Kalman filtering and friends:
Inference in time series models

Herke van Hoof
slides mostly by Michael Rubinstein



Problem overview

e Goal
— Estimate most probable state at time k using
measurement up to time k'’
k’<k: Frediction
k’=k: filtering
k’>k: smoothing
* Input
— (Noisy) Sensor measurements
— Known or learned system model (see last lecture)

* Many problems require estimation of the state of
systems that change over time using noisy
measurements on the system



Applications

e Ballistics

e Robotics
— Robot localization

e Tracking hands/cars/... '

vt
= ?L"i‘-“;_:.;;_-—‘:q 5
¥ _ ‘_’é_—{jb. '.;!'A % A

e Econometrics
— Stock prediction

* Navigation

* Many more...

.~

1929 - 38 DJIA vs. 2000 - 01 Nasdaq
Percent Decline Chart

o Weéks; F'rérﬁAHigﬁ'e'st Value - )

Michigan Ave
.
FERRLY e\ D
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Example: noisy localization
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Prediction: where will | be in the future



Today’s lecture

 Fundamentals
* Formalizing time series models
* Recursive filtering

* Two cases with optimal solutions
* Linear Gaussian models
* Discrete systems

* Suboptimal solutions



Stochastic Processes

* Stochastic process
— Collection of random variables indexed by some set
— le. R.V. x; for every element i in index set

* Time series modeling
— Sequence of random states/variables
— Measurements available at discrete times
— Modeled as stochastic process indexed by N
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(First-order) Markov process

 The Markov property — the likelihood of a
future state depends on present state only
Pr[X(k+h)=y| X(s)=x(s),Vs<k]=
Pr{X (k +h) = y| X (k) = x(k)], YV >0
 Markov chain — A stochastic process with
Markov property

k-1 k k+1 time
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Hidden Markov Model (HMM)

* the state is not directly visible, but output
dependent on the state is visible

k-1 k k+1 time
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State space

e The state vector contains all available

information to describe the investigated system
— usually multidimensional:  y(x)e g

* The measurement vector represents

observations related to the state vector ;) cp»

— Generally (but not necessarily) of lower dimension
than the state vector



State space

 Tracking: Econometrics:
 Monetary flow
* |nterest rates
* |nflation
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Hidden Markov Model (HMM)

* the state is not directly visible, but output
dependent on the state is visible

Zk+1
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States
(hidden)
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Dynamic System
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State equation: x, = fk(xk_]‘,vk)

X, state vector at time instant k
f, state transition function, f, :R" xR™

v, l.i.d process noise

Observation equation: z, =7 (x,.

Z, observations at time instant k
h, observation function, #,_:R" xR" — R

w, i.i.d measurement noise
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Stochastic diffusion



A simple dynamic system

X =[x, y,v,,v,] (4-dimensional state space)

* Constant velocity motion:

fXv)=[x+At-v,y+At-v v ,v [+

oS O O

v~N(0,0) o-
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o R, o o
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* Only position is observed:

z=h(X,w)=[x,y]+w

w~N(O,R) ==(" 0)




Gaussian distribution

Yacov Hel-Or

p(x) ~ N(u,5)=exp {—%(x—u)fz‘%x—m}



Today’s lecture

e Fundamentals

* Recursive filtering



Recursive filters

 For many problems, estimate is required each time a
new measurement arrives

e Batch processing
— Requires all available data

* Sequential processing
— New data is processed upon arrival
— Need not store the complete dataset
— Need not reprocess all data for each new measurement

— Assume no out-of-sequence measurements (solutions for
this exist as well...)



Bayesian filter

* Construct the posterior probability

density function p(x, | z,,) of the state based
on all available information

Posterior
A

» Sample space

* By knowing the posterior many kinds of

estimates for x, can be derived

— mean (expectation), mode, median, ...

— Can also give estimation of the accuracy (e.g.
covariance)




Recursive Bayes filters

e Given:

— System models in probabilistic forms

X, = fi (v <= p(x, [ x,)

z; = h(x,,w,) <= p(z, | x;)

(known statistics of v, w,)

Markovian process

r

\.

Measurements conditionally
independent given state

~\

J

— Initial state p(x, | z,) = p(x,) also known as the prior

— Measurements z, ..., z



Recursive Bayes filters

* Prediction step (a-priori)

P(xy | Ziy) = PO | 2042)

— Uses the system model to predict forward
— Deforms/translates/spreads state pdf due to random noise

* Update step (a-posteriori)
pPx, | zy) = p(x | Z14)

— Update the prediction in light of new data
— Tightens the state pdf



Prior vs posterior?

* It can seem odd to regard p(xy|z;.,—1) as prior
* Compare

posterior

P (|2 )= p(zk | xy )P (xy )

P (2 )

evidence

to

P(Zk|xk) 21k -1) P (X | Z1.1—1)
P (Zk|Z1:k-1)

P(xy|zy, z1.4-1) =

* In update with z;, it is a working prior



General prediction-update framework

* Assume p(x,_ |z._,) is given at time k-1
* Prediction:

System model

P(xX | Z1y) =fp(xk | X ) P (X | 2oy )X, (1)

* Using Chapman-Kolmogorov identity + Markov
property



General prediction-update framework

* Update step
p(x; [ z) = p(x; | 245 Z11)

p(4|B,C) = p(B14,€)p4]C) _ Pz | X521 ) P(X | Z1g1)
s Pz, | 24 4)
Measurement Current
model rior
likelihood x prior _ p(z, | x,)p(x, TZl:k—l) ”
evidence 2(z, | 2,,)
Where Normalization constant

p(z; |z ) =fp(Zk | x ) p(x; |z )X,



Generating estimates

 Knowledge of p(x, |z..) enables to compute
optimal estimate with respect to any

criterion. e.g.
— Minimum mean-square error (MMSE)

~ MMSE
X = E[xk |z, ]=kap(xk | 4 )dx,

— Maximum a-posteriori

A MAP
Xy =argmax p(x;|z;)

Xk



General prediction-update framework

=>So (1) and (2) give optimal solution for the
recursive estimation problem!

* Unfortunately... only conceptual solution

— integrals are intractable...
— Cannot represent arbitrary pdfs!

* However, optimal solution does exist for
several restrictive cases



Today’s lecture

* Two cases with optimal solutions
* Linear Gaussian models
* Discrete systems



Restrictive case #1

* Posterior at each time step is Gaussian
— Completely described by mean and covariance

e If p(x,,1z,.,) is Gaussian it can be shown that

p(x;1z4) is also Gaussian provided that:
— v,,w, are Gaussian
— f..h arelinear



Restrictive case #1

* Why Linear?

Yacov Hel-Or

y=dx+B= p(y)~N(4p+B, 434")



Restrictive case #1

6
= Function g(x)
. X an
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Restrictive case #1

* Linear system with additive noise

X, =F.x._ +v,

kaN(O’Qk)

w,~N(O,R, )
* Simple example again
JXov)=[x+At-v,y+At-v, v, v ]+v
(x,\ (1 0 At 0\ x_,)

01 0 At .
Vi _ Vi +N(0,0,)
Vik 00 1 0|V

0 0

\ vk ]\

ALY
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F

Z=h(X,W)=[X,y:

Xy

Vi
vx,k

Vy,k

+ W

+N(0,R,)



The Kalman filter

Rudolf E. Kalman

p(xe | Z2) = N(xk—l;jek—ﬂk—l 9I)k—1|k—1)
(x| 2y y) = N(xk;xf|k—1 9])k|k—1)
p(x|z,)= N(xk;xk|k91)k|k)

N(x; u,3) =] 28 2 exp(—%(x —u) = - u))

e Substituting into (1) and (2) yields the predict and
update equations



The Kalman filter

Predict:

Xlk-1 = Fkxk—l|k—1

Pk|k-1 = Fch-nk-leT + 0,
Update:
Sk = HkPk|k—1HkT + Rk
T oo-1
Kk = Pk|k—1Hk Sk

)%k\k = £k|k—1 + K, % -H k)%k|k—1 )
Pk\k = [I - KkH k 1 klk-1



Intuition via 1D example

* Lost at sea
— Night
— No idea of location
— For simplicity — let’s
assume 1D
— Not moving

* Example and plots by Maybeck, “Stochastic models, estimation and control, volume 1”



Example — cont’d

* Time t1: Star Sighting
— Denote z(t1)=z1

e Uncertainty (inaccuracies, human error, etc)
— Denote ol (normal)

e Can establish the conditional probability of
x(t1l) given measurement z1



Example — cont’d

L
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X

* Probability for any location, based on measurement
* For Gaussian density — 68.3% within o1
e Best estimate of position: Mean/Mode/Median

’i(ll) = < O



Example — cont’d

 Time t2: friend (more trained)
— x(t2)=z2, o(t2)=02
— Since she has higher skill: 02<01

A
f-\‘(’:)|-".(’:)('\.|:'2 )




Example — cont’d

e f(x(t2)|z1,z2) also Gaussian

A
'f-\'(’2)|2(’1)J(lz)('w:l Z3) (\

w = [03/(03} +02 )]z, + [0\31/(03l +02)]z,

/0% = (1/02)+(1/02)




’
Example — cont’d
w = [oZ /(o7 +02 )]z +[07 /(02 +07 )]z,
1/0?% = (l/ofl)+(l/0§2)

* o lessthan both o1 and 62
* o0l=02: average

* 0l1>02: more weight to z2
* Rewrite:

X(1,) = [03/(03} +02 )]z, + [ofl/(afl +02)]z,

=z, + [031/(03l + 032)][32_31]



Example — cont’d

 The Kalman update rule:

Best estimate — |
Given z2
(a posteriori)

/

Best Prediction prior to z2 Optimal Weighting Residual
(a priori) (Kalman Gain)




The Kalman filter

Predict:

Xpror = LeXi i

Update:

Sy =HkPk|k-1HkT + R,
K, =P, HS; K(1y) = o2 /(02 +02)
Xk = Xhpe-1 +Kk% _Hkxk|k—1) x(1,) = x(1)) + K(1,)[ 2, — X(1,)]




Kalman gain

Sk = HkPk|k—1HkT +Rk
T -1
Kk = Pk|k—1Hk Sk

A A n A
X = X + K 32; -H X )
Pk|k = [I - Kka

Kk-1

* Small measurement error, H invertible:
q -1 . A -1
limg K, =H, =lm, ,,x,, =H, z,

* Small prediction error:

limy o K, = 0=lmp o X = Xy



The Kalman filter

* Pros (compared to e.g. particle filter)
— Optimal closed-form solution to the tracking problem

(under the assumptions)
* No algorithm can do better in a linear-Gaussian environment!

— All ‘logical’” estimations collapse to a unique solution
— Simple to implement
— Fast to execute

* Cons
— If either the system or measurement model is non-
linear 2 the posterior will be non-Gaussian

Smoothing possible with a
backward message
(cf HMMs, lecture 10)




Restrictive case #2

* The state space (domain) is discrete and finite

* Assume the state space at time k-1 consists of
states x,_,i=1..N,

* Let Pr(x,_, =x,_|z,,) =w,_,., betheconditional
probability of the state at time k-1, given
measurements up to k-1



The Grid-based filter

* The posterior pdf at k-1 can be expressed as
sum of delta functions

NS . .
P(x_ |z ) = 2 Wllc—1|k—16 (X = X1)
p

e Again, substitution into (1) and (2) yields the
predict and update equations

Equivalent to belief
monitoring in HMMs
(Lecture 10)




The Grid-based filter

* Prediction
P(X | Zy) =fp('xk | X)Xy |z ))dx, ()

NS NS - - - -
p(x, |24, = E E p(x; | xz—l)wli—nk—lé (X = Xe_1)
=1 =1

NS . .
= 2 Wllc|k—16 (X = X4_1)
=

NS . . .
Wllc|k—1 = E Wli—1|k—1p (X [ x7,)
=

New prior is also weighted sum of delta functions

New prior weights are reweighting of old posterior weights using state transition
probabilities



The Grid-based filter

* Update
p(z, | x ) p(x; | Zy_y)

p(xk | Zl:k) = (2)
p(z, | Z14y)

Ns . .
p(x; | zy) = 2 V"/lqk6 (X1 = X5y)

; Wlic|k—1p(zk | ‘xllc)

E Wlilk—lp(zk | x;)
=

* Posterior weights are reweighting of prior weights using likelihoods (+
normalization)



The Grid-based filter

* Pros:
= p(x, |x,_), p(z, | x,) assumed known, but no
constraint on their (discrete) shapes
— Easy extension to varying number of states
— Optimal solution for the discrete-finite environment!

e Cons:

— Curse of dimensionality
* Inefficient if the state space is large

— Statically considers all possible hypotheses

Smoothing possible with a
backward message
(cf HMMs, lecture 10)




Today’s lecture

* Suboptimal solutions



Suboptimal solutions

* In many cases these assumptions do not hold

— Practical environments are nonlinear, non-Gaussian,
continuous

=>Approximations are necessary...

— Extended Kalman filter (EKF)

— Approximate grid-based methods
— Multiple-model estimators Numerical methods
— Unscented Kalman filter (UKF)
— Particle filters (PF)

Analytic approximations

Gaussian-sum filters

— Sampling approaches




The extended Kalman filter

* The idea: local linearization of the dynamic

system might be sufficient description of the
nonlinearity

* The model: nonlinear system with additive
noise

X, =Fx,_ +v, x, = f,(x,)+v,
z,=Hx, +w, z, =h(x)+w,
v,~N(0,0,) v, ~N(0,0,)
w,~N(O,R,) w, ~N(O,R,)



The extended Kalman filter

* f, h are approximated using a first-order Taylor
series expansion (eval at state estimations)

Predict:

)ek|k—1 = fk()’ek—nk—l)

Pk|k—1 = FkPk-uk-leT + 0,

. Arore e il
Update ,\ ) Fk[la J] — 0x [J] | Xk =Xk
S, =H, Py H, +R T i 1= 2ulil
k k klli_lT ﬁ ' Hk [Z’]] - ax:[j] X =Xgg-1
Kk = Pk|k—1Hk Sk

£k|k = )%k|k—1 + K, SZ; - hk()%ldk—l) )
Pk|k = [I _Kka klk-1



The extended Kalman filter
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The extended Kalman filter

* Pros
— Good approximation when models are near-linear
— Efficient to calculate
(de facto method for navigation systems and GPS)

* Cons
— Only approximation (optimality not proven)
— Still a single Gaussian approximations
* Nonlinearity 2 non-Gaussianity (e.g. bimodal)
— If we have multimodal hypothesis, and choose
incorrectly — can be difficult to recover
— Inapplicable when f,h discontinuous



The unscented Kalman filter

6
= Funcfion a(x)
. 5
— —
. %6
e
0 0
2 2
4 . . -4 X -
0 0204 06 0.8 0 0.5 1
G Plx)
XK e
- 4
0 __‘/ b \‘ )
N NnE 1

Yacov Hel-Or

* Can give more accurately approximates posterior



Challenges

* Detection specific
— Full/partial occlusions
— False positives/false negatives
— Entering/leaving the scene

e Efficiency
 Multiple models and switching dynamics
Multiple targets



Conclusion

* |Inference in time series models:
* Past: smoothing
* Present: filtering
* Future: prediction
* Recursive Bayes filter optimal
 Computable in two cases
* Linear Gaussian systems: Kalman filter
* Discrete systems: Grid filter
e Approximate solutions for other systems



