
Lecture 4: Wrap up of Bayes net representation

• An example of Bayes ball

• Markov blanket, moral graph

• Independence maps and perfect maps

• Practical considerations
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Recall from last time

• A Bayes net can be viewed as an independence map (I-map) for

some distribution

• The I-map property means that the distribution factorizes

according to the graph structure of the net

• But the graph can have more arcs than necessary!

• The Bayes ball algorithm can be used to determine which

variables are conditionally independent in the presence of

evidence

• Knowing conditional independencies will help us provide faster

inference
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Recall: Base rules for propagating information

• Head-to-tail

Y known, path blocked

X Y Z X Y Z

Y unknown, path unblocked

• Tail-to-tail

Y known, path blocked

Y

X Z

Y

X Z

Y unknown, path unblocked

• Head-to-head

Y known, path UNBLOCKED

X Z

Y

X Z

Y

Y unknown, path BLOCKED
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d-separation

• Suppose we want to show that a conditional independence

relation, X⊥⊥Z|Y , is implied by a DAG G in which X , Y , Z are

non-intersecting sets of nodes.

• A path is said to be blocked if it includes a node such that:

1. the arrows in the path do not meet head-to-head at the node,

and the node is in the conditioning set Y (this covers the

head-to-tail and tail-to-tail cases)

2. the arrows do meet head-to-head and neither the node nor

its descendents are in Y

• If, given the set of conditioning nodes Y , all paths from any

node in X to any node in Z are blocked, then X is

d-separated (directed-separated) from Z given Y
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Example: The alarm network

C

E B

R A

Is R⊥⊥C|A?
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Important results

• “Soundness”: If a joint distribution p factorizes according to a

DAG G, and ifX , Y and Z are subsets of nodes such that Y

d-separates X and Z in G, then p satisfies X⊥⊥Z|Y .

• “Completeness”: if Y does not d-separate X and Z in DAG G,

then there exists at least one distribution p which factorizes over

G and in which X⊥⊥\Z|Y
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Isolating a node

Suppose we want the smallest set of nodes U such that X is

independent of all other nodes in the network given U :

X⊥⊥ ({X1 . . . Xn}− {X}− U) |U . What should U be?

X
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Markov blanket

• Clearly, at least X ’s parents and children should be in U

• But this is not enough if there are v-structures; U will also have

to include X ’s “spouses” - i.e. the other parents of X ’s children

The set U consisting of X ’s parents, children and other parents of

its children is called the Markov blanket of X .

X
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Moral graphs

Given a DAG G, we define the moral graph of G to be an

undirected graph U over the same set of vertices, such that the

edge (X, Y ) is in U if X is in Y ’s Markov blanket

• If G is an I-map of p, then U will also be an I-map of p

• But many independencies are lost when going to a moral graph

• Moral graphs will prove to be useful when we talk about

inference.
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Perfect maps

A DAG G is a perfect map of a distribution p if it satisfies the

following property:

X⊥⊥Z|Y ⇔ Y d-separates X and Z

• A perfect map captures all the independencies of a distribution

• Perfect maps are unique, up to DAG equivalence

• How can we construct a perfect map for a distribution?
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Example

• Consider a distribution over 4 random variableX , Y , Z, W

such that:

– X⊥⊥Y |{Z,W}

– Z⊥⊥W |{X, Y }

• Can you find an I-map for this distribution?

• Can you find a perfect map?

Some distributions do not have perfect maps!
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Representing distributions more compactly

• Sometimes the conditional probabilities at a node can be

specified more compactly than through a table.

• E.g., If it rains, this influences the probability that you get wet,

but only if you go outside.

• In this case, the CPD can be represented more succinctly using

a tree

• People often find it natural to write tree-structured CPDs

• Other compact representations are also possible (e.g. rules)
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Example: Pathfinder (Heckerman, 1991)

• Medical diagnostic system for lymph node diseases

• Large net! 60 diseases, 100 symptoms and test results, 14000

probabilities

• Network built by medical experts

– 8 hours to determine the variables

– 35 hours for network topology

– 40 hours for probability table values

• Experts found it easy to invent causal links and probabilities

• Pathfinder is now outperforming world experts in diagnosis

• Commercialized by Intellipath and Chapman Hall Publishing;

extended to other medical domains
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Typical applications for Bayes nets

• Medical diagnosis

• Bioinformatics (data integration)

• Risk assessment

• Environmental science (e.g., wildlife habitat viability, risk of

foreign species invasion)

• Analysis of demographic data

• In general, diagnosis and causal reasoning tasks

• Many commercial packages available (e.g. Netica, Hugin,

WinMine, ...)

• Sometimes Bayes net technology is incorporated in business

software
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Constructing graphical models in practice

Usually, we do not construct graphical models based on knowledge

of the joint probability distribution p. We have some vague idea of

the dependencies in the world, and we need to make that precise

using a graph.

This involves several steps:

• Formulating the problem

• Choosing random variables

• Choosing independence relations

• Assigning probabilities in the CPDs
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Choosing random variables

• Variables must be precise. What are the values, how are they

defined, and how are they measured?

E.g. Weather - what values will it take? When do we assign the

bitter-cold value?

• If the variables are continuous and we discretize them, a coarse

discretization may introduce additional dependencies (more on

continuous variables later)

• There are several kinds of variables:

– Observable

– Sometimes observable (e.g. medical tests)

– Hidden - these may or may not be useful to include,

depending on the other independencies that they generate
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Choosing the graph structure

• For a Bayes net, if we have information about causality, using

causal connections will make the graph sparser.

• There is often a trade-off between the precision of the model,

and the size/sparsity of the graph
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Choosing the parameters of the model: Bayes nets

• Conditional probabilities could come from a few sources:

– An expert

∗ People hate picking numbers!

∗ Having a good network structure usually makes it easier to

elicit numbers from people too.

– An approximate analysis (e.g. in card games)

– Guessing

– Learning

• Bad news: In all these cases, the numbers are approximate!

• Good news: the numbers usually do not matter all that much.

• Sensitivity analysis can help in deciding whether certain

numbers are critical or not for the conclusions
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Important factors when choosing probabilities

• Avoid assigning zero probability to any events, unless you are

absolutely certain they cannot occur

• The relative values (or ordering) of conditional probabilities for

p(x|xπi
), given different values of Xπi

is important

• Having probabilities that are orders of magnitude different can

cause problems in the network
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