slighty:

p(B, C = 1) =
X

a,r,e

p(r|e)p(e)p(a|e, B)p(C = 1|a)

=
X

a,e

p(e)p(a|e, B)p(C = 1|a)
X

r

p(r|e)

• Notice that
P

r p(r|e) = 1! But ignore that for the moment. We

can call
P

r p(r|e) = mR(e) (because it was obtained by

summing out over R and only depends on e).

• Now we have:

p(B, C = 1) =
X

a

X

e

p(e)p(a|e, B)p(C = 1|a)mR(e)

and we can pick another variable (A or E) to do the same again.

• Instead of O(2n) factors, we have to sum over O(n · 2k) factors
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Basic idea of variable elimination

• We impose an ordering over the variables, with the query

variable coming last

• We maintain a list of “factors”, which depend on given variables

• We sum over the variables in the order in which they appear in

the list

• We memorize the result of intermediate computations

• This is a kind of dynamic programming
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A bit of notation

• Let Xi an evidence variable with observed value x̂i

• Let the evidence potential be an indicator function:

δ(xi, x̂i) = 1 iff Xi = x̂i

This way, we can turn conditionals into sums as well, e.g.

p(r|E = 1) =
X

e

p(r|e)δ(e, 1)

• This is convenient for notation, but in practice we would take

“slices” through the probability tables instead.
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Variable elimination algorithm

1. Pick a variable ordering with Y at the end of the list

2. Initialize the active factor list:

• with the CPDs in a Bayes net

• with the potentials in a Markov random field

3. Introduce the evidence by adding to the active factor list the

evidence potentials δ(e, ê), for all the variables in E

4. For i = 1 to n

(a) Take the next variableXi from the ordering.

(b) Take all the factors that haveXi as an argument off the

active factor list, and multiply them, then sum over all values

of Xi, creating a new factor mXi

(c) Put mXi
on the active factor list
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Example

p(B|C=1)=?

E B

R A

C

1. Pick a variable ordering: R, E, C, A, B.

2. Initialize the active factor list and introduce the evidence:

List: p(R|E), p(E), p(B), p(A|E, B), p(C|A), δ(C, 1)

3. Eliminate R: take p(R|E) off the list, compute

mR(e) =
P

r p(r|e).

List: p(E), p(B), p(A|E, B), p(C|A), δ(C, 1), mR(E)
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Example (continued)

4. Eliminate E: mE(A, B) =
P

e p(e)p(a|e, b)mR(e)

List: p(B), p(C|A), δ(C, 1), mE(A, B)

5. Eliminate C: mC(a) =
P

c p(c|a)δ(C, 1)

List: p(B), mE(A, B), mC(A)

6. Eliminate A: mA(b) =
P

a mE(a, b)mC(a)

List: p(B), mA(B)

7. The answer we need is a vector with 2 entries:

p(B = 1)mA(B = 1) and p(B = 0)mA(B = 0).
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What about undirected models?

• The algorithm is exactly the same, except that the active factors

are initialized with the clique potentials rather than conditional

probabilities

• If the model has clique potentials associated with nodes,

ψ(Xi), this makes introduction of evidence very easy:

ψE(xi) = ψ(xi)δ(xi, x̂i)

• The normalizing constant almost always cancels out, so the

operations are done with unnormalized clique potentials

• The only difference compared to the case of directed models is

that usually we do not get factors that are 1 anymore
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Complexity of variable elimination

• We need at most O(n) multiplications to create one entry in a

factor (where n is the total number of variables)

• If m is the maximum number of values that a variable can take,

a factor depending on k variables will have O(mk) entries

• So it is important to have small factors!

• But the size of the factors depends on the ordering of the

variables!

• Choosing an optimal ordering is NP-complete for general

networks

• But in special cases a good ordering can be found

January 16. 2008 14 COMP-526 Lecture 6


