
Lecture 2: Introduction to belief (Bayesian) networks

• Conditional independence

• What is a belief network?

• Independence maps (I-maps)
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Recall from last time: Conditional probabilities

• Our probabilistic models will compute and manipulate

conditional probabilities.

• Given two random variablesX, Y , we denote by

p(X = x|Y = y) the probability of X taking value x given that

we know that Y is certain to have value y.

• This fits the situation when we observe something and want to

make an inference about something related but unobserved:

– p(cancer recurs|tumor measurements)

– p(gene expressed > 1.3|transcription factor concentrations)

– p(collision to obstacle|sensor readings)

– p(word uttered|sound wave)
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Recall from last time: Bayes rule

• Bayes rule is very simple but very important for relating

conditional probabilities:

p(x|y) =
p(y|x)p(x)

p(y)

• Bayes rule is a useful tool for inferring the posterior probability

of a hypothesis based on evidence and a prior belief in the

probability of different hypotheses.
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Using Bayes rule for inference

Often we want to form a hypothesis about the world based on

observable variables. Bayes rule is fundamental when viewed in

terms of stating the belief given to a hypothesis H given evidence e:

p(H|e) =
p(e|H)p(H)

p(e)

• p(H|e) is sometimes called posterior probability

• p(H) is called prior probability

• p(e|H) is called likelihood of the evidence (data)
• p(e) is just a normalizing constant, that can be computed from
the requirement that

P
h p(H = h|e) = 1:

p(e) =
X

h

p(e|h)p(h)

Sometimes we write p(H|e) ∝ p(e|H)p(H)
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Example: Medical Diagnosis

A doctor knows that pneumonia causes a fever 95% of the time.

She knows that if a person is selected randomly from the

population, there is a 10−7 chance of the person having

pneumonia. 1 in 100 people suffer from fever.

You go to the doctor complaining about the symptom of having a

fever (evidence). What is the probability that pneumonia is the

cause of this symptom (hypothesis)?

p(pneumonia|fever) =
p(fever|pneumonia)p(pneumonia)

p(fever)
=

0.95 × 10−7

0.01
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Computing conditional probabilities

• Typically, we are interested in the posterior joint distribution of

some query variables Y given specific values e for some

evidence variables E

• Let the hidden variables be Z = X − Y − E

• If we have a joint probability distribution, we can compute the

answer by using the definition of conditional probabilities and

marginalizing the hidden variables:

p(Y |e) =
p(Y, e)
p(e)

∝ p(Y, e) =
X

z

p(Y, e, z)

• This yields the same big problem as before: the joint distribution

is too big to handle
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Independence of random variables revisited

• We said that two r.v.’s X and Y are independent, denoted

X⊥⊥Y , if p(x, y) = p(x)p(y).

• But we also know that p(x, y) = p(x|y)p(y).

• Hence, two r.v.’s are independent if and only if:

p(x|y) = p(x) (and vice versa), ∀x ∈ ΩX , y ∈ ΩY

This means that knowledge about Y does not change the

uncertainty about X and vice versa.

• Is there a similar requirement, but less stringent?
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Conditional independence

• Two random variables X and Y are

conditionally independent given Z if:

p(x|y, z) = p(x|z), ∀x, y, z

This means that knowing the value of Y does not change the

prediction about X if the value of Z is known.

• We denote this by X⊥⊥Y |Z.
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Example

• Consider the medical diagnosis problem with three random

variables: P (patient has pneumonia), F (patient has a fever),

C (patient has a cough)

• The full joint distribution has 23 − 1 = 7 independent entries

• If someone has pneumonia, we can assume that the probability

of a cough does not depend on whether they have a fever:

p(C = 1|P = 1, F ) = p(C = 1|P = 1) (1)

• Same equality holds if the patient does not have pneumonia:

p(C = 1|P = 0, F ) = p(C = 1|P = 0) (2)

• Hence, C and F are conditionally independent given P .
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Example (continued)

• The joint distribution can now be written as:

p(C, P, F ) = p(C|P, F )p(F |P )p(P ) = p(C|P )p(F |P )p(P )

• Hence, the joint can be described using 2 + 2 + 1 = 5 numbers

instead of 7

• Much more important savings happen with more variables
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Naive Bayesian model

A common assumption in early diagnosis is that the symptoms are

independent of each other given the disease

• Let s1, . . . sn be the symptoms exhibited by a patient (e.g. fever,

headache etc)

• Let D be the patient’s disease

• Then by using the naive Bayes assumption, we get:

p(D, s1, . . . sn) = p(D)p(s1|D) · · · p(sn|D)

• The conditional probability of the disease given the symptoms:

p(D|s1, . . . sn) =
p(D, s1, . . . sn)

p(s1, . . . sn)
∝ p(D)p(s1|D) · · · p(sn|D)

because the denominator is just a normalization constant.
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Recursive Bayesian updating

• The naive Bayes assumption allows also for a very nice,

incremental updating of beliefs as more evidence is gathered

• Suppose that after knowing symptoms s1, . . . sn the probability

of D is:

p(D, s1 . . . sn) = p(D)
nY

i=1

p(si|D)

• What happens if a new symptom sn+1 appears?

p(, |s1 . . . sn, sn+1) = p(D)
n+1Y

i=1

p(si|D) = p(D, s1 . . . sn)p(sn+1|D)

An even nicer formula can be obtained by taking logs:

log p(D, s1 . . . sn, sn+1) = log p(D, s1 . . . sn) + log p(sn+1|D)
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A graphical representation of the naive Bayesian model

Sympt2

Diagnosis

Sympt1 ... Sympt n

• The nodes represent random variables

• The arcs represent “influences”

• The lack of arcs represents conditional independence

relationships
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More generally: Bayesian networks
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Bayesian networks are a graphical representation of conditional

independence relations, using graphs.
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A graphical representation for probabilistic models

• Suppose the world is described by a set of r.v.’s X1, . . . Xn

• Let us define a directed acyclic graph such that each node i

corresponds to an r.v. Xi

• Since this is a one-to-one mapping, we will use Xi to denote

both the node in the graph and the corresponding r.v.

• Let Xπi
be the set of parents for node Xi in the graph

• We associate with each node the conditional probability

distribution of the r.v. Xi given its parents: p(Xi|Xπi
).
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Example: A Bayesian (belief) network
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• The nodes represent random variables

• The arcs represent “influences”

• At each node, we have a conditional probability distribution (CPD) for

the corresponding variable given its parents
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Factorization

Let G be a DAG over variables X1, . . . , Xn. We say that a joint

probability distribution p factorizes according to G if p can be

expressed as a product:

p(x1, . . . , xn) =
nY

i=1

p(xi|xπi
)

The individual factors p(xi|xπi
) are called

local probabilistic models or

conditional probability distributions (CPD).
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Bayesian network definition

A Bayesian network is a DAG G over variablesX1, . . . , Xn,

together with a distribution p that factorizes over G. p is specified as

the set of conditional probability distributions associated with G’s

nodes.
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.
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Using a Bayes net for reasoning (1)

• Computing any entry in the joint probability table is easy
because of the factorization property:

p(B = 1, E = 0, A = 1, C = 1, R = 0)

= p(B = 1)p(E = 0)p(A = 1|B = 1, E = 0)p(C = 1|A = 1)p(R = 0|E = 0)

= 0.01 · 0.995 · 0.8 · 0.7 · 0.9999 ≈ 0.0056

• Computing marginal probabilities is also easy.

E.g. What is the probability that a neighbor calls?

p(C = 1) =
X

e,b,r,a

p(C = 1, e, b, r, a) = ...
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Using a Bayes net for reasoning (2)

• One might want to compute the conditional probability of a

variable given evidence that is “upstream” from it in the graph

• E.g. What is the probability of a call in case of a burglary?

p(C = 1|B = 1) =
p(C = 1, B = 1)

p(B = 1)
=

P
e,r,a p(C = 1, B = 1, e, r, a)

P
c,e,r,a p(c, B = 1, e, r, a)

• This is called causal reasoning or prediction
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Using a Bayes net for reasoning (3)

• We might have some evidence and need an explanation for it. In

this case, we compute a conditional probability based on

evidence that is “downstream” in the graph

• E.g. Suppose we got a call. What is the probability of a

burglary? What is the probability of an earthquake?

p(B = 1|C = 1) =
p(C = 1|B = 1)p(B = 1)

p(C = 1)
= ...

p(E = 1|C = 1) =
p(C = 1|E = 1)p(E = 1)

p(C = 1)
= ...

• This is evidential reasoning or explanation.
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Using a Bayes net for reasoning (4)

• Suppose that you now gather more evidence, e.g. the radio

announces an earthquake. What happens to the probabilities?

p(E = 1|C = 1, R = 1) ' p(E = 1|C = 1) and

p(B = 1|C = 1, R = 1) ( p(B = 1|C = 1)

• This is called explaining away
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I-Maps

A directed acyclic graph (DAG) G whose nodes represent random

variables X1, . . . , Xn is an I-map (independence map) of a

distribution p if p satisfies the independence assumptions:

Xi⊥⊥Nondescendents(Xi)|Xπi
, ∀i = 1, . . . n

where Xπi
are the parents of Xi
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Example

Consider all possible DAG structures over 2 variables. Which graph

is an I-map for the following distribution?

x y p(x, y)

0 0 0.08

0 1 0.32

1 0 0.32

1 1 0.28

What about the following distribution?

x y p(x, y)

0 0 0.08

0 1 0.12

1 0 0.32

1 1 0.48
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Example (continued)

• In the first example, X and Y are not independent, so the only

I-maps are the graphs X → Y and Y → X , which assume no

independence

• In the second example, we have p(X = 0) = 0.2,

p(Y = 0) = 0.4, and and for all entries p(x, y) = p(x)p(y)

• Hence, X⊥⊥Y , and there are three I-maps for the distribution:

the graph in which X and Y are not connected, and both

graphs above.

• Note that independence maps may have extra arcs!
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