
Dimensionality reduction. PCA. Kernel PCA.

• Dimensionality reduction

• Principal Component Analysis (PCA)

• Kernelizing PCA

• If we have time: Autoencoders

COMP-652 and ECSE-608 - March 14, 2016 1

What is dimensionality reduction?

• Dimensionality reduction (or embedding) techniques:

– Assign instances to real-valued vectors, in a space that is much
smaller-dimensional (even 2D or 3D for visualization).

– Approximately preserve similarity/distance relationships between
instances.

• Some techniques:

– Linear: Principal components analysis
– Non-linear
∗ Kernel PCA
∗ Independent components analysis
∗ Self-organizing maps
∗ Multi-dimensional scaling
∗ Autoencoders

COMP-652 and ECSE-608 - March 14, 2016 2

What is the true dimensionality of this data?

COMP-652 and ECSE-608 - March 14, 2016 3

What is the true dimensionality of this data?

COMP-652 and ECSE-608 - March 14, 2016 4

What is the true dimensionality of this data?

COMP-652 and ECSE-608 - March 14, 2016 5

What is the true dimensionality of this data?

COMP-652 and ECSE-608 - March 14, 2016 6

Remarks

• All dimensionality reduction techniques are based on an implicit
assumption that the data lies along some low-dimensional manifold

• This is the case for the first three examples, which lie along a 1-
dimensional manifold despite being plotted in 2D

• In the last example, the data has been generated randomly in 2D, so no
dimensionality reduction is possible without losing information

• The first three cases are in increasing order of difficulty, from the point
of view of existing techniques.

COMP-652 and ECSE-608 - March 14, 2016 7

Simple Principal Component Analysis (PCA)

• Given: m instances, each being a length-n real vector.

• Suppose we want a 1-dimensional representation of that data, instead of
n-dimensional.

• Specifically, we will:

– Choose a line in Rn that “best represents” the data.
– Assign each data object to a point along that line.

?
?
?

?

COMP-652 and ECSE-608 - March 14, 2016 8

Reconstruction error

• Let the line be represented as b + αv for b,v ∈ Rn, α ∈ R.
For convenience assume ‖v‖ = 1.

• Each instance xi is associated with a point on the line x̂i = b + αiv.

• We want to choose b, v, and the αi to minimize the total reconstruction
error over all data points, measured using Euclidean distance:

R =

m∑
i=1

‖xi − x̂i‖2

COMP-652 and ECSE-608 - March 14, 2016 9

A constrained optimization problem!

min
∑m
i=1 ‖xi − (b + αiv)‖2

w.r.t. b,v, αi, i = 1, . . .m
s.t. ‖v‖2 = 1

• This is a quadratic objective with quadratic constraint

• Suppose we fix a v satisfying the condition, and find the best b and αi
given this v

• So, we solve:

minR = min
α,b

m∑
i=1

‖xi − (b + αiv)‖2

where R is the reconstruction error

COMP-652 and ECSE-608 - March 14, 2016 10

Solving the optimization problem (II)

• We write the gradient of R wrt to αi and set it to 0:

∂R

∂αi
= 2‖v‖2αi − 2vxi + 2bv = 0⇒ αi = v · (xi − b)

where we take into account that ‖v‖2 = 1.
• We write the gradient of R wrt b and set it to 0:

∇bR = 2mb− 2

m∑
i=1

xi + 2

(
m∑
i=1

αi

)
v = 0 (1)

• From above:

m∑
i=1

αi =

m∑
i=1

vT (xi − b) = vT

(
m∑
i=1

xi −mb

)
(2)

COMP-652 and ECSE-608 - March 14, 2016 11

Solving the optimization problem (III)

• By plugging (2) into (1) we get:

vT

(
m∑
i=1

xi −mb

)
v =

(
m∑
i=1

xi −mb

)

• This is satisfied when:

m∑
i=1

xi −mb = 0⇒ b =
1

m

m∑
i=1

xi

• This means that the line goes through the mean of the data

• By substituting αi, we get: x̂i = b + (vT (xi − b))v

• This means that instances are projected orthogonally on the line to get
the associated point.

COMP-652 and ECSE-608 - March 14, 2016 12

Example data

COMP-652 and ECSE-608 - March 14, 2016 13

Example with v ∝ (1, 0.3)

COMP-652 and ECSE-608 - March 14, 2016 14

Finding the direction of the line

• Substituting αi = vT (xi−b) into our optimization problem we obtain a
new optimization problem:

maxv

∑m
i=1 v

T (xi − b)(xi − b)Tv
s.t. ‖v‖2 = 1

• The Lagrangian is:

L(v, λ)=

m∑
i=1

vT (xi − b)(xi − b)Tv + λ− λ‖v‖2

• Let S =
∑m
i=1(xi−b)(xi−b)T be an n-by-n matrix, which we will call

the scatter matrix

• The solution to the problem, obtained by setting ∇vL = 0, is: Sv = λv.

COMP-652 and ECSE-608 - March 14, 2016 15

Optimal choice of v

• Recall: an eigenvector u of a matrix A satisfies Au = λu, where λ ∈ R
is the eigenvalue.

• Fact: the scatter matrix, S, has n non-negative eigenvalues and n
orthogonal eigenvectors.

• The equation obtained for v tells us that it should be an eigenvector of
S.

• The v that maximizes vTSv is the eigenvector of S with the largest
eigenvalue

COMP-652 and ECSE-608 - March 14, 2016 16

What is the scatter matrix

• S is an n× n matrix with

S(k, l) =

m∑
i=1

(xi(k)− b(k))(xi(l)− b(l))

• Hence, S(k, l) is proportional to the estimated covariance between the
kth and lth dimension in the data.

COMP-652 and ECSE-608 - March 14, 2016 17

Recall: Covariance

• Covariance quantifies a linear relationship (if any) between two random
variables X and Y .

Cov(X,Y) = E{(X − E(X))(Y − E(Y))}

• Given m samples of X and Y , covariance can be estimated as

1

m

m∑
i=1

(xi − µX)(yi − µY) ,

where µX = (1/m)
∑m
i=1 xi and µY = (1/m)

∑m
i=1 yi.

• Note: Cov(X,X) = V ar(X).

COMP-652 and ECSE-608 - March 14, 2016 18

Covariance example

0 5 10
0

5

10

Cov=7.6022

0 5 10
0

5

10

Cov=−3.8196

0 5 10
0

5

10

Cov=−0.12338

0 5 10
0

5

10

Cov=0.00016383

COMP-652 and ECSE-608 - March 14, 2016 19

Example with optimal line: b = (0.54, 0.52), v ∝ (1, 0.45)

COMP-652 and ECSE-608 - March 14, 2016 20

Remarks

• The line b + αv is the first principal component.

• The variance of the data along the line b + αv is as large as along any
other line.

• b, v, and the αi can be computed easily in polynomial time.

COMP-652 and ECSE-608 - March 14, 2016 21

Reduction to d dimensions

• More generally, we can create a d-dimensional representation of our data
by projecting the instances onto a hyperplane b + α1v1 + . . .+ αdvd.

• If we assume the vj are of unit length and orthogonal, then the optimal
choices are:

– b is the mean of the data (as before)
– The vj are orthogonal eigenvectors of S corresponding to its d largest

eigenvalues.
– Each instance is projected orthogonally on the hyperplane.

COMP-652 and ECSE-608 - March 14, 2016 22

Remarks

• b, the eigenvalues, the vj, and the projections of the instances can all
be computing in polynomial time.

• The magnitude of the jth-largest eigenvalue, λj, tells you how much
variability in the data is captured by the jth principal component

• So you have feedback on how to choose d!

• When the eigenvalues are sorted in decreasing order, the proportion of
the variance captured by the first d components is:

λ1 + · · ·+ λd
λ1 + · · ·+ λd + λd+1 + · · ·+ λn

• So if a “big” drop occurs in the eigenvalues at some point, that suggests
a good dimension cutoff

COMP-652 and ECSE-608 - March 14, 2016 23

Example: λ1 = 0.0938, λ2 = 0.0007

The first eigenvalue accounts for most variance, so the dimensionality is 1

COMP-652 and ECSE-608 - March 14, 2016 24

Example: λ1 = 0.1260, λ2 = 0.0054

The first eigenvalue accounts for most variance, so the dimensionality is 1
(despite some non-linear structure in the data)

COMP-652 and ECSE-608 - March 14, 2016 25

Example: λ1 = 0.0884, λ2 = 0.0725

• Each eigenvalue accounts for about half the variance, so the PCA-
suggested dimension is 2

• Note that this is the linear dimension

• The true “non-linear” dimension of the data is 1 (using polar coordinates)

COMP-652 and ECSE-608 - March 14, 2016 26

Example: λ1 = 0.0881, λ2 = 0.0769

• Each eigenvalue accounts for about half the variance, so the PCA-
suggested dimension is 2

• In this case, the non-linear dimension is also 2 (data is fully random)

• Note that PCA cannot distinguish non-linear structure from no structure

• This case and the previous one yield a very similar PCA analysis

COMP-652 and ECSE-608 - March 14, 2016 27

Remarks

• Outliers have a big effect on the covariance matrix, so they can affect
the eigenvectors quite a bit

• A simple examination of the pairwise distances between instances can
help discard points that are very far away (for the purpose of PCA)

• If the variances in the original dimensions vary considerably, they can
“muddle” the true correlations. There are two solutions:

– Work with the correlation of the original data, instead of covariance
matrix (which provides one type of normalization

– Normalize the input dimensions individually (possibly based on domain
knowledge) before PCA

• PCA is most often performed using Singular Value Decomposition (SVD)

• In certain cases, the eigenvectors are meaningful; e.g. in vision, they can
be displayed as images (“eigenfaces”)

COMP-652 and ECSE-608 - March 14, 2016 28

Eigenfaces example

• A set of faces on the left and the corresponding eigenfaces (principal
components) on the right

• Note that faces have to be centred and scaled ahead of time

• The components are in the same space as the instances (images) and
can be used to reconstruct the images

COMP-652 and ECSE-608 - March 14, 2016 29

Uses of PCA

• Pre-processing for a supervised learning algorithm, e.g. for image data,
robotic sensor data

• Used with great success in image and speech processing

• Visualization

• Exploratory data analysis

• Removing the linear component of a signal (before fancier non-linear
models are applied)

COMP-652 and ECSE-608 - March 14, 2016 30

Difficult example

• PCA will make no difference between these examples, because the
structure on the left is not linear

• Are there ways to find non-linear, low-dimensional manifolds?

COMP-652 and ECSE-608 - March 14, 2016 31

Making PCA non-linear

• Suppose that instead of using the points xi as is, we wanted to go to
some different feature space φ(xi) ∈ RN

• E.g. using polar coordinates instead of cartesian coordinates would help
us deal with the circle

• In the higher dimensional space, we can then do PCA

• The result will be non-linear in the original data space!

• Similar idea to support vector machines

COMP-652 and ECSE-608 - March 14, 2016 32

PCA in feature space (I)

• Suppose for the moment that the mean of the data in feature space is
0, so:

∑m
i=1 φ(xi) = 0

• The covariance matrix is:

C =
1

m

m∑
i=1

φ(xi)φ(xi)
T

• The eigenvectors are:

Cvj = λjvj, j = 1, . . . N

• We want to avoid explicitly going to feature space - instead we want to
work with kernels:

K(xi,xk) = φ(xi)
Tφ(xk)

COMP-652 and ECSE-608 - March 14, 2016 33

PCA in feature space (II)

• Re-write the PCA equation:

1

m

m∑
i=1

φ(xi)φ(xi)
Tvj = λjvj, j = 1, . . . N

• So the eigenvectors can be written as a linear combination for features:

vj =

m∑
i=1

ajiφ(xi)

• Finding the eigenvectors is equivalent to finding the coefficients aji, j =
1, . . . N, i = 1, . . .m

COMP-652 and ECSE-608 - March 14, 2016 34

PCA in feature space (III)

• By substituting this back into the equation we get:

1

m

m∑
i=1

φ(xi)φ(xi)
T

(
m∑
l=1

ajlφ(xl)

)
= λj

m∑
l=1

ajlφ(xl)

• We can re-write this as:

1

m

m∑
i=1

φ(xi)

(
m∑
l=1

ajlK(xi,xl)

)
= λj

m∑
l=1

ajlφ(xl)

• A small trick: multiply this by φ(xk)
T to the left:

1

m

m∑
i=1

φ(xk)
Tφ(xi)

(
m∑
l=1

ajlK(xi,xl)

)
= λj

m∑
l=1

ajlφ(xk)
Tφ(xl)

COMP-652 and ECSE-608 - March 14, 2016 35

PCA in feature space (IV)

• We plug in the kernel again:

1

m

m∑
i=1

K(xk,xi)

(
m∑
l=1

ajlK(xi,xl)

)
= λj

m∑
l=1

ajlK(xk,xl),∀j, k

• By rearranging we get: K2aj = mλjKaj

• We can remove a factor of K from both sides of the matrix (this will
only affect eigenvectors with eigenvalues 0, which will not be principle
components anyway):

Kaj = mλjaj

COMP-652 and ECSE-608 - March 14, 2016 36

PCA in feature space (V)

• We have a normalization condition for the aj vectors:

vTj vj = 1⇒
m∑
k=1

m∑
l=1

ajlajkφ(xl)
Tφ(xk) = 1⇒ aTj Kaj = 1

• Plugging this into:
Kaj = mλjaj

we get: λjmaTj aj = 1,∀j
• For a new point x, its projection onto the principal components is:

φ(x)Tvj =

m∑
i=1

ajiφ(x)Tφ(xi) =

m∑
i=1

ajiK(x,xi)

COMP-652 and ECSE-608 - March 14, 2016 37

Normalizing the feature space

• In general, the features φ(xi) may not have mean 0

• We want to work with:

φ̃(xi) = φ(xi)−
1

m

m∑
k=1

φ(xk)

• The corresponding kernel matrix entries are given by:

K̃(xk,xl) = φ̃(xl)
T φ̃(xj)

• After some algebra, we get:

K̃ = K− 211/mK + 11/mK11/m

where 11/m is the matrix with all elements equal to 1/m

COMP-652 and ECSE-608 - March 14, 2016 38

Summary of kernel PCA

1. Pick a kernel

2. Construct the normalized kernel matrix K̃ of the data (this will be of
dimension m×m)

3. Find the eigenvalues and eigenvectors of this matrix λj, aj

4. For any data point (new or old), we can represent it as the following set
of features:

yj =

m∑
i=1

ajiK(x,xi), j = 1, . . .m

5. We can limit the number of components to k < m for a more
compact representation (by picking the a’s corresponding to the highest
eigenvalues)

COMP-652 and ECSE-608 - March 14, 2016 39

Representation obtained by kernel PCA

• Each yj is the coordinate of φ(x) along one of the feature space axes vj
• Remember that vj =

∑m
i=1 ajiφ(xi) (the sum goes to k if k < m)

• Since vj are orthogonal, the projection of φ(x) onto the space spanned
by them is:

Πφ(x) =

m∑
j=1

yjvj =

m∑
j=1

yj

m∑
i=1

ajiφ(xi)

(again, sums go to k if k < m)
• The reconstruction error in feature space can be evaluated as:

‖φ(x)−Πφ(x)‖2

This can be re-written by expanding the norm; we obtain dot-products
which can all be replaced by kernels
• Note that the error will be 0 on the training data if enough vj are

retained

COMP-652 and ECSE-608 - March 14, 2016 40

Alternative reconstruction error measures

• An alternative way of measuring performance is by looking at how well
kernel PCA preserves distances between data points
• In this case, the Euclidian distance in kernel space between points φ(xi)

and φ(xj), dij, is:

‖φxi)− φ(xj)‖ = K(xi,xi) +K(xj,xj)− 2K(xi,xj)

• The distance d̂ij between the projected points in kernel space is defined
as above, but with φ(xi) replaced by Πφ(xi).

• The average of dij − d̂ij over all pairs of points is a measure of
reconstruction error
• Note that reconstruction error in the original space of the xi is very

difficult to compute, because it requires taking Πφ(x) and finding its
pre-image in the original feature space, which is not always feasible
(though approximations exist)

COMP-652 and ECSE-608 - March 14, 2016 41

Example: Two concentric spheres

Kernel PCA and its Applications

3.1. Pattern Classification for Synthetic Data

Before we work on real data, we would like to gener-
ate some synthetic datasets and test our algorithm on
them. In this paper, we use the two-concentric-spheres
data.

3.1.1. Data Description

We assume that we have equal number or data points
uniformly distributed on two concentric sphere sur-
faces. If N is the total number of all data points, then
we have N/2 class 1 points on a sphere of radius r1,
and N/2 class 2 points on a sphere of radius r2. In
the spherical coordinate system, the inclination (polar
angle) θ is uniformly distributed in [0,π] and the az-
imuth (azimuthal angle) φ is uniformly distributed in
[0, 2π) for both classes. Our observations of the data
points are the (x, y, z) coordinates in the Cartesian
coordinate system, and all the three coordinates are
perturbed by a Gaussian noise of standard deviation
σnoise. We set N = 200, r1 = 10, r2 = 15, σnoise = 0.1,
and give a 3D plot of the data in Figure 1.

−15 −10 −5 0 5 10 15 −10
0

10

−15

−10

−5

0

5

10

15

y

two concentric spheres data

x

z

class 1
class 2

Figure 1. 3D plot of the two-concentric-spheres synthetic
data.

3.1.2. PCA and Kernel PCA Results

To visualize our results, we project the original 3-
dimensional data into a 2-dimensional feature space
by using traditional PCA and kernel PCA respectively.
For kernel PCA, we use a polynomial kernel with d = 5

and a Gaussian kernel with σ = 20. The results of tra-
ditional PCA, polynomial kernel PCA and Gaussian
kernel PCA are given in Figure 2, Figure 3, and Fig-
ure 4 respectively.

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

first 2 PCA features

feature 1

fe
at

ur
e

2

class 1
class 2

Figure 2. Traditional PCA results for the two-concentric-
spheres synthetic data.

−3 −2 −1 0 1 2 3
x 1012

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 1012 first 2 kernel PCA features

feature 1

fe
at

ur
e

2

class 1
class 2

Figure 3. Polynomial kernel PCA results for the two-
concentric-spheres synthetic data with d = 5.

We note that here though we mark points in differ-
ent classes with different colors, we are actually doing
unsupervised learning. Neither PCA nor kernel PCA
takes the class labels as their input.

In the results we can see that, traditional PCA does
not reveal any structural information of the original

1

• Colours are used for clarity in the picture, but the data is presented
unlabelled

• We want to project form 3D to 2D

1Wang, 2012

COMP-652 and ECSE-608 - March 14, 2016 42

Example: Two concentric spheres - PCA

Kernel PCA and its Applications

3.1. Pattern Classification for Synthetic Data

Before we work on real data, we would like to gener-
ate some synthetic datasets and test our algorithm on
them. In this paper, we use the two-concentric-spheres
data.

3.1.1. Data Description

We assume that we have equal number or data points
uniformly distributed on two concentric sphere sur-
faces. If N is the total number of all data points, then
we have N/2 class 1 points on a sphere of radius r1,
and N/2 class 2 points on a sphere of radius r2. In
the spherical coordinate system, the inclination (polar
angle) θ is uniformly distributed in [0,π] and the az-
imuth (azimuthal angle) φ is uniformly distributed in
[0, 2π) for both classes. Our observations of the data
points are the (x, y, z) coordinates in the Cartesian
coordinate system, and all the three coordinates are
perturbed by a Gaussian noise of standard deviation
σnoise. We set N = 200, r1 = 10, r2 = 15, σnoise = 0.1,
and give a 3D plot of the data in Figure 1.

−15 −10 −5 0 5 10 15 −10
0

10

−15

−10

−5

0

5

10

15

y

two concentric spheres data

x

z

class 1
class 2

Figure 1. 3D plot of the two-concentric-spheres synthetic
data.

3.1.2. PCA and Kernel PCA Results

To visualize our results, we project the original 3-
dimensional data into a 2-dimensional feature space
by using traditional PCA and kernel PCA respectively.
For kernel PCA, we use a polynomial kernel with d = 5

and a Gaussian kernel with σ = 20. The results of tra-
ditional PCA, polynomial kernel PCA and Gaussian
kernel PCA are given in Figure 2, Figure 3, and Fig-
ure 4 respectively.

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

first 2 PCA features

feature 1

fe
at

ur
e

2

class 1
class 2

Figure 2. Traditional PCA results for the two-concentric-
spheres synthetic data.

−3 −2 −1 0 1 2 3
x 1012

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 1012 first 2 kernel PCA features

feature 1

fe
at

ur
e

2

class 1
class 2

Figure 3. Polynomial kernel PCA results for the two-
concentric-spheres synthetic data with d = 5.

We note that here though we mark points in differ-
ent classes with different colors, we are actually doing
unsupervised learning. Neither PCA nor kernel PCA
takes the class labels as their input.

In the results we can see that, traditional PCA does
not reveal any structural information of the original

2

Note that PCA is unable to separate the points from the two spheres

2Wang, 2012

COMP-652 and ECSE-608 - March 14, 2016 43

Example: Kernel PCA with Polynomial Kernel (d = 5)

Kernel PCA and its Applications

3.1. Pattern Classification for Synthetic Data

Before we work on real data, we would like to gener-
ate some synthetic datasets and test our algorithm on
them. In this paper, we use the two-concentric-spheres
data.

3.1.1. Data Description

We assume that we have equal number or data points
uniformly distributed on two concentric sphere sur-
faces. If N is the total number of all data points, then
we have N/2 class 1 points on a sphere of radius r1,
and N/2 class 2 points on a sphere of radius r2. In
the spherical coordinate system, the inclination (polar
angle) θ is uniformly distributed in [0,π] and the az-
imuth (azimuthal angle) φ is uniformly distributed in
[0, 2π) for both classes. Our observations of the data
points are the (x, y, z) coordinates in the Cartesian
coordinate system, and all the three coordinates are
perturbed by a Gaussian noise of standard deviation
σnoise. We set N = 200, r1 = 10, r2 = 15, σnoise = 0.1,
and give a 3D plot of the data in Figure 1.

−15 −10 −5 0 5 10 15 −10
0

10

−15

−10

−5

0

5

10

15

y

two concentric spheres data

x

z

class 1
class 2

Figure 1. 3D plot of the two-concentric-spheres synthetic
data.

3.1.2. PCA and Kernel PCA Results

To visualize our results, we project the original 3-
dimensional data into a 2-dimensional feature space
by using traditional PCA and kernel PCA respectively.
For kernel PCA, we use a polynomial kernel with d = 5

and a Gaussian kernel with σ = 20. The results of tra-
ditional PCA, polynomial kernel PCA and Gaussian
kernel PCA are given in Figure 2, Figure 3, and Fig-
ure 4 respectively.

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

first 2 PCA features

feature 1

fe
at

ur
e

2

class 1
class 2

Figure 2. Traditional PCA results for the two-concentric-
spheres synthetic data.

−3 −2 −1 0 1 2 3
x 1012

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 1012 first 2 kernel PCA features

feature 1

fe
at

ur
e

2

class 1
class 2

Figure 3. Polynomial kernel PCA results for the two-
concentric-spheres synthetic data with d = 5.

We note that here though we mark points in differ-
ent classes with different colors, we are actually doing
unsupervised learning. Neither PCA nor kernel PCA
takes the class labels as their input.

In the results we can see that, traditional PCA does
not reveal any structural information of the original

3

• Points from one sphere are much closer together, the others are scattered

• The projected data is not linearly separable
3Wang, 2012

COMP-652 and ECSE-608 - March 14, 2016 44

Example: Kernel PCA with Gaussian Kernel (σ = 20)Kernel PCA and its Applications

−0.017 −0.0165 −0.016 −0.0155 −0.015 −0.0145

0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048

first 2 kernel PCA features

feature 1

fe
at

ur
e

2

class 1
class 2

Figure 4. Gaussian kernel PCA results for the two-
concentric-spheres synthetic data with σ = 20.

data. For polynomial kernel PCA, in the new feature
space, class 1 data points are clustered while class 2
data points are scattered. But they are still not lin-
early separable. For Gaussian kernel PCA, the two
classes are completely linearly separable, and both fea-
tures can reveal the radius information of the original
data.

3.2. Classification for Aligned Human Face
Images

After we have tested our algorithm on synthetic data,
we would like to use it for real data classification. Here
we use PCA and kernel PCA to extract features from
human face images, and use the simplest linear classi-
fier for classification. Then we compare the error rates
of using PCA and kernel PCA.

3.2.1. Data Description

For this task, we use images from the Yale Face
Database B (Georghiades et al., 2001), which contains
5760 single light source gray-level images of 10 sub-
jects, each seen under 576 viewing conditions. We
take 51 images of the first and third subject respec-
tively as the training data, and 13 images of each of
them as testing data. Then all the images are aligned,
and each has 168 × 192 pixels. Sample images of the
Yale Face Database B are shown in Figure 5.

3.2.2. Classification Results

We use the 168 × 192 pixel intensities as the original
features for each image, thus the original feature is

Figure 5. Sample images from the Yale Face Database B.

Table 1. Classification error rates on training data and
testing data for traditional PCA and Gaussian kernel PCA
with σ = 45675.

Error Rate PCA Kernel PCA

Training Data 6.86% 5.88%
Testing Data 19.23% 11.54%

32256-dimensional. Then we use PCA and kernel PCA
to extract the 10 most significant features from the
training data, and record the eigenvectors.

For traditional PCA, only the eigenvectors are needed
to extract features from testing data. For kernel PCA,
both the eigenvectors and the training data are needed
to extract features from testing data. Note that for
traditional PCA, there are particular fast algorithms
to compute the eigenvectors when the dimensionality
is much larger than the number of data points (Bishop,
2006).

For kernel PCA, we use a Gaussian kernel with σ =
45675 (we will talk about how to select the parameters
in Section 4). For classification, we use the simplest
linear classifier. The training error rates and the test-
ing error rates for traditional PCA and kernel PCA
are given in Table 1. We can see that Gaussian kernel
PCA achieves much lower error rates than traditional
PCA.

3.3. Kernel PCA-Based Active Shape Models

In ASMs, the shape of an object is described with point
distribution models, and traditional PCA is used to
extract the principal deformation patterns from the
shape vectors {xi}. If we use kernel PCA instead of
traditional PCA here, it is promising that we will be
able to discover more hidden deformation patterns.

4

• Points from the two spheres are really well separated

• Note that the choice of parameter for the kernel matters!

• Validation can be used to determine good kernel parameter values

4Wang, 2012

COMP-652 and ECSE-608 - March 14, 2016 45

Example: De-noising images

Original data

Data corrupted with Gaussian noise

Result after linear PCA

Result after kernel PCA, Gaussian kernel

COMP-652 and ECSE-608 - March 14, 2016 46

PCA vs Kernel PCA

• Kernel PCA can give a good re-encoding of the data when it lies along
a non-linear manifold

• The kernel matrix is m ×m, so kernel PCA will have difficulties if we
have lots of data points

• In this case, we may need to use dictionary methods to pick a subset of
the data

• For general kernels, we may not be able to easily visualizethe image of
a point in the input space, though visualization still works for simple
kernels

COMP-652 and ECSE-608 - March 14, 2016 47

Locally Linear Embedding

• x1, · · · ,xm ∈ Rn lies on a k-dimensional manifold.
⇒ Each point and its neighbors lie close to a locally linear patch of the

manifold.
• We try to reconstruct each point from its neighbors:

min
W

∑
i

‖xi −
∑
j

Wi,jxj‖2

s.t. W1 = 1 and Wi,j = 0 if xj 6∈ neighbors(xi)
⇒ For each point the weights are invariant to rotation, scaling and

translations: the weights Wi,j capture intrinsic geometric properties
of each neighborhood.
• These local properties of each neighborhood should be preserved by the

embedding:

min
z1,...,zm∈Rk

∑
i

‖zi −
∑
j

Wi,jzj‖2

COMP-652 and ECSE-608 - March 14, 2016 48

PCA vs Locally Linear Embedding

[Saul, L. K., & Roweis, S. T. (2000). An introduction to locally linear
embedding.]

COMP-652 and ECSE-608 - March 14, 2016 49

Multi-dimensional scaling

• Input:

– An m×m dissimilarity matrix d, where d(i, j) is the distance between
instances xi and xj

– Desired dimension k of the embedding.

• Output:

– Coordinates zi ∈ Rk for each instance i that minimize a “stress”
function quantifying the mismatch between distances as given by d
and distances of the data representation in Rk.

COMP-652 and ECSE-608 - March 14, 2016 50

Stress functions

• Common stress functions include:

– The least-squares or Kruskal-Shephard criterion:

m∑
i=1

∑
j 6=i

(d(i, j)− ‖zi − zj‖)2

– The Sammon mapping:

m∑
i=1

∑
j 6=i

(d(i, j)− ‖zi − zj‖)2
d(i, j)

,

which emphasizes getting small distances correct.

• Gradient-based optimization is usually used to find zi

COMP-652 and ECSE-608 - March 14, 2016 51

Other dimensionality reduction methods

• Independent component analysis (ICA)

• More generally: factor analysis

• Local linear embeddings (LLE)

• Neighborhood component analysis (NCA)

• ...

• Some methods do dimensionality reduction jointly with a supervised
learning task, or a set of such tasks

COMP-652 and ECSE-608 - March 14, 2016 52

A generalizing perspectiveFactor Analysis

YDY1 Y2

X1 KX

!

Linear generative model:

are independent Gaussian factors
are independent Gaussian noise

So, is Gaussian with:

where is a matrix, and is diagonal.

Dimensionality Reduction: Finds a low-dimensional
projection of high dimensional data that captures most of
the correlation structure of the data.

5

• Let Y be observed data and X be hidden (latent) variables or factors
that generate the data
• The goal is to find how many such variables there are, and the model

through which they generate the data
• E.g. Mixture models: K hidden variables, Gaussian conditional

distributions
• E.g. PCA: K hidden variables, Gaussian models
• E.g. ICA: K hidden variables, non-Gaussian models

5Roweis and Gharamani, 1999

COMP-652 and ECSE-608 - March 14, 2016 53

Graphical models
Polytrees/Layered Networks

more complex models for which junction-tree
algorithm would be needed to do exact inference

discrete/linear-Gaussian nodes are possible

case of binary units is widely studied:
Sigmoid Belief Networks

but usually intractable

• More generally, the data (yellow circles) can be generated by a more
complex structure.

• We can model all variables and their interactions using a graph structure

• Local probabilistic models describe how neighbours influence each other

• The overall model represents a joint probability distribution over all
variables (observed and latent)

COMP-652 and ECSE-608 - March 14, 2016 54

More generally: Autoencoders

• We have some data and try to learn a latent variable space that explains
it

• The goal is to minimize reconstruction error

• In PCA, we used squared loss - this indicates an implicit Gaussian
assumption

• More generally, from data bfy we obtain a mapping z, then we can use
an inverse mapping g to go back from z to y

• We want to maximize the likelihood of the data

COMP-652 and ECSE-608 - March 14, 2016 55

More generally: Autoencoders

Bayesian Reasoning and Deep Learning 14

Unsupervised learning and auto-encoders
‣A generic tool for dimensionality

reduction and feature extraction.
‣Minimise reconstruction error using an

encoder and a decoder.

Data y

Encoder
f(.)

z = f(y)

Decoder
g(.)

y* = g(z)

z

+ Non-linear dimensionality reduction
using deep networks for encoder and
decoder.

+ Easy to implement as a single
computational graph and train using
SGD

- No natural handling of missing data
- No representation of variability of the

representation space. L = ky � g(f(y))k2
2

L = � log p(y|g(z))

Dimensionality Reduction and Auto-encoders

COMP-652 and ECSE-608 - March 14, 2016 56

Two views of auto encoders

• We just implement functions for f , g (e.g. lots of sigmoids in layers) -
this gives rise to deep auto encoders, trained by gradient descent

• We commit to full-blow probabilistic models, treating z as probabilistic
random variable - this gives rise to variational auto encoders

COMP-652 and ECSE-608 - March 14, 2016 57

