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Problem	overview
• Goal
– Estimate	most	probable	state	at	time	k	using	
measurement	up	to	time	k’

k’<k:	prediction
k’=k:	filtering
k’>k:	smoothing

• Input
– (Noisy)	Sensor	measurements
– Known	or	learned	system	model	(see	last	lecture)

• Many	problems	require	estimation	of	the	state	of	
systems	that	change	over	time	using	noisy	
measurements	on	the	system



Applications
• Ballistics
• Robotics
– Robot	localization

• Tracking	hands/cars/…
• Econometrics
– Stock	prediction

• Navigation

• Many	more…



Example:	noisy	localization
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Today’s	lecture
• Fundamentals
• Formalizing	time	series	models
• Recursive	filtering

• Two	cases	with	optimal	solutions
• Linear	Gaussian	models
• Discrete	systems

• Suboptimal	solutions



Stochastic	Processes

• Stochastic	process
– Collection	of	random	variables	indexed	by	some	set
– Ie.	R.V.	𝑥" for	every	element	𝑖 in	index	set

• Time	series	modeling
– Sequence	of	random	states/variables
– Measurements	available	at	discrete	times
– Modeled	as	stochastic	process	indexed	by	ℕ
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(First-order)	Markov	process	

• The	Markov	property	– the	likelihood	of	a	
future	state	depends	on	present	state	only

• Markov	chain	– A	stochastic	process	with	
Markov	property

k-1 k k+1 time
xk-1 xk xk+1 States



Hidden	Markov	Model	(HMM)

• the	state	is	not	directly	visible,	but	output	
dependent	on	the	state	is	visible
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State	space

• The	state	vector	contains	all	available	
information	to	describe	the	investigated	system
– usually	multidimensional:

• The	measurement	vector	represents	
observations	related	to	the	state	vector
– Generally	(but	not	necessarily)	of	lower	dimension	
than	the	state	vector



State	space

• Tracking: Econometrics:
• Monetary	flow
• Interest	rates
• Inflation
• …



Hidden	Markov	Model	(HMM)
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Dynamic	System

State	equation:
state	vector	at	time	instant		k
state	transition	function,	
i.i.d	process	noise

Observation	equation:	
observations	at	time	instant		k
observation	function,
i.i.d	measurement	noise

k-1 k k+1
xk-1 xk xk+1

zk-1 zk zk+1
Stochastic	diffusion



A	simple	dynamic	system
• (4-dimensional	state	space)	
• Constant	velocity	motion:

• Only	position	is	observed:



Gaussian	distribution

μ

Yacov	Hel-Or
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Recursive	filters
• For	many	problems,	estimate	is	required	each	time	a	
new	measurement	arrives

• Batch processing
– Requires	all available	data

• Sequential processing
– New	data	is	processed	upon	arrival
– Need	not	store	the	complete	dataset
– Need	not	reprocess	all	data	for	each	new	measurement

– Assume	no	out-of-sequence	measurements	(solutions	for	
this	exist	as	well…)



Bayesian	filter
• Construct	the	posterior	probability	
density	function																		of	the	state	based	
on	all	available	information

• By	knowing	the	posterior	many	kinds	of	
estimates	for	 can	be	derived
– mean	(expectation),	mode,	median,	…
– Can	also	give	estimation	of	the	accuracy	(e.g.	
covariance)

Thomas	Bayes

Sample	space

Posterior



Recursive	Bayes	filters

• Given:
– System	models	in	probabilistic	forms

(known	statistics	of	vk,	wk)
– Initial	state also	known	as	the	prior
–Measurements	

Markovian	process

Measurements	conditionally	
independent	given	state

𝑧$, … , 𝑧-



Recursive	Bayes	filters
• Prediction	step	(a-priori)

– Uses	the	system	model	to	predict	forward
– Deforms/translates/spreads	state	pdf	due	to	random	noise

• Update	step	(a-posteriori)

– Update	the	prediction	in	light	of	new	data
– Tightens	the	state	pdf



Prior	vs	posterior?

• It	can	seem	odd	to	regard	𝑝 𝑥- 𝑧$:-/$ as	prior	
• Compare

to

• In	update	with	𝑧-,	it	is	a	working	prior

𝑃(𝑥-|𝑧-, 𝑧$:-/$ ) =
𝑝 𝑧- 𝑥-, 𝑧$:-/$ 𝑃(𝑥-|𝑧$:-/$)

𝑝(𝑧-|𝑧$:-/$)

posterior
likelihood prior

evidence

𝑃(𝑥-|𝑧-, 𝑧$:-/$) =
𝑝 𝑧- 𝑥-, 𝑧$:-/$ 𝑃(𝑥-|𝑧$:-/$)

𝑝(𝑧-|𝑧$:-/$)



General	prediction-update	framework

• Assume					 is	given	at	time	k-1
• Prediction:

• Using	Chapman-Kolmogorov	identity	+	Markov	
property

(1)

Previous	posteriorSystem	model



General	prediction-update	framework

• Update	step

Where

(2)

Measurement	
model

Current
prior

Normalization	constant



Generating	estimates

• Knowledge	of	 enables	to	compute	
optimal	estimate	with	respect	to	any	
criterion.	e.g.
–Minimum	mean-square	error	(MMSE)

–Maximum	a-posteriori



General	prediction-update	framework

➔So	(1)	and	(2)	give	optimal	solution	for	the	
recursive	estimation	problem!

• Unfortunately…	only	conceptual	solution
– integrals	are	intractable…
– Cannot	represent	arbitrary	pdfs!

• However,	optimal	solution	does exist	for	
several	restrictive	cases



Today’s	lecture
• Fundamentals
• Formalizing	time	series	models
• Recursive	filtering

• Two	cases	with	optimal	solutions
• Linear	Gaussian	models
• Discrete	systems

• Suboptimal	solutions



Restrictive	case	#1

• Posterior	at	each	time	step	is	Gaussian
– Completely	described	by	mean	and	covariance

• If is	Gaussian	it	can	be	shown		that
is	also	Gaussian	provided	that:

– are	Gaussian
– are	linear



Restrictive	case	#1

• Why	Linear?

Yacov	Hel-Or



Restrictive	case	#1

• Why	Linear?

Yacov	Hel-Or



Restrictive	case	#1

• Linear	system	with	additive	noise

• Simple	example	again

/$

/$



The	Kalman	filter

• Substituting	into	(1)	and	(2)	yields	the	predict	and	
update	equations

Rudolf	E.	Kalman



The	Kalman	filter

Predict:

Update:



Intuition	via	1D	example

• Lost	at	sea
– Night
– No	idea	of	location
– For	simplicity	– let’s	
assume	1D

– Not	moving

*	Example	and	plots	by	Maybeck,	“Stochastic	models,	estimation	and	control,	volume	1”



Example	– cont’d

• Time	t1:	Star	Sighting
– Denote	z(t1)=z1

• Uncertainty	(inaccuracies,	human	error,	etc)
– Denote	σ1	(normal)

• Can	establish	the	conditional	probability	of	
x(t1)	given	measurement	z1



Example	– cont’d

• Probability	for	any	location,	based	on	measurement
• For	Gaussian	density	– 68.3%	within	±σ1
• Best	estimate	of	position:	Mean/Mode/Median



Example	– cont’d

• Time	t2:	friend	(more	trained)
– x(t2)=z2,	σ(t2)=σ2
– Since	she	has	higher	skill:	σ2<σ1



Example	– cont’d

• f(x(t2)|z1,z2)	also	Gaussian



Example	– cont’d

• σ less	than	both	σ1	and	σ2
• σ1=	σ2:	average
• σ1>	σ2:	more	weight	to	z2
• Rewrite:	



Example	– cont’d

• The	Kalman	update	rule:

Best	Prediction	prior	to	z2
(a	priori)

Optimal	Weighting
(Kalman	Gain)

Residual

Best	estimate	
Given	z2

(a	posteriori)



The	Kalman	filter

Predict:

Update:
Generally	increases

variance

Generally	decreases
variance



Kalman	gain

• Small	measurement	error,	𝐻 invertible:

• Small	prediction	error:



The	Kalman	filter
• Pros (compared	to	e.g.	particle	filter)
– Optimal	closed-form	solution	to	the	tracking	problem	
(under	the	assumptions)
• No	algorithm	can	do	better	in	a	linear-Gaussian	environment!

– All	‘logical’	estimations	collapse	to	a	unique	solution
– Simple	to	implement
– Fast	to	execute

• Cons
– If	either	the	system	or	measurement	model	is	non-
linear	à the	posterior	will	be	non-Gaussian

Smoothing	possible	with	a	
backward	message	

(cf HMMs,	lecture	10)



Restrictive	case	#2

• The	state	space	(domain)	is	discrete	and	finite
• Assume	the	state	space	at	time	k-1	consists	of	
states	

• Let	 be	the	conditional	
probability	of	the	state	at	time	k-1,	given	
measurements	up	to	k-1



The	Grid-based	filter

• The	posterior	pdf	at	k-1	can	be	expressed	as	
sum	of	delta	functions

• Again,	substitution	into	(1)	and	(2)	yields	the	
predict	and	update	equations

Equivalent	to	belief	
monitoring	in	HMMs	

(Lecture	10)



The	Grid-based	filter
• Prediction

• New	prior	is	also	weighted	sum	of	delta	functions
• New	prior	weights	are	reweighting	of	old	posterior	weights	using	state	transition	

probabilities

(1)



The	Grid-based	filter
• Update

• Posterior	weights	are	reweighting	of	prior	weights	using	likelihoods	(+	
normalization)

(2)



The	Grid-based	filter

• Pros:
– assumed	known,	but	no	
constraint	on	their	(discrete)	shapes

– Easy	extension	to	varying	number	of	states
– Optimal	solution	for	the	discrete-finite	environment!

• Cons:
– Curse	of	dimensionality

• Inefficient	if	the	state	space	is	large
– Statically	considers	all possible	hypotheses

Smoothing	possible	with	a	
backward	message	

(cf HMMs,	lecture	10)
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Suboptimal	solutions
• In	many	cases	these	assumptions	do	not	hold
– Practical	environments	are	nonlinear,	non-Gaussian,	
continuous

➔Approximations	are	necessary…

– Extended	Kalman	filter	(EKF)
– Approximate	grid-based	methods
– Multiple-model	estimators
– Unscented	Kalman	filter	(UKF)
– Particle	filters	(PF)
– …

Analytic	approximations

Sampling	approaches

Numerical	methods

Gaussian-sum	filters



The	extended	Kalman	filter

• The	idea:	local	linearization	of	the	dynamic	
system	might	be	sufficient	description	of	the	
nonlinearity

• The	model:	nonlinear	system	with	additive	
noise



The	extended	Kalman	filter

• f,	h	are	approximated	using	a	first-order	Taylor	
series	expansion	(eval	at	state	estimations)

Predict:

Update:



The	extended	Kalman	filter



The	extended	Kalman	filter
• Pros
– Good	approximation	when	models	are	near-linear
– Efficient	to	calculate
(de	facto	method	for	navigation	systems	and	GPS)

• Cons
– Only	approximation	(optimality	not	proven)
– Still	a	single	Gaussian	approximations

• Nonlinearity	à non-Gaussianity	(e.g.	bimodal)
– If	we	have	multimodal	hypothesis,	and	choose	
incorrectly	– can	be	difficult	to	recover

– Inapplicable	when	f,h discontinuous



The	unscented	Kalman filter

• Can	give	more	accurately	approximates	posterior
Yacov	Hel-Or



Challenges
• Detection	specific
– Full/partial	occlusions
– False	positives/false	negatives
– Entering/leaving	the	scene

• Efficiency
• Multiple	models	and	switching	dynamics
• Multiple	targets	
• …



Conclusion
• Inference	in	time	series	models:
• Past:	smoothing
• Present:	filtering
• Future:	prediction

• Recursive	Bayes	filter	optimal
• Computable	in	two	cases
• Linear	Gaussian	systems:	Kalman filter
• Discrete	systems:	Grid	filter

• Approximate	solutions	for	other	systems


